

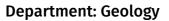
K.J. SOMAIYA COLLEGE OF SCIENCE AND COMMERCE AUTONOMOUS – Affiliated to University of Mumbai Re-accredited "A' Grade by NAAC Vidyanagar, Vidyavihar, Mumbai 400077

Syllabus for T.Y.B.Sc.

Program: B.Sc. Course: Geology Learning Outcomes based Curriculum Framework (LOCF) From the academic year 2023–2024

Structure of Syllabus - Semester V

Course Number	Course Title	Course Code	Credits	Hours	Periods (50 mins)	Unit / Module	Lectures (50 mins)
CC-1	Geology of India: Precambrian Stratigrapgy	23US5GECC1PCS	2	30	36	3	12
CC-2	Igneous Petrology - Evolution of Igneous Rock	23US5GECC2IGP	2	30	36	3	12
CC-3	Structural Geology	23US5GECC3STG	2	30	36	3	12
CC-4	Sedimentary Geology	23US5GECC4SDG	2	30	36	3	12
DSE-1	Element of Geochemistry	23US5GEDS1EOG	2	30	36	3	12
DSE-2	RS-GIS	23US5GEDS2RSG	2	30	36	3	12
DSE-3	Exploration Geology	23US5GEDS3EXG	2	30	36	3	12
SEC-1	Field Geology-1	23US5GESE1FGO1	2	30	36	3	12
SEC-2	Statistics in Geology	23US5GESE2SIG	2	30	36	3	12
GE	Oceanography	23US5GEGEOEC	2	30	36	3	12



Structure of Syllabus - Semester VI

Course Number	Course Title	Course Code	Credits	Hours	Periods (50 mins)	Unit / Module	Lectures (50 mins)
CC-1	Geology of India: Phanerozoic	23US6GECC1PHS	2	30	36	3	12
CC-2	Igneous Textures and Structures	23US6GECC2ITS	2	30	36	3	12
CC-3	Metamorphic Petrology	23US6GECC3MTP	2	30	36	3	12
CC-4	Engineering Geology	23US6GECC4ENG	2	30	36	3	12
DSE-1	Earth and Climate	23US6GEDS1EAC	2	30	36	3	12
DSE-2	Environmental Geology	23US6GEDS2EVG	2	30	36	3	12
DSE-3	Evolution of Life Through Time	23US6GEDS3ELT	2	30	36	3	12
SEC-1	Field Geology-II	23US6GESE1FGO2	2	30	36	3	12
SEC-2	Mathematics in Earth Sciences	23US6GESE2MES	2	30	36	3	12
GE	Geophysical Exploration	23US5GEGEGPE	2	30	36	3	12

Semester V - Theory

Course Number	Course Code	Course Name	Number of Lectures
CC-1	23US5GECC1PCS	Geology of India: Precambrian Stratigraphy	12 L / module

Course Learning Outcome:

- 1. Define the tectonic elements of continent and ocean
- 2.Understand the history and evolution of Earth and Indian subcontinent since its formation during Archean and Proterozoic Era
- 3. Describe the tectonic divisions of Precambrian India and their geology
- 4. Explain the depositional environment of different Precambrian formations of India and its mineralization
- 5. Discuss the evolution of different life forms during Proterozoic Era

N	Module 1 - Tectonic Elements of Continents, Oceans and Tectonic division of India						
LearningTo define tectonic elements of continent and ocean. DescribeObjectivedivision of India.		To define tectonic elements of continent and ocean. Describe tectonic division of India.					
	rning come	1. Understand crustal structure and tectonics 2. Understand Precambrian basement of Indian Peninsula					
1.1	.1 Earth's crustal structure, tectonic divisions of continents, tectonic in the ocean						
1.2	Tectonic divisions in India and Precambrian basement of Indian Peninsula.						

	Module 2 - Cratons of India						
Learning Objective		To define cratons of Indian subcontinent					
	rning come	1.Understand craton, folded mountain belt. 2.Describe geology of different cratons of India.					
2.1	Precambrian: Dharwar Province, Central Indian Province						
2.2	Precambrian: Singhbhum Orissa Province, Aravalli Bundelkhand Province.						

	Module 3 - Proterozoic Basins of India						
Learning Objective		Comprehensive knowledge on Precambrian sedimentary basin.					
	rning come	 Describe about Proterozoic sedimentary basins of India and its mineralization. Explain sedimentary environment of different formation. 					
3.1	Spatio-temporal distribution of proterozoic basins in India.						
3.2	Krol-Tal formation and Pc-C Boundary						

- 1. Krishnan, M. S. (1982) Geology of India and Burma, CBS Publishers, Delhi
- 2. Doyle, P. & Bennett, M. R. (1996) Unlocking the Stratigraphic Record. John Wiley
- 3. Ramakrishnan, M. & Vaidyanadhan, R. (2008) Geology of India Volumes 1 & 2, Geological society of India, Bangalore.
- 4. Valdiya, K. S. (2010) The making of India, Macmillan India Pvt. Ltd
- 5. Sharma, R. S., Sharma, R. (2009). Cratons and Fold Belts of India. Germany: Springer.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER V

Core Course- I

COURSE TITLE: Geology of India: Precambrian Stratigraphy

COURSE CODE: 23US5GECC1PCS [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
1	11	08	05	03	03		30
н	13	09	03	03	02		30
m	10	09	06	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
CC-2	23US5GECC2IGP	Igneous Petrology - Evolution of Igneous Rocks	12 L / module

Course Learning Outcome:

- 1. Explain the interior structure of Earth and role of magma in formation of different types of igneous rocks
- 2. Describe the variation of seismic waves within the Earth and its significance
- 3. Discuss the evolution of magma and several mechanisms of magma differentiation
- 4. Understand the role of plate tectonics, temperature, pressure and fluids in generation of magma
- 5. Discuss the importance of Phase Equilibrium and Phase Rule
- 6. Describe the crystallization and melting relationships in multi component systems

	Module 1 - Earth's Interior and Evolution of Magmas						
Learning Objective		 Discuss the formation and composition of Earth and seismic variation within the Earth. Describe several mechanisms of evolution and differentiation of magma. 					
	rning come	 Acquainted with different divisions of Earth present and its significance. Assess the role of plate tectonics, temperature, pressure and fluids in generation of magma. 					
1.1	Mine Velo	Interior of the Earth: Evidence of the Earth's Composition and ralogy: Seismic data, Meteorites, Xenoliths. Mantle Petrology; Low city Zone, Pressure and Temperature variations with Depth. Magma ration and plate tectonics.					
1.2	The Evolution of Magmas: Differentiation: Fractional Crystallization and Other Differentiation Mechanisms. Magmatic Mixing and Assimilation. Melting of the mantle, generation of Basaltic magma from a Chemically Uniform Mantle.						

	Module 2 - One component and Binary Systems						
Learning Objective		 Demonstrate the importance of Phase Equilibrium and Phase Rule. Compare one component and two component systems and its petrogenetic significance. 					
	rning come	 Define the basic principle governing systems in thermodynamic equilibrium. Discuss the role of temperature and pressure on crystallization of magma. 					
2.1	Beha Com	Phase Rule and System with One and two Component Systems: Melting vior of Natural Magmas, Phase Equilibrium and The Phase Rule, One conent Systems, Two Component (Binary Systems) and Its Petrogenetic ficance.					
2.2	Binary Systems with Complete Solid Solution, Binary Eutectic Systems, Binary Peritectic Systems, the Alkali Feldspar System.						

	Module 3 - Ternary systems						
	ning ctive	 Illustrate the crystallization and melting relationships in multi component systems. The effects of pressure variation and different fluids on the melting and crystallization of magma. 					
	rning come						
3.1	System with More Than Two Components. Ternary Systems:- Ternary Eutectic Systems, Ternary Systems with Solid Solution Reaction Series, The effect of fluids on Melting Behaviour. The effects of Pressure on the Melting and Crystallization of Magma						

- 1.Cox, K. G., Bell, J. D. (1979). The Interpretation of Igneous Rocks. Netherlands: Springer Netherlands.
- 2. Best M.G. Igneous and Metamorphic Petrology, Blackwell Publications
- 3. Bose M.K. (1997), Igneous Petrology. The World Press Pvt. Ltd. 568 p.
- 4.Blatt H., Tracy R.J. and Owens B.E. (2006), Petrology Igneous, sedimentary and Metamorphic rocks (3rd Edition), W.H. Freeman and Company, New York.
- 5. Bowen N.L. (1928), The evolution of Igneous Rocks. Princeton Univ. Press. N.J. 332 p
- 6.Hatch F.H., Wells A.K and Wells M.K. (1984), Petrology of the igneous rocks. CBS Publishers, 551 p.
- 7. Turner F.J and Verhoogen J. (1960), Igneous and Metamorphic Petrology, McGrawHill
- 8. Winter J. D. (2001), an Introduction to Igneous and Metamorphic Petrology, Prentice Hall, 697p
- 9.Ehlers, E.G. a nd H. Blatt (1982), Petrology, Igneous, Sedimentary and Metamorphic, W.H Freeman, San Francisco.
- 10. Philpotts, A., Ague, J. J., Ague, J. (2009). Principles of Igneous and Metamorphic Petrology. Spain: Cambridge University Press.
- 11. Hall, A. (1987). Igneous Petrology. United Kingdom: Longman Scientific & Technical.
- 12.McBirney, A. R. (2007). Igneous Petrology. United Kingdom: Jones and Bartlett Publishers.
- 13. Gill, R. (2011). Igneous Rocks and Processes: A Practical Guide. Germany: Wiley.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER V

Core Course- II

COURSE TITLE: Igneous Petrology - Evolution of Igneous Rocks

COURSE CODE: 23US5GECC2IGP [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
1	10	08	03	03	02		30
11	11	09	05	03	02		30
m	13	09	06	03	03		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
CC-3	23US5GECC3STG	Structural Geology	12 L / module

Course Learning Outcome:

- 1. Understand, comprehend, assess, analyse different structures and develop core competencies to apply this knowledge in field and practical problems in structural geology
- 2. Describe the concept of strike, dip, apparent dip and its significance
- 3. Utilise the understandings of contours, strike, rule of Vs and right hand thumb rule to analyse and interpret maps
- 4. Describe the concept of stress and strain and its significance and application.
- 5. Classify and understand joints/fractures
- 6. Classify and understand faulting
- 7. Classify and understand folding

	Module 1 - Fundamental Concepts						
LearningTo get a thorough understanding and definitions of the fundamentObjectiveconcepts of structural geology.							
	 arning 1. Define structural geology and understand its significance 2. Analyze the topographic, structural features and understand structural maps. 						
1.1	Structure and Topography: Effects of topography on structural features, Topographic and structural maps; Importance representative factors of the map, Concept of dip and strike; Outcrop patterns of different structures						
1.2	Concept of deformation/Rock Rheology: Elastic (Hookean) Behavior, Permanent Deformation – Ductility Controlling Factors						
1.3	Stress: Definition, Stress on a Plane, Stress at a Point, Mohr's Construction, Stress Ellipsoid						
1.4	1	Strain: Definitions, Strain Ellipsoid, Simple and Pure Shear, Measurement of Strain in Rocks, Strain Markers, Flinn Diagram					

	Module 2 – Joints and Faults					
LearningObjectiveTo get comprehensive understanding of brittle		To get comprehensive understanding of brittle deformations.				
LearningJoints and FaultsOutcome2. Classify the type of fault based on geometry and genetics		2. Classify the type of fault based on geometry and genetics 3. Understand, analyse and illustrate the effect of faulting on the				
2.1	S-L Tectonites (lineations, foliations)					
2.2	Study of Structures – (Joints): Joints, fractures and Shear Fractures, Formation of a Fracture Griffith Theory, Joints and Fracture Mechanics, Joints in Plutons					
2.3	Study of Structures – (Faults): Geometric and genetic classification and terminology, Criteria for Faulting; Brittle versus Ductile Faults, Introduction to Shear Zones, Types of shear-zones, Shear – Sense Indicators					
2.4		ts of faulting on the outcrops : Outcrop patterns, Geologic/geomorphic ria for recognition of faults and fault plane solutions				

	Module 3 - Folds						
Learning Objective	To get comprehensive understanding of ductile deformations						
Learning Outcome	 Classify the type of folds Understand, analyse and illustrate the complex folding patterns Understand and illustrate the mechanism for the formation of folds 						

3.1	Study of Structures – (Folds): Fold Geometry and Classifications, Ramsay standard classification
3.2	Mechanism of folding.
3.3	Elementary idea of fold interference pattern,

- 1. Fossen, H. (2016). Structural geology. Cambridge University Press.
- 2. Davis, G. H., Reynolds, S. J., & Kluth, C. F. (2011). Structural geology of rocks and regions. John Wiley & Sons.
- 3. Mitra, G., Marshak, S. (2018). Basic Methods of Structural Geology. India: Pearson India.
- 4.Ghosh, S. (2013). Structural Geology: Fundamentals and Modern Developments. United Kingdom: Elsevier Science.
- 5. Pollard, D. D. (2005) Fundamental of Structural Geology. Cambridge University Press.
- 6. Park, R. G. (2004) Foundations of Structural Geology. Chapman & Hall.
- 7.Ragan, D. M. (2009) Structural Geology: an introduction to geometrical techniques (4th Ed). Cambridge University Press
- 8. Billings, M. P. (1987) Structural Geology, 4th edition, Prentice-Hall.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER V

Core Course- III

COURSE TITLE: Structural Geology

COURSE CODE: 23US5GECC3STG [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
I	11	08	05	03	03		30
11	13	09	03	03	02		30
	10	09	06	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
CC-4	23US5GECC4SDG	Sedimentary Geology	12 L / module

Course Learning Outcome:

- 1. Identify different sedimentary rocks and the process of their formation
- 2. Describe different types sedimentary structures associated with the sedimentary rock and the energy conditions during which they were formed
- 3. Explain the significance of sedimentary texture in understanding the provenance
- 4. Discuss origin and classification of clastic sedimentary rocks
- 5. Discuss origin and classification of non-clastic sedimentary rocks

	Module 1 - Classification and Structures						
Learning Objective		Understanding the process of formation of various sedimentary rocks and structures.					
	 earning 0utcome 1. Classify different sedimentary rocks. 2. Be acquainted with the different types of primary and deformational structures found in a sedimentary rock 3. Identify the energy conditions during which a sedimentary structure was formed in any sedimentary rock. 						
1.1	Classification of sedimentary rocks,Origin and Transport of sedimentary materials: Origin, Transportation, and deposition of sediments. Classification of sedimentary rocks, Sedimentary textures: Laboratory Techniques, Grain Size, Udden-Wentworth Size Scale, Phi Scale, Grain Size Measurement Roundness and Shape, Grain to Grain relationship, permeability and porosity.						
1.2	Grad bedd and brus	mentary structures: Stratification and bedforms: Laminated bedding, ed bedding, Ripples, Dunes, Antidunes, cross-stratification. Convolute ling and Lamination, Flame structure, Dish and Pillar structures, Scour fill Structures. BeddingPlane Marking: Groove Cast, Striation, bounce, h, prod, and roll marks Flute Cast, Load Cast, Tracks, Trails, Burrows and cracks.					

	Module 2 - Clastic Sedimentary Rocks						
Learning ObjectiveDiscuss origin of the clastic sedimentary rocks							
Learning1. Students will be able to identify and classify the clastic sedimentary rocks.Outcome2. Be acquainted with the significance of grain size and mine understanding the provenance		sedimentary rocks. 2.Be acquainted with the significance of grain size and mineralogy in					
2.1	Clastic sedimentary rocks: Classification of sedimentary rocks, Sandstone: Framework minerals, Cement, Matrix, Classification of Sandstone, Sandstone						

	Module 3 - Non-clastic Sedimentary Rocks							
Learning ObjectiveDiscuss origin of the non-clastic sedimentary rocks		Discuss origin of the non-clastic sedimentary rocks						
Learning sedimentary rocks.		2. Attain knowledge of the genesis of various types of non-clastic						
Non-clastic Sedimentary Rocks: Limestones and Dolomites: chemistry a Mineralogy, Limestone texture, Dolomite texture, classification of carbon 3.1 rocks, Other Types of Sedimentary Rocks: Evaporites, Kinds of Evaporites a Origin of Evaporite deposits. Cherts: Phanerozoic Marine Cherts; Phaneroz Nonmarine Cherts; Precambrian Cherts.								

- 1. Pettijohn F.J. (1984), Sedimentary Rocks (3 rd Delhi Edition), CBS Publishers and Distributors, New
- 2.Sengupta S.M. (2007), Introduction to Sedimentology (2 nd Edition), CBS Publishers and Distributors, New Delhi.
- 3.Collinson, J. D. & Thompson, D. B. (1988) Sedimentary structures, Unwin Hyman, London
- 4. Nichols, G. (2009) Sedimentology and Stratigraphy Second Edition. Wiley Blackwell
- 5. Tucker, M. E. (2006) Sedimentary Petrology, Blackwell Publishing.
- 6.Boggs Jr, S. (2014). Principles of sedimentology and stratigraphy. Pearson Education.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER V

Core Course- IV

COURSE TITLE: Sedimentary Geology

COURSE CODE: 23US5GECC4SDG [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
1	13	09	03	03	02		30
II	10	09	06	03	02		30
m	11	08	05	03	03		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
DSE-1	23US5GEDS1EOG	Element of Geochemistry	12 L / module

Course Learning Outcome:

- 1. Describe the geochemical properties of elements and solar system
- 2. Discuss the basics of periodic table and chemical bonding
- 3. Explain the composition of different Earth reservoirs
- 4. Understand the importance of radioactivity and radiogenic isotopes in geochronology
- 5. Describe the formation of solar system and the composition of Earth using meteorites
- 6. Analyse the geochemical variation of important silicate elements in solid Earth

	Module 1 - Concepts of Geochemistry					
Learning Objective		Get introduced to geochemical properties of elements				
Learning Outcome		Learn the basics of periodic table and bonding states of elements				
		duction to properties of elements: The periodic table, Chemical ling, states of matter and atomic environment of elements, Geochemical ification of elements				

M	Module 2 - Layered Structure of Earth and Geochemistry					
Learning Objective	Discuss the composition of layered Earth and isotopic and elemental abundance					
Learning Outcome	Study of nuclides and radioactivity in different reservoirs of Earth					

Composition of different Earth reservoirs and the nuclides and radioactivity,
 Conservation of mass, isotopic and elemental fractionation, Concept of radiogenic isotopes in geochronology and isotopic tracers

	Module 3 - Geochemistry of Solid Earth					
Learning Objective		Analyse the geochemical variation in solid Earth and behaviour of important silicate elements				
Learning1. Describe the process of formation of solar systemOutcome2. Study the composition of Earth using meteorites						
3.1	The solid Earth – geochemical variability of magma and its products.					
3.2	The Earth in the solar system, the formation of solar system, Composition of the bulk silicate Earth, Meteorites, Geochemical behaviour of selected elements like Si, Al, K, Na etc.					

- 1. White, W. M. (2013). Geochemistry. Germany: Wiley.
- 2. Misra, K. C. (2012). Introduction to Geochemistry: Principles and Applications. Germany: Wiley.
- 3. Mason, B. (1986) Principles of Geochemistry. 3rd Edition, Wiley New York.
- 4. Rollinson, H. (2007) Using geochemical data evaluation, presentation and interpretation. 2nd Edition. Publisher Longman Scientific & Technical.
- 5. Walther, J. V. (2009). Essentials of geochemistry. Jones & Bartlett Publishers.
- 6. Albarède, F. (2003). Geochemistry: an introduction. Cambridge University Press.
- 7. Faure, Gunter and Teresa M. Mensing (2004). Isotopes: Principles and Applications, Wiley India Pvt. Ltd
- 8. Wilson, B. (2007). Igneous Petrogenesis A Global Tectonic Approach. Germany: Springer.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER V

Discipline Specific Elective- I

COURSE TITLE: Element of Geochemistry

COURSE CODE: 23US5GEDS1EOG [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
I	10	08	05	03	02		30
н	13	09	06	03	03		30
m	11	09	03	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
DSE-2	DSE-2 23US5GEDS2RSG Remote Sensing		12 L / module

Course Learning Outcome:

- 1. Recognize and explain the fundamental principles of remote sensing, including the electromagnetic spectrum; the emission, scattering, reflection, and absorption of electromagnetic (EM) radiation
- 2. Analyse the principles and components of photogrammetry and remote sensing and describe the process of data acquisition
- 3. Assess the requirement of satellite images for the required task and determine the datasets required based on sensor characteristics
- 4. Explain the basic principles of image processing and satellite image interpretation
- 5. Enumerate the importance and use of GIS technique in daily life

N	Module 1 - Electromagnetic Radiation Principles and Energy Matter Interactions					
Learning Objective		To understand the basic principles of electromagnetic radiation and study the basic principles used in remote sensing techniques				
Learning the different earth surface features		2. Analyse the spectral responses from different earth surface				
1.1	1.1 Concept of remote sensing. Active and Passive Remote Sensing. Electromagnetic radiation models: Wavel model, Particle model. Energy Interaction in Atmosphere: Refraction, Scattering, Absorption, Reflectance. Energy Interactions in Earths surface: Reflection, Absorption, Transmittance.					
1.2	Spectral Response pattern of Vegetation, Soil, Water and common surface matterials, Atmospheric and geometric Influences on Spectral Response Patterns.					

	Module 2 - Satellite sensors and their operating principles					
Learning Objective		To learn the different characteristics of a scanning system and get introduced to various scanning systems in use				
Learning Outcome		 Learn about the types of data characteristics that are used in remote sensing, their characteristics and interaction with one another Analyse the different digital formats used to save datasets 				
2.1	Scanners, Along and Across-track scanning. Data aquisition and Digital Image, Resolution: Spatial, spectral. radiometric, temporal					
2.2	Satellite Sensor and Scanner Systems: Multispectral and Hyper spectral Sensing. Thermal imaging. Thermal Radiation principles.					

	Module 3 - Photogrammetry and GIS					
Learning Objective		To understand the basic principles of landform identification and factors controlling a geographical information system				
Learning Outcome		 Become conversant with the use of aerial photography for measurements using photogrammetry methods Learn the use of aerial photos and satellite imageries in landform evaluation Understand the basics of a GIS system and its governing data models 				
3.1	3.1 Elements of Visual image interpretation, Principles of Landfor identification and evaluation					

3.2	Type of aerial photos, Geometric Characteristics of aerial photographs Photographic scales, ground coverage of aerial photographs, relief displacement, making stereo images, Image parallax, flight planning
3.3	Basic Mapping Concepts, Components of GIS system, hardware and software requirements of a GIS system, Datums and coordinate systems, Map Projections
3.4	Raster and Vector GIS modelling and analysis

- 1.Lillesand, T. M. & Kiefer, R.W., 2007. Remote Sensing and Image Interpretation, Wiley.
- 2. Jensen, J. R. (2009). Remote Sensing of the Environment: An Earth Resource Perspective 2/e. India: Pearson Education.
- 3. Jensen, J. R. (2016). Introductory Digital Image Processing: A Remote Sensing Perspective. United Kingdom: Pearson Education, Incorporated.
- 4. Bhatta, B. (2011). Remote Sensing and GIS. India: OUP India.
- 5. Demers, M.N., 1997. Fundamentals of Geographic Information System, John Wiley & Inc.
- 6. Hoffmannsons. Wellenhof, B., Lichtenegger, H. and Collins, J., 2001. GPS: Theory & Practice, Springer Wien New York
- 7. Richards, J.A. and Jia, X., 1999. Remote Sensing Digital Image Analysis, Springer Verlag.
- 8. Wise, S. (2018). GIS Fundamentals. United Kingdom: CRC Press.
- 9. Hwang, S., McHaffie, P., Follett, C. (2018). GIS: An Introduction to Mapping Technologies. United Kingdom: CRC Press.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER V

Discipline Specific Elective- II

COURSE TITLE: Remote Sensing and GIS

COURSE CODE: 23US5GEDS2RSG [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
1	11	08	05	03	03		30
11	13	09	03	03	02		30
m	10	09	06	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
DSE-3	23US5GEDS3EXG	Exploration Geology	12 L / module

Course Learning Outcome:

- 1. Understand different types of mineral deposits with respect to processes of formation in relation to exploration strategies
- 2. Evaluate the sampling data using different statistical parameters
- 3.Describe the drilling and logging techniques, planning and location of boreholes on ground
- 4. Analyse the mineral reserves, their estimation and errors associated with them

	Module 1 - Mineral Resources					
Learning Objective		To understand the basic principles of economic Geology and identification of mineral reserves				
Learning Outcome		1.Understand the various processes that form the mineral reserves 2.Classify the various types of mineral deposits				
1.1	Resource reserve definitions, Mineral resources in industries – historical perspective and present, A brief overview of classification of mineral deposits with respect to processes of formation in relation to exploration strategies.					

	Module 2 - Prospecting and Exploration		
Learning Objective	To learn the different Principles of mineral exploration and mineral Prospecting		
Learning Outcome	1. Understand the various principles of mineral exploration 2. Get acquainted with various processes of mineral exploration		

Principles of mineral exploration, Prospecting and explorationconceptualization, methodology and stages, Sampling, subsurface sampling including pitting, trenching and drilling, Geochemical exploration.

	Module 3 - Drilling and Logging				
LearningObjectiveTo understand the core and non-core drilling methods		To understand the core and non-core drilling methods			
Learning OutcomeUnderstand the various Core and non-core drilling methods		Understand the various Core and non-core drilling methods			
3.1	Core and non-core drilling				
3.2	Planning of bore holes and location of boreholes on ground				
3.3	Core-logging				

- 1. Haldar, S. K. K. (2018). Mineral Exploration: Principles and Applications. Netherlands: Elsevier Science.
- 2. Moon, C.J., Whateley, M.K.G., Evans, A.M., 2006, Introduction to Mineral Exploration, Blackwell Publishing.
- 3. Gandhi, S. M., Sarkar, B. C. (2016). Essentials of Mineral Exploration and Evaluation. Netherlands: Elsevier Science.
- 4. Clark, G.B. 1967. Elements of Mining. 3rd Ed. John Wiley & Sons.
- 5. Reedman, J. H. (1979). Techniques in mineral exploration. London: Springer Netherlands.
- 6. Arogyaswami, R.P.N. 1996 Courses in Mining Geology. 4th Ed. Oxford-IBH

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER V

Discipline Specific Elective- III

COURSE TITLE: Exploration Geology

COURSE CODE: 23US5GEDS3EXG [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
1	11	08	05	03	03		30
11	13	09	03	03	02		30
m	10	09	06	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
SEC-1	23US5GESE1FGO1	Field Geology - I (Economic Geology and Mining Methods	12 L / module

Course Learning Outcome:

- 1. Analyse the mode of origin and occurrence of ore
- 2. Understand the ore-host rock interrelation and different ore formation process
- 3. Discuss the basic techniques of surveying and outcrop mapping
- 4. Enumerate several types of mines and analyse the mining methods used in those mines

	Module 1 - Ore mineral Formation			
Learning ObjectiveTo learn ore minerals and their interrelations with host rocks		To learn ore minerals and their interrelations with host rocks		
	rning come	1.Understand ore mineralization 2.Understand outcrop mapping on field		
1.1	Visit to any mineral deposit			
1.2	Mode of occurrence of ore, Ore mineralogy			
1.3	Ore-Host rock interrelation			
1.4	Ore formation process			
1.5	Basic techniques of surveying, concept of outcrop mapping			

	Module 2 - Mine Visit				
LearningTo visit an operating mine and learn the various mining anObjectivetechniques		To visit an operating mine and learn the various mining and mapping techniques			
	rning come	1.Understand the functioning of an open cast or underground mine 2.Understand underground mapping / bench mapping			
2.1	Visit to underground or open cast mine				
2.2	Practical experience of mining methods				
2.3	Underground mapping/ Bench mapping				
2.4	Isopach and Isochore maps.				

Course Number	Course Code	Course Name	Number of Lectures
SEC-2	23US5GESE2SIG	Statistics in Geology	12 L / module

Course Learning Outcome:

- 1. Understand primary idea about various laws of statistical distribution
- 2. Primary attributes (indices) to characterize a geological data
- 3. Identify appropriate analyses for a given question or hypothesis, with a particular dataset.
- 4. Apply familiar statistical tests to new datasets.

	Module 1				
Learning Objective		Learning the fundamental concepts of statistics			
Learning Outcome		Understand the fundamentals and statistical tests			
1.1 Introduction to Binomial, Poisson, normal gamma, Chi-square, t and distribution.					

	Module 2			
Learning Objective	Learn various data analysis methods using statistics			
Learning Outcome	Understand Statistical analysis and application of statistics in sedimentological studies			

Τ

Г

2.1	Statistics and Data Analysis: Frequency distribution, Histograms, Probability, Correlation coefficient, Regression, Least squares method, Curve fitting, Error estimation; Principal Component Analysis, Analysis of Uni-variate and Multi- variate data
2.2	Case studies, application in sedimentological studies and Petroleum sector.

- 1. Davis, J. C. (2002). Statistics and data analysis in geology. United Kingdom: Wiley.
- 2. Borradaile, G. J. (2010). Statistics of earth science data: Their distribution in time, space, and orientation. Springer.
- 3. Ross, S. M. (2020). Introduction to Probability and Statistics for Engineers and Scientists. Netherlands: Elsevier Science.
- 4. Merriam, D. F., Marsal, D. (2014). Statistics for Geoscientists. United Kingdom: Elsevier Science.
- 5. Link, R. F., Koch, G. S. (2002). Statistical Analysis of Geological Data. United States: Dover Publications.
- 6. Stephens, L. J. (2018). Schaum's Outline of Statistics. McGraw-Hill Education.

Course Number	Course Code	Course Name	Number of Lectures
GE	23US5GEGEOEC	Oceanography	12 L / module

Course Learning Outcome:

- 1. Describe Earth's hydrologic and atmospheric system and explain how they interact
- 2.Explain the theory of plate tectonics and how it explains the origin, distribution, and geological and physical features of the ocean basins
- 3. Demonstrate knowledge of the properties of seawater and apply methods for studying it
- 4. Explain the causes, locations, and behaviors of ocean waves, currents, and tides and their influence on coastal zones
- 5. Demonstrate knowledge of common marine organisms, their habitat, interaction and factors influencing productivity
- 6. Understand Ocean mineral deposits

	Module 1 - Physical Oceanography			
Learning Objective		To learn the physical constraints of ocean and ocean water properties		
Learning Outcome		Understand the Ocean basins, Formation and properties of ocean water		
1.1 The Physiography of the ocean floor. The Origin of Ocean Basins: Continen drift, Global Plate tectonics. Properties of Sea Water, Characteristics of tide				

Module 2 - The atmosphere and Ocean Dynamics and Biological Oceanography		
Learning Objective	Understand the ocean atmosphere interaction and its effect on ocean waves and tides	
Learning Outcome	1.Understand the atmosphere and ocean dynamics. 2.Understand various types of waves and currents in ocean	

2.1

Wind and Ocean Circulation: Atmospheric Processes, Surface ocean currents, Deep ocean circulation. Waves: Ocean wave properties, Wave motion, standing waves, types of waves. Tides: Tidal characteristics, Origin of tides, Tidal currents.

Module 3 - Ocean Mineral Deposits				
Learning Objective To understand the laws of ocean associated		To understand the laws of ocean associated with mineral deposits		
Learning Outcome		Understand the laws of the sea and sea bed mining		
3.1	Law of the Sea. (Marine Mineral Resources: Oil and Natural Gas, Gas Hydrates, Sand and Gravel, Manganese, Phosphate.), Sea bed mining.			

- 1. Pinet, P. R. (2003). Invitation to oceanography. Boston: Jones and Bartlett Publishers..
- 2. Trujillo, A. P., Thurman, H. V. (2010). Essentials of Oceanography. United Kingdom: Pearson Prentice Hall.
- 3. Stewart, R. H. (2009). Introduction to Physical Oceanography. United States: University Press of Florida.
- 4. Handbook of Marine Mineral Deposits. (2017). United States: CRC Press.
- 5. Roonwal, G. S. (2012). The Indian Ocean: Exploitable Mineral and Petroleum Resources.: Springer
- 6. Earney, F. C. F. (2012). Marine Mineral Resources. United Kingdom: Taylor & Francis.
- 7.Garrison, T. (2009). Essentials of Oceanography. United States: Brooks/Cole, Cengage Learning.
- 8. Gross, M. G., Gross, E. R., Gross, E., Gross, M. G. (1996). Oceanography, a view of earth. United Kingdom: Prentice Hall.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER V

General Elective

COURSE TITLE: Oceanography

COURSE CODE: 23US5GEGEEOC [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
1	10	08	05	03	03		30
11	11	09	06	03	02		30
m	13	09	03	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Semester V - Practical

Course Number	Course Code	Code Course Name			
CP-1	23US5GECC1P	Geology of India: Precambrian Stratigraphy			

Learning Objective		 The practical is intended to Understand the Stratigraphic time scale Understand Lithostratigraphic Boundaries Understand complex geological maps and its chronological order Correlate different stratigraphic units 		
Learning Outcome		 After the successful completion of the practical, the learner will be able to: Classify different lithostratigraphic boundaries Decipher complex geological history and chronological order with the help of geological maps Correlate different stratigraphic units 		
1	Standard Geological Time Scale			
2	Diagrammatic examples of Lithostratigraphic boundaries and classification			
3	Study of fold and fault characteristics from Geological maps with geological history of the area in chronological order			
4	Exercise on correlation between different stratigraphic units			

Course Number	Course Code	Course Name
CP-2	23US5GECC2P	Igneous Petrology

Learning Objective	 The practical is intended to Observe and learn megascopic textures and structures in rocks Study texture, mineral composition and association 	
Learning Outcome	 After the successful completion of the practical, the learner will be able to: Identify various Megascopic structures and textures of igneous rocks Identify the mineral composition, mode of occurrence and association of igneous rocks. 	
Megascopic Structures and Textures Identification of Igneous Rocks		Equigranular: Hypidiomorphic, Panidomorphic. (Orthophyric), Allotriomorphic (Aplitic), Aphanitic Inequigranular: Porphyritic, Glomeroporphyritic, Ophitic/ Subophitic, Poikilitic, Intergranular, Intersertal Directive: Banded (Fluidal), Trachytic Intergrowth: Graphic/Micrographic, Perthitic, Granophyric
Igneous Mega-Structures		Vesicular/ Amygdaloidal Lava, Blockery/ Clinkery Lava, Ropy Lava Surface, Columnar Joint Block, Flow Banding, Intrusive Contacts and Xenoliths
Study of the Texture, Mineral composition, Mode of occurrence, and Association of the following Rock Types		Granite, Rhyolite, Pegmatite, Aplite, Quartz porphyry Pitchstone, Obsidian Syenite (Hornblende / Biotite), Trachyte, Feldspar porphyry Nepheline Syenite

Course Number	Course Code	Course Name
CP-3	23US5GECC3P	Structural Geology

Learning Objective	 The practical is intended to Understand how to solve structural maps Understand three point problems Understand Stereographic Projection 	
Learning Outcome	After the successful completion of the practical, the learner will be able to: • Make Structural profiles and cross sections • interpolate structural information using three point data • Use stereographic projections to analyze structural data	
Profiles a cross secti		
Structura Problem		
Stereograp Projectio	Strike and Ulp from apparent dips	

Course Number	Course Code	Course Name
CP-4	23US5GECC4P	Sedimentary Petrology

Learning Objective	The practical is intended toIdentify Clastic and non clastic sedimentary rocksUnderstand Sedimentary structures and textures	
Learning Outcome	 After the successful completion of the practical, the learner will be able to: Identify Sedimentary rocks in hand specimen Identify the various sedimentary textures of clastic and non clastic sedimentary rocks Identify the various sedimentary structures 	
Sedimentary Textures		(Clastic) Rudaceous, (Conglomeratic/ Brecciatic), Arenaceous (Gritty/Sandy), Argillaceous
Sedimentary Structures		Stratification, Current Bedding, Graded Bedding, Ripple Marks, Rain Imprints, Concretions/Secretions
Identification of Sedimentary Rocks		Conglomerate, Breccia, Grit , Sandstone, Shale, Limestone, Fossiliferous Limestone , Oolitic Limestone, Laterite

Course Number	Course Code	Course Name
DSE - 1 PR	23US5GEDS1P	Element of Geochemistry

Learnir Objecti	-	• Understand (reochemical data analysis	
Learnir Outcon	-		
1	Types of geochemical data analysis and interpretation; of common geochemical plots		
2	Geochemical analysis of geological materials.		
3	Geochemical variation diagrams and its interpretations.		

Course Number	Course Code	Course Name
DSE - 2 PR	23US5GEDS2P	Remote Sensing and GIS

Learnin Objectiv		
Learnin Outcom		
1	Aerial Photo interpretation, identification of sedimentary, igneous and metamorphic rocks	
2	Landform Identification and Evaluation from imageries and various aeolian, glacial, fluvial and marine landforms	
3	Introduction to different remote sensing software	
4	Creating a FCC from raw data analysis of satellite data in different bands and interpretation of various objects on the basis of their spectral signatures.	

Course Number	Course Code	Course Name
DSE - 3 PR	23US5GEDS3P	Exploration Geology

Learnir Objecti			
Learnir Outcon	-	 Identity anomalies in various geophysical methods 	
1	Identification of anomaly		
2	Concept of weighted average in anomaly detection		
3	Geological cross-section		
4	Evaluation of sampling data		

Semester VI - Theory

Course Number	Course Code	Course Name	Number of Lectures
CC-1	23US6GECC1PHS	Geology of India: Phanerozoic	12 L / module

Course Learning Outcome:

After successful completion of the Course, the learner will be able to:

- 1. Understand the origin and tectonic history of different Phanerozoic stratigraphic formations of India and problems associated with stratigraphic boundaries
- 2. Discuss the evolution of different life forms during Phanerozoic Era
- 3. List the age, lithology, fossil content and economic minerals present in different Phanerozoic successions of India
- 4. Comment on their stratigraphic significance and its correlation with different formations present all over India

	Module 1: Paleozoic and Gondwana succession in India						
	Learning1. Discuss the tectonic history of Palaeozoic period and evolution different life forms during the same.Objective2. Categorise different Palaeozoic formations of India with respect their age, lithology, fossil content and important economic minerals						
	Learning Dutcome 1. Identify different Palaeozoic succession of India. 2. Comment on their stratigraphic significance and its correlation wit different formations present all over India.						
1.1	Palaeozoic History: Tectonic History, Palaeozoic Life, Precambrian Cambrian Boundary, Marine Palaeozoic Formations of India, Tethyan Regions.						
1.2	Gondwana Sequence of India: Sedimentation and Palaeoclimates, Lower Gondwana Sequence, Talchir Formations, Damuda Group, Upper Gondwana Sequences of Damodar Valley Basin, Satpura Basin, Rajmahal Hills, Mahanadi-Son Valley Basin, Pranhita-Godavari Basin						

	Module 2: Mesozoic succession in India						
	 Learning Objective 1. Discuss the tectonic history of Mesozoic period and evolution of different life forms during the same. 2. Categorise different Mesozoic formations of India with respect to their age, lithology, fossil content and important economic minerals. 						
Learning Outcome1. Identify different Mesozoic succession of India. 2. Comment on their stratigraphic significance and its correl with different formations present all over India.		2.Comment on their stratigraphic significance and its correlation					
2.1	2.1 Mesozoic History: Tectonic History, History of Mesozoic Life, Marine Forms, Permian-Triassic Boundary, Marine Mesozoic Formations of India, Tethyan Himalaya, Lesser Himalaya (Krol Belt), Indian Peninsula, Indus belt, Deccan Volcanics						

N	Module 3 - Cenozoic succession of India & Geology of Maharashtra						
	 Learning Objective 1. Discuss the tectonic history of Cenozoic period and evolution of different life forms during the same. 2. Categorise different Cenozoic formations of India with respect to their age, lithology, fossil content and important economic minerals. 						
Learning Outcome1. Identify different Cenozoic succession of India. 2. Comment on their stratigraphic significance and its correl different formations present all over India.		2. Comment on their stratigraphic significance and its correlation with					
3.1	Cenozoic History: Tectonic History, History of Cenozoic Life, Boundary 3.1 Problems, Indian Cenozoic Formations, Himalayan Neogene Succession, Indus Belt, Assam–Arakan Region.						

3.2 Geology of Maharashtra: Geology of the State, Geological and Geographical distributions of minerals

Recommended books for References

- 1. Krishnan, M. S. (1982) Geology of India and Burma, CBS Publishers, Delhi
- 2. Doyle, P. & Bennett, M. R. (1996) Unlocking the Stratigraphic Record. John Wiley
- 3. Ramakrishnan, M. & Vaidyanadhan, R. (2008) Geology of India Volumes 1 & 2, Geological society of India, Bangalore.
- 4. Valdiya, K. S. (2010) The making of India, Macmillan India Pvt. Ltd
- 5. Sharma, R. S., Sharma, R. (2009). Cratons and Fold Belts of India. Germany: Springer.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER VI

Core Course- I

COURSE TITLE: Geology of India: Phanerozoic

COURSE CODE: 23US6GECC1PHS [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
I	11	08	05	03	03		30
11	13	09	03	03	02		30
ш	10	09	06	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
CC-2	23US6GECC2ITS	Igneous Textures and Structures	12 L / module

Course Outcome:

After successful completion of the Course, the learner will be able to:

- 1. Understand the petrogenesis of different igneous rocks
- 2. Describe different igneous textures and its importance in magma behaviour
- 3.Discuss the igneous structures and field relationships of extrusive and intrusive rocks
- 4. Enumerate the classification and nomenclature of igneous rock

	Module 1 - Igneous Textures					
	Learning ObjectiveUnderstand the primary igneous textures.					
	Learning Outcome1. Differentiate between extrusive and intrusive rock 2. Define different volcanic landforms. 3. Discuss contact relationships of plutons and time of intrusion.					
Define textures of volcanic and pyroclastic rocks. Textures of Igneous rocks: Primary Textures (Crystal/Melt Interactions), Rates of Nucleation, Growth and Diffusion Nucleation at preferred sites, Compositional Zoning Crystallization sequence Magmatic Reaction and Resorption, Cumulate Textures, Volcanic textures and Pyroclastic textures.						

	Module 2 - Igneous Structures					
Learning Objective	Discuss field relationships of extrusive and intrusive igneous rocks.					
Learning Outcome	 Differentiate between extrusive and intrusive rocks. Define different volcanic land forms. Discuss contact relationships of plutons and time of intrusion. 					

2.1

Igneous structures and Field Relationship Extrusive or volcanic, Processes, Products and Landforms: Properties of Magma and Eruptive Style, Central vent Landforms, Fissure Eruptions, lava flow features, pyroclastic deposits, Intrusive, or Plutonic, Processes and Bodies: Tabular Intrusive Bodies, Non-Tabular Intrusive Bodies, Contact Relationships of Plutons, time of intrusions.

	Module 3 - Igneous Rock Classification					
Learning ObjectiveDiscuss the nomenclature of magmatic and volcanic rocks		Discuss the nomenclature of magmatic and volcanic rocks				
	Learning OutcomeName the different igneous rocks and understand their petrogenesis process					
3.1	Classification and Nomenclature of Magmatic Rocks Introduction, 3.1 Compostional terms, IUGS classification, Phaneritic Rocks, felsic, mafic and Ultra-mafics, Aphanitic rocks, Pyroclastic rocks.					
3.2	Subduction –Related Activity: Island Arc Volcanic Rocks and Magma Series, The Ophiolite Suite; Calcalkaline and Tholeiite Groups; Petrogenesis of Island Arc Magmas, Plutonic Rocks – Batholiths related to subduction zones. Petrogenesis of Mid-Oceanic Volcanism, Gabbroic Layered Intrusions; Anorthosites; Nephelinites; Carbonatites, Kimberlites and related Rocks.					

Recommended books for References

- 1.Cox, K. G., Bell, J. D. (1979). The Interpretation of Igneous Rocks. Netherlands: Springer Netherlands.
- 2. Best M.G. Igneous and Metamorphic Petrology, Blackwell Publications
- 3. Bose M.K. (1997), Igneous P etrology. The World Press Pvt. Ltd. 568 p.
- 4.Blatt H., Tracy R.J. and Owens B.E. (2006), Petrology Igneous, sedimentary and Metamorphic rocks (3 rd Edition), W.H. Freeman and Company, New York.
- 5. Bowen N.L. (1928), The evolution of Igneous Rocks. Princeton Univ. Press. N.J. 332 p
- 6. Hatch F.H., Wells A.K and Wells M.K. (1984), Petrology of the igneous rocks. CBS Publishers, 551 p.
- 7.Turner F.J and Verhoogen J. (1960), Igneous and Metamorphic Petrology, Mc GrawHill
- 8. Winter J. D. (2001), an Introduction to Igneous and Metamorphic Petrology, Prentice Hall, 697p
- 9.Ehlers, E.G. a nd H. Blatt (1982), Petrology, Igneous, Sedimentary and Metamorphic, W.H Freeman, San Francisco.
- 10.Philpotts, A., Ague, J. J., Ague, J. (2009). Principles of Igneous and Metamorphic Petrology. Spain: Cambridge University Press.
- 11. Hall, A. (1987). Igneous Petrology. United Kingdom: Longman Scientific & Technical.
- 12.McBirney, A. R. (2007). Igneous Petrology. United Kingdom: Jones and Bartlett Publishers.
- 13. Gill, R. (2011). Igneous Rocks and Processes: A Practical Guide. Germany: Wiley.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER VI

Core Course- II

COURSE TITLE: Igneous Textures and Structures

COURSE CODE: 23US6GECC2ITS [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
I	11	08	05	03	03		30
н	13	09	03	03	02		30
ш	10	09	06	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
CC-3	23US5GECC3MTP	Metamorphic Petrology	12 L / module

Course Learning Outcome:

After successful completion of the Course, the learner will be able to:

- 1. Define and explain the process of metamorphism and understand the role and significance of the agents of metamorphism
- 2. Comprehend and illustrate the types of metamorphism and its varied effects
- 3. Classify the metamorphic rocks
- 4. Analyse and interpret the metamorphic textures
- 5. Analyse and interpret and give inferences based on the time deformation relationships
- 6. Identify the metamorphic facies and protoliths of a metamorphic rock
- 7. Explain and illustrate the concept of metamorphic facies on PT diagram
- 8. Correlate the concept of metamorphism and plate tectonics

	Module 1 - Introduction to metamorphic petrology					
	LearningTo get comprehensive understanding of the concept of MetamorphObjectiveand its types.					
	 and explain the process of metamorphism and understand the role and significance of the agents of metamorphism. Comprehend and illustrate the types of metamorphism and its varied effects. 					
1.1	Introduction to metamorphism: Definition of Metamorphism, factors of Metamorphism, agents of Metamorphism: Temperature, Pressure and Fluids.					
1.2	Types of Metamorphism: Contact metamorphism, Regional metamorphism, Burial metamorphism Cataclasis metamorphism, Impact or shock metamorphism, Types of protoliths					

	Module 2 - Metamorphic texture and structure					
Learning Objective		To get acquainted with the classification of metamorphic rocks, textures and structures.				
Learning Outcome		 Classify the metamorphic rocks Analyse and Interpret the metamorphic textures Analyse and interpret and give inferences based on the time deformation relationships 				
2.1	Foliated and Lineated Rocks, Non-Foliated and Non-Lineated rocks , High strained rocks					
2.2	Texture of contact metamorphism, High-Strain metamorphic texture, Regional Metamorphic texture.					
2.3	Temporal relationship between deformation and recrystallization: pre, syn, post-kinematic fabrics, patterns of deformation and flow: tectonic significance of fabric geometry.					

Module 3 - Concept of facies, grades and paired metamorphic belts					
Learning Objective	I to comprehensively understand the concept of metamorphic facies				
Learning Outcome	 1. Identify the metamorphic facies and protoliths of a metamorphic rock 2. Explain and Illustrate the concept of metamorphic facies on PT diagram 3. Correlate the concept of metamorphism and plate tectonics 				

3.1	Concept of metamorphic facies and grade Facies series, Index minerals, Chemographic projections, Metamorphic zones and isogrades.
3.2	Metamorphism of Mafic rocks, Pelitic Sediments, Carbonate, Ultrabasic rocks.
3.3	Paired metamorphic Belts, a brief anatomical overview of metamorphism in orogens

Recommended books for References

- 1. Best M.G. Igneous and Metamorphic Petrology, Blackwell Publications
- 2. Blatt H., Tracy R.J. and Owens B.E. (2006), Petrology Igneous, sedimentary and Metamorphic rocks (3 rd Edition), W.H. Freeman and Company, New York.
- 3.Turner F.J and Verhoogen J. (1960), Igneous and Metamorphic Petrology, Mc GrawHill
- 4. Philpotts, A., Ague, J. J., Ague, J. (2009). Principles of Igneous and Metamorphic Petrology. Spain: Cambridge University Press.
- 5. Winter, J. D. (2010). Principles of Igneous and Metamorphic Petrology. United Kingdom: Prentice Hall.
- 6. Yardley, B. W., & Yardley, B. W. D. (1989). An introduction to metamorphic petrology, Longman Earth Science series

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER VI

Core Course- III

COURSE TITLE: Metamorphic Geology

COURSE CODE: 23US6GECC3MTP [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
1	11	08	05	03	03		30
н	13	09	03	03	02		30
m	10	09	06	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures	
CC-4	23US6GECC4ENG	Engineering Geology	12 L / module	

Course Learning Outcome:

After successful completion of the Course, the learner will be able to:

- 1. Evaluate the suitability of a geological formation for the construction of an engineering structure.
- 2. Students will be able to state the suitability of rocks for various engineering construction.
- 3. Can plan and select the rock properties needed for specific construction purposes.
- 4. Be able to differentiate between favourable and unfavourable geological conditions for tunnel construction.
- 5. Students will be able to classify the landslides.
- 6. Be acquainted with the various reasons for the occurrence of landslides.
- 7. Be able to differentiate between favourable and unfavourable geological conditions for dam and reservoir construction.
- 8. Be able to differentiate between favourable and unfavourable geological conditions for dam and reservoir construction

	Module 1 - Engineering properties of rocks					
Learning Objective		 Discuss physical/chemical engineering properties of rocks. Explain the properties of aggregates. 				
Learning Outcome		 Students will be able to state the suitability of rock for various engineering constructions. Can plan and select the rock properties needed for specific construction purpose. 				
1.1	Specific Gravity, Porosity, Absorption, Compressive Strength, Tensile Strength, Elasticity of Rocks, Residual Stress and Shear Stress in Rocks. Rocks as Construction Materials: Types of Rocks used in construction, How are they obtained in nature, Use of Rocks as facing stone. Factors influencing Engineering usefulness of Rocks.					

1.2

Use of rock as an aggregate in different types of constructions, sources of different grades of aggregates. Properties of Aggregates Shape, Size, Surface Texture, Roundness, Coating, Cement aggregate reaction, Thermal effects on aggregate. Highway aggregate, Rail – road ballast Runway aggregate

	Module 2 - Tunnels and Landslides					
Learning Objective		 Describe the geological considerations for tunnel construction List the various causes of landslides and ways for its prevention. 				
	rning come	 Be able to differentiate between favourable and unfavourable geological conditions for tunnel construction. Students will be able to classify the landslides Be acquainted with the various reasons for the occurrence of landslides. 				
2.1	Tunnels: Terminology, Geological conditions for tunnel sites, Tunnels in folded rocks and bedded rocks. Influence of divisional planes, Effects of faults Crushed zones, Tunnels near slopes, Role of Groundwater in tunneling. Landslides: Causes and Types of Landslides Prevention of landslides, Influence of divisional planes Effects of faults, Crushed zones.					

	Module 3 - Dams and Reservoirs					
Learning Objective	Describe the geological considerations for dam and reservoir construction					
Learning Outcome	 Be able to differentiate between favourable and unfavourable geological conditions for dam and reservoir construction. Identify the various types of dams 					

3.1	Types of spillways. Geological conditions for the selection of reservoir site Terminology associated with reservoir Locations of all the Hydro – electric projects in India.
3.2	Terminology associated with Dams, Geological conditions for the selection of dam site, Types of dams, Locations of all the important dams in India

Recommended books for References

- 1.Krynin, D.P. and Judd W.R. 1957. Principles of Engineering Geology and Geotechnique, McGraw Hill (CBS Publ).
- 2. Johnson, R.B. and De Graf, J.V. 1988. Principles of Engineering Geology, John Wiley.
- 3. Goodman, R.E., 1993. Engineering Geology: Rock in Engineering constructions. John Wiley & Sons, N.Y.
- 4. Waltham, T., 2009. Foundations of Engineering Geology (3rd Edn.) Taylor & Francis.
- 5. Bell: F.G-, 2006. Basic Environmental and Engineering Geology Whittles Publishing.
- 6. Bell, .F.G, 2007. Engineering Geology, Butterworth-Heineman

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER VI

Core Course- IV

COURSE TITLE: Engineering Geology

COURSE CODE: 23US6GECC4ENG [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
I	13	09	03	03	02		30
11	10	09	06	03	02		30
m	11	08	05	03	03		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
DSE-1	23US6GEDS1EAC	Earth and Climate	12 L / module

Course Learning Outcome:

After successful completion of the Course, the learner will be able to:

- 1. Assess the interaction between Earth's climate and its atmosphere, biosphere and hydrosphere
- 2. Recognise the interaction within the climate system
- 3. Understand the responses of climate because of celestial movements
- 4. Differentiate between the incoming and emitted sources of heat of the Earth
- 5. Measure the anthropogenic effects on climate
- 6. Illustrate the intermingling of atmospheric and oceanic currents
- 7. Understand the phenomenon of monsoon and the effects of its variation

	Module 1 - Introduction to climate system					
Learning Objective		Get acquainted with the components of Earth's climate and its controlling factors				
Learning Outcome		 Recognize the interaction within the climatic system. Understand the responses of the climate because of celestial movement. 				
1.1	Climate system and orbital cyclicity: Forcing and Responses. Components of the climate system. Climate forcing, Climate controlling factors. Climate system response, response rates and interactions within the climate system Feedbacks in climate system					
1.2	Milankovitch cycles and variability in the climate. Glacial-interglacial stages. The Last Glacial maximum (LGM). Pleistocene Glacial-Interglacial cycles. Younger Dryas. Marine isotope stages, changes in sea level					

	Module 2 - Heat Budget and Climate Change				
	rning ective	Discuss the sources of Earth's heat and their effect on climate			
Learning Outcome the Earth		 Differentiate between the incoming and emitted sources of heat of the Earth Measure the anthropogenic effects on climate 			
2.1	Incoming solar radiation, receipt and storage of heat, heat transformation Earth's heat budget, Interaction amongst various sources of earth's heat				
2.2	Humans and climate change, sea level fluctuation, brief introduction to archives of climate change, Importance of Indian perspective.				

	Module 3 - Atmosphere Hydrosphere and Monsoon				
Learning Objective		Comprehend the different layers of the atmosphere, circulation of ocean currents and its effect on Monsoon			
	rning come	 Illustrate the intermingling of atmospheric and oceanic currents Understand the phenomenon of monsoon and the effects of its variation 			
3.1	Layering of atmosphere and atmospheric Circulation Atmosphere and ocear interaction and its effect on climate Heat transfer in ocean Global oceanic conveyor belt and its control on earth's climate Surface and deep circulation				

Recommended books for References

1. Rudiman, W.F., 2001. Earth's climate: past and future. Edition 2, Freeman Publisher.

2. Rohli, R.V., and Vega, A.J., 2007. Climatology. Jones and Barlatt

3. Lutgens, F., Tarbuck, E., and Tasa, D., 2009. The Atmosphere: An Introduction to Meteorology. Pearson Publisher

4. Aguado, E., and Burt, J., 2009. Understanding weather. Pearson Prentice Hall

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER VI

Discipline Specific Elective- I

COURSE TITLE: Earth and Climate

COURSE CODE: 23US6GEDS1EAC [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
I	10	08	05	03	02		30
н	13	09	06	03	03		30
III	11	09	03	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
DSE-2	23US6GEDS2EVG	Environmental Geology	12 L / module

Course Learning Outcome:

After successful completion of the Course, the learner will be able to:

- 1. The interaction of humans with the geological environment.
- 2. Familiarise students with the challenges of environmental geology in the urban environment.

3. Teach practical contributions that geologists can make in managing human interaction with the physical environment.

	Module 1 - Introduction to Environmental Geology				
	ning ctive	Get familiar with the relationship between our surrounding environment and geology.			
Learning Outcome		 Concepts of environmental geology Managing geological resources. Appropriate use of the geological environment for waste disposal recognition of natural hazards and mitigation of their human impacts. 			
1.1	Concept and definition of Environmental Geology. Processes of soi formation, types of soils, soil degradation and changing land use pattern Concepts of natural ecosystems on the Earth and their mutual inter-relations and interactions (atmosphere, hydrosphere, lithosphere and biosphere) Environmental changes due to influence of human-dominated environmen over nature-dominated system. Concept of biodiversity. Mobility of elements				

	Module 2 - Environmental Degradation				
Learning Objective		Understanding the roots of degradation of surrounding environment and assess their remedial measures.			
	ning come	 Surface geological processes cause environmental changes. Sources of pollutants, i.e. geogenic and anthropogenic sources., medical geology. Exploration and mining-related environmental problems. 			
2.1	2.1 Impact assessment of water availability, quality and contamination surface water and groundwater. Atmosphere and air pollution. S contamination due to urbanization, industrialization and mining. Bas tenets of environmental laws.				

	Module - 3 Natural Hazards				
Learning Objective		Comprehensive knowledge on different types Natural hazards			
Learning Outcome		 Causes of Natural hazards. Precautions necessary to prevent natural hazards. 			
3.1	Distribution, magnitude and intensity of earthquakes. Neotectonics and seismic hazard assessment. Preparation of seismic hazard maps. Impact o seismic hazards on long and short term environmental conditions Mechanism of landslides, causes of major floods, cyclones and storms Deforestation and land degradation				

Recommended books for References

- 1. Valdiya, K. S. (2013). Environmental Geology: Ecology Resource and Hazard Management. India: McGraw-Hill Education LLC..
- 2. Strahler, A. N., & Strahler, A. H. 1973. Environmental geoscience: interaction between natural systems and man. Santa Barbara, Calif: Hamilton Pub. Co.
- 3.Keller, E. A. 2011. Introduction to Environmental Geology. 9th ed. Person Prentice Hall
- 4. Voigt, H. r., Knodel, K., Knödel, K., Lange, G. (2007). Environmental Geology: Handbook of Field Methods and Case Studies. Germany: Springer Berlin Heidelberg.
- 5. Montgomery, C. W. (2018). Environmental Geology. United Kingdom: McGraw-Hill Education.
- 6. Lundgren, L. (1999). Environmental Geology. United Kingdom: Prentice Hall.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER VI

Discipline Specific Elective- II

COURSE TITLE: Environmental Geology

COURSE CODE: 23US6GEDS2EVG [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
1	11	08	05	03	03		30
11	13	09	03	03	02		30
m	10	09	06	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
DSE-3	23US5GEDS3ELT	Evolution of Life through Time	12 L / module

Course Learning Outcome:

After successful completion of the Course, the learner will be able to:

- 1. Discuss the life on Earth through geological ages and their evolution
- 2. Describe the biogeochemical cycles and their role in the origin of life
- 3. Understand the role of plate tectonics and its effects on climate and life.

	Module 1 - Life through ages				
Learning Objective		Elementary understanding of the ancient life forms, their importance and their preservation processes.			
Learning2.Outcome3.		 Different life forms. Major bio-events throughout geological ages. Knowledge about the fossilization process. Defining early earth evolution using the evolving life-forms. 			
1.1	Fossils and chemical remains of ancient life. Geological Time Scale with emphasis on major bio-events. Fossilization processes and modes of fossi preservation. Exceptional preservation sites- age and fauna Origin of life 1.1 Possible life sustaining sites in the solar system, life sustaining elements and isotope records Archean life: Earth's oldest life, Transition from Archean to Proterozoic, the oxygen revolution and radiation of life Precambriar macrofossils – The garden of Ediacara, The Snow Ball Earth Hypothesis.				

	Module 2 - Paleozoic and Mesozoic Life				
Learni Objecti	-	Change in life-forms after major mass-extinction events in Paleozoic and Mesozoic.			
Learning Outcome		 The changes in the life forms and morphology of the animals. The emergence of life out of water. The arrival of lands, mammals and dinosaurs. Effect of extinction in the evolution of subsequent life forms. 			
2.1	The Cambrian Explosion. Biomineralization and skeletalization Origin or vertebrates and radiation of fishes Origin of tetrapods - Life out of water Early land plants and impact of land vegetation				
2.2	Life after the largest (P/T) mass extinction, life in the Jurassic seas Orig of mammals Rise and fall of dinosaurs Origin of birds; and spread flowering plants				

	Module 3 - Cenozoic life				
Learning Objective		Significant changes in the modern life forms and their mutual interaction with climate variability.			
Learni Outcor	•				
3.1 Aftermath of end Cretaceous mass extinction – radiation of place mammals Evolution of modern grasslands and co-evolution of hoc grazers Rise of modern plants and vegetation Back to water – Evolution Whales					

Г

	Hominid dispersals and climate setting Climate Change during the						
3.2	Phanerozoic - continental break-ups and collisions Plate tectonics and its						
	effects on climate and life Effects of life on climate and geology.						

Recommended books for References

- 1. Clarkson, E.N.K. 1998. Invertebrate Palaeontology and Evolution, George Allen & Unwin.
- 2. Raup, D.M. and Stanley, S. M. 1971. Principles of Palaeontology, W.H. Freeman and Company.
- 3. Prothero, D.R. 1998. Bringing fossils to life An introduction to Palaeobiology, McGraw Hill.
- 4. Benton, M.J. 2005. Vertebrate palaeontology (3rd edition). Blackwell Scientific, Oxford.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER VI

Discipline Specific Elective- III

COURSE TITLE: Evolution of Life through Time

COURSE CODE: 23US6GEDS3ELT [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
1	11	08	05	03	03		30
II	13	09	03	03	02		30
m	10	09	06	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Course Number	Course Code	Course Name	Number of Lectures
SEC-1	23US6GESE1FGO2	Field Geology-II (Precambrian-Phanerozoic Geology Field)	12 L / module

Course Learning Outcome:

After successful completion of the Course, the learner will be able to:

- 1. Understand, analyse and interpret maps
- 2. Identify the structures like fault, fold, and unconformity in the field
- 3. Use instruments like Brunton compass, clinometer, stereonets, etc.

Module 1					
	ning ctive	Familiarity with the nature of different types of rocks in the field and their structural characters.			
	ning ome	 Acquaintance with rock types. Identifying different structural features. Lithological and structural mapping. 			
1.1	 Structural mapping and contact mapping; stride mapping. Use of toposheet to plan traverses and sampling location in the field. Identification of fault, folds, unconformities, and joint sets. Isograd mapping in metamorphic terrain and lithology preparation in sedimentary terrain 				

Module 2					
Learning Objective		Familiarise with mapping techniques and analysis			
Lear Outc	•	1.Understand mapping instruments used in field mapping 2.Understand post field analysis			
 1. Use of field instruments: GPS, Brunton compass, Clinometer compass 2.1 2. Post-field analysis of data: rosette diagrams, stereonets, transmapping 					

Course Number	Course Code	Course Name	Number of Lectures
SEC-2	23US6GESE2MES	Mathematics in Earth Sciences	12 L / module

Course Learning Outcome:

After successful completion of the Course, the learner will be able to:

- 1. Learn about the basic mathematical concepts and their applications to geology.
- 2. Learn about different statistical methods used for geological data analysis.
- 3. Develop fundamental mathematical skills required for geological interpretation

	Module 1 - Basic Mathematical functions		
	LearningElementary level of understanding of the applications of Algebra and geometry in solving geological problems.		
	 ning 1. Understanding relationships between geological variables. 2. Understand mathematical equations and functions that are applicable to appreciating geological problems. 		
1.1	Relationships between geological variables: Straight line, Quadratic equations, Polynomial functions.		
1.2	Manipulation of equations, Trigonometric functions, Cartesian coordinates, Matrices		
1.3	Vectors, Triangular diagrams, Graph theory, Polar graphs, Projections		

	Module 2 - Applications		
Learning Objective Solving geological problems in a precise quantitative way.			
	Learning1. Understand and apply differential calculus for addressing geological problems.Outcome2. Understand and apply integral calculus for addressing geological problems.		
2.1	2.1 Applications of Differential Calculus for geological problems		
2.2	2.2 Applications of Integral Calculus for geological problems		

Recommended books for References

- 1. Waltham, D. 2013. Mathematics: a simple tool for geologists. Routledge.
- 2. Knoring, L. D., & Dech, V. N. 1993. Mathematics for geologists (p. 200). Rotterdam, The Netherlands: AA Balkema.
- 3. Davis, J. C., & Sampson, R. J. 1986. Statistics and data analysis in geology (Vol. 646). New York: Wiley.
- 4. Marsal, D., & Merriam, D. F. 2014. Statistics for geoscientists. First Edition, Elsevier.
- 5. Ferguson, J. (2013). Mathematics in Geology. Germany: Springer Netherlands.

Course Number	Course Code	Course Name	Number of Lectures
GE	23US6GEGEGPE	Geophysical Exploration	12 L / module

Course Learning Outcome:

After successful completion of the Course, the learner will be able to:

- 1. Understand the mineral system concept and its implications for geophysical exploration, especially when exploring for blind targets.
- 2. Understand how the mineral exploration is initiated in different terrains

		Module 1 - Gravity and Magnetic Methods
	ning ctive	Importance of gravity and magnetic methods in exploration.
	ning come	 Fundamentals of gravity method and its application in mineral and oil exploration. Fundamentals of gravity method and its application in mineral and oil exploration.
1.1		oduction to geophysics: Geophysical methods used in mineral oration. Gravity and Magnetic Method

	Module 2 - Electrical Methods		
	Learning Objective Importance of electrical methods in exploration.		
LearningFundamentals of electrical method and its application in mineral andOutcomeoil exploration.		Fundamentals of electrical method and its application in mineral and oil exploration.	
2.1	2.1 Different types of Electrical methods used for mineral exploration		

		Module 3 - Seismic Methods
Learning ObjectiveImportance of seismic methods in exploration.		Importance of seismic methods in exploration.
LearningFundamentals of seismic method and its application in mineral anOutcomeexploration.		Fundamentals of seismic method and its application in mineral and oil exploration.
3.1	3.1 Nature and types of Seismic waves. Application of seismic method in mineral exploration	

Recommended books for References

- 1. Dobrin, M. B., & Savit, C. H. (1960). Introduction to geophysical prospecting (Vol. 4). New York: McGraw-hill.
- 2. Telford, W. M., Geldart, L. P., Telford, W. M., Sheriff, R. E. (1990). Applied Geophysics. Italy: Cambridge University Press.
- 3. Rao, Ramachandra., & Prasaranga, M.B. (1975). Outlines of Geophysical Prospecting - A manual for geologists. University of Mysore, Mysore.
- 4. Hill, I., Kearey, P., Brooks, M. (2013). An Introduction to Geophysical Exploration. Germany: Wiley.
- 5. Lillie, R. J. (1999). Whole Earth Geophysics: An Introductory Textbook for Geologists and Geophysicists. United Kingdom: Prentice Hall.
- 6. Fisher, R., Fisher, R. L., Gadallah, M. R. (2008). Exploration Geophysics. Germany: Springer Berlin Heidelberg.
- 7.Lowrie, W. (2018). Geophysics: A Very Short Introduction. United Kingdom: Oxford University Press.

Question Paper Template

T.Y. B. Sc. (Geology) SEMESTER VI

General Elective

COURSE TITLE: Geophysical Exploration

COURSE CODE: 23US6GEGEGPE [CREDITS - 02]

Module	Remembering / Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total Marks
I	10	08	05	03	03		30
н	11	09	06	03	02		30
m	13	09	03	03	02		30
Total Marks per Objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

Semester VI - Practical

Course Number	Course Code	Course Name
CP-1	23US6GECC1P	Geology of India: Phanerozoic

Learning ObjectiveThe practical is intended to • Understand the Stratigraphic time scale • Understand Lithostratigraphic Boundaries • Understand complex geological maps and its chronological • Correlate different stratigraphic units		 Understand the Stratigraphic time scale Understand Lithostratigraphic Boundaries Understand complex geological maps and its chronological order
able to:Learning• Classify different lithostratigraphic boundaries		 Classify different lithostratigraphic boundaries Decipher complex geological history and chronological order with the help of geological maps
1	Study of common sedimentary, igneous and metamorphic rocks in Hand specimens from different stratigraphic horizons	
2	Study of common fossil characteristics of a particular stratigraphic horizon.	
3	Stratigraphy of a geological section-fossils & radiometric age.	

Course Number	Course Code	Course Name
CP-2	23US6GECC2P	Igneous textures and structures

Learning Objective		 The practical is intended to Identification of different igneous rocks in hand-specimen. Identification of mesoscopic structures and textures in igneous rocks. Acquaintance with different microscopic textures in igneous rocks 	
Learning OutcomeAfter the successful completion of the practical, the learner will be able to: • Identify igneous rocks in field. 		 able to: Identify igneous rocks in field. Able to explain some of the mechanical properties of magma. Can establish the sequence of crystallization of the magmatic 	
1	Microscopic Textures, Structures, Identification of Igneous Rocks. Diorite, Diorite porphyry, Andesite, Gabbro, Norite, Dolerite, Basalt (Vesicular/ Non- vesicular/Porphyritic, Amygdaloidal) Peridotite, Dunite; Anorthosite, Carbonatite		
2	Igneous Micro-Structures Reaction: (a. Corona, b. Myrmekite), Xenolithic, Spherulitic, Perthitic		

Course Number	Course Code	Course Name
CP-3	23US6GECC3P	Metamorphic textures and structures

Learning Objectiveand petrological microscope.Identification of microscopic structures and texture rocks.		 Identification of different metamorphic rocks in hand-specimen and petrological microscope. Identification of microscopic structures and textures in igneous rocks. Acquaintance with different microscopic reaction-textures in
 Learning Outcome able to: Identify metamorphic rocks in field and petrological micros Identify different structural and textural elements in metarrocks. Can establish temporal development of new minerals and 		 Identify metamorphic rocks in field and petrological microscope. Identify different structural and textural elements in metamorphic rocks.
1	Megascopic and Microscopic Structures and Textures Metamorphic Textures Idioblastic, Porphyroblastic, Granuloblastic, Xenoblastic	
2	2 Metamorphic Structures Cataclastic, Slaty Cleavage, Maculose, Granulose, Schistose, Gneissose	
3	Identification of Metamorphic Rocks Quartzite, Marble, Slate, Phyllite, Mica Schist (with Staurolite/ Garnet), Actinolite/ Chlorite Schist, Mica- Gneiss, Hornblende Gneiss, Granulite, Eclogite, Serpentinite, Khondolite, Charnockite	

Г

Course Number	Course Code	Course Name
CP-4	23US6GECC4P	Engineering Geology

Learning ObjectiveThe practical is intended to • Provide knowledge in regard to proper geological site selection for different engineering structures.		 Provide knowledge in regard to proper geological site selection
Learning OutcomeAfter the successful completion of the practical, the learner will able to: • Evaluate the suitability of sites for different engineering structures		 Evaluate the suitability of sites for different engineering
1	Geological maps to demarcate and evaluate the suitability of sites for engineering projects such as Tunnels, Dams and Reservoir construction.	

Course Number	Course Code	Course Name
DSE-1 PR	23US6GEDS1P	Earth and Climate

Learning Objective		 The practical is intended to Providing knowledge about the climate of Indian sub-continent and major wind-patterns and ocean-currents causing global climatic variation. Paleogeographic arrangement of Indian subcontinent.
Learning able to:		Apply different proxies to infer practical paleoclimatic variation
1	Study of distribution of major climatic regimes of India on map	
2	Distribution of major wind patterns and oceanic currents on World map	
3	Preparation of paleogeographic maps (distribution of land and sea) of India during specific geological time intervals	
4	Numerical exercises on interpretation of proxy records for paleoclimate	

Course Number	Course Code	Course Name
DSE-2 PR	23US6GEDS2P	Environmental Geology

		 The practical is intended to Introduce the basic tenants of environmental geology, sources of pollutants from natural as well as anthropogenic sources
able to:LearningUnderstand surface geological processes causing environ changes.		 Understand surface geological processes causing environmental changes. Sources of pollutants i.e. geogenic and anthropogenic sources.,
1	Study of maps of seismic zones, earthquake-prone, landslide-prone and flood-prone areas in India	
2	Methods of water analyses for physical, chemical and biological parameters.	
3	Classification of groundwater for use in drinking and industrial purposes.	
4	Evaluation of environmental impact of air pollution, groundwater pollution, landslides, deforestation.	

Course Number	Course Code	Course Name
DSE-3 PR	23US6GEDS3P	Evolution of Life Through Time

Learning ObjectiveThe practical is intended to • Understand Fossils and their preservation • Understand evolutionary trends in important groups of anim and plant		 Understand Fossils and their preservation Understand evolutionary trends in important groups of animals
	 After the successful completion of the practical, the learner will be able to: Fossil preservation methods Decipher evolutionary trends in important animal and plant groups 	
1	Study of modes of fossil preservation	
2	Study of fossils from different stratigraphic levels	
3	Exercises related to major evolutionary trends in important groups of animals and plants	