

K. J. SOMAIYA COLLEGE OF SCIENCE AND COMMERCE, VIDYAVIHAR, MUMBAI 400 077 AUTONOMOUS- AFFILIATED TO UNIVERSITY OF MUMBAI

Syllabus for T. Y. B.Sc.

Program: B.Sc.

Course: Microbiology

(Choice based Credit System with effect from

the Academic year 2023–2024)

Preamble

To the common man, Microbiology means the study of invisible mini wonders that only cause disease. In reality, the vast majority of microorganisms co-exist alongside us without causing any harm. On the contrary, many of them are required for our survival. Microbiology is a study of this microscopic world; it is a research-oriented subject and plays a pivotal role in our daily lives.

After introducing the basics of Microbiology in core courses in Semester I and Semester II, syllabus progresses to include the topics of Medical Microbiology, Immunology, Genetics, Biochemistry, Virology, Taxonomy in core courses in Semester III and Semester IV. A choice is offered between Environmental Microbiology (22US3MBCC3EVM) and Soil Microbiology (22US3MBCC4SOM) in Semester III and between Industrial and food Microbiology(22US4MBCC3IFM) and Diary Microbiology (22US4MBCC4DAM) in Semester IV.

Semester V and Semester VI core courses focus on the depth and applications of the above topics. Along with core courses each semester consists of two Discipline specific elective (DSE) courses, one Skill enhancement course (SEC). Semester V and Semester VI include topics of Genetics, Molecular biology, Medical Microbiology, Immunology, Biochemistry, Bioprocess technology, Advanced Virology, Bioinstrumentation, Plant and Animal cell culture, Chemotherapy, Recombinant DNA technology, Molecular Biotechnology and Society along with general electives of Introduction to Research and Biostatistics, and Microbial diversity.

As mentioned in the syllabus, all the four core courses of theory, two DSEs, 1 SEC and associated practicals are compulsory to B.Sc. Microbiology students (Semester V and VI).

The syllabi for the three-year undergraduate programme are designed to enable the students to understand and select an area of their interest to pursue further studies for post-graduation.

Graduate Attributes

The graduate in Microbiology would have:

- 1. Sound knowledge of the fundamentals of Microbiology
- 2. Basic understanding of the different fields of applied Microbiology.
- 3. Knowledge of recent developments in the various fields of Microbiology.

4. Skill set in performing Bacteriological techniques such as aseptic techniques, enumeration of bacteria, etc.

5. Ability to analyse, think, plan, execute and review experiments and experimental results.

- 6. Awareness about research planning and ethical considerations in all the fields.
- 7. Entrepreneurial skills as an offshoot of interaction with several Industry experts.
- 8. Expertise in Communication skills

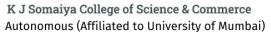
9. Acquired life skills such as team work, leadership, patience as a result of group project participation.

Syllabus -T. Y. B.Sc. Microbiology Semester V 6 units

Semester	Course	Course Title C	Course	Credits	Hours	Periods	Unit/	Lectures	Examinat	ion	
V	Number	c	ode			(50	Module	(50 minutes)			
						min)		per Unit/			
								module			
									Internal	External	Total
									Marks	Marks	Marks
	_										
THEORY											
Core cour	ses			1	r	1	1	1	1	1	1
	Ι	Genetics and		2	30	36	3	12	40	60	100
		Molecular	5MB								
		Biology	CC1								
			GMB								
	II	Medical	23US	2	30	36	3	12	40	60	100
		Microbiology	5MB								
		and Immunology	CC2								
		- I	MMI								
	III	Microbial	23US	2	30	36	3	12	40	60	100
		Biochemistry-I	5MB								
			CC3								
			MBI								

Autonomous (Affiliated to University of Mumbai)

	IV	Bioprocess	23US	2	30	36	3	12	40	60	100
		Technology-	5MB								
		Upstream	CC4								
		Processes	BTU								
Disciplin	e Specific El	lectives		1	1	1		I	I		
DSE	Ι	Analysis of	23US5	2	30	36	3	12	40	60	100
		Biomolecules	MBDS1								
			ANB								
	II	Plant and	23US5	2	30	36	3	12	40	60	100
		Animal	MB								
		Biotechnology	DS2PA								
			В								
	III	Research	23US5	Kindly r	efer the	credits allo	otted in th	ne practical se	ection		
	OPTIONAL	Project	MBDS3								
			RCH								
Skill Enh	ancement E	lectives									
SEC	Ι	Antimicrobial	23US5	1.5	23	28	2	14		60	60
		Chemotherapy	MBSE1								
			CMT								



Somanyar TRUST

Autonomous (Affiliated to University of Mumbai)

Ι	Genetics and	23US5	1	2	2.4		20	30	50
	Molecular	MBCCP							
	Biology	1							
II	Medical		1	2	2.4		20	30	50
	Microbiology								
	and								
	Immunology -								
	Ι								
III	Microbial	23US5	1	2	2.4		20	30	50
	Biochemistry-	MBCCP							
	Ι	2							
 117	Diamagagag		1	2	2.4		20	20	50
IV	Bioprocess		1	2	2.4		20	30	50
	Technology-								
	Upstream								
	Processes								

Disciplin	e Specific Ele	ctives								
DSE	1	Analysis of	23U	1	2	2.4		20	30	50
		Biomolecules	S5M							
	II	Plant and Animal	BDS	1	2	2.4		20	30	50
		Biotechnology	P3							
	III	Research Project	23U	3	6	7.2		150	•	
	(Optional)		S5M							
			BDS							
			3RC							
			Н							
Skill Enł	nancement El	ectives								
SEC		Antimicrobial	23U	0.5	1	1.2		10	30	40
		Chemotherapy	S5M							
			BSE							
			Р							

Syllabus - T. Y. B.Sc. Microbiology Semester V 3 units

Semester V	Course Number	Course Title	Course code	Credits	Hours	Periods (50 min)	Unit/ Module	Lectures (50 minutes) per Unit/ module	Examina	tion	
									Internal Marks	External Marks	Total Marks
THEORY Core cour						I	l	<u> </u>			1
	Ι	Genetics ar Molecular Biology	ad 23US 5MB CC1 GMB	2	30	36	3	12	40	60	100
	II	Medical Microbiology and Immunolog - I	23US 5MB cC2 MMI	2	30	36	3	12	40	60	100
SEC	Ι	Antimicrobial Chemotherapy	23US5 MBSE1 CMT	1.5	23	28	2	14		60	60

TRUST

CTICALS									
E COURSE	S								
Ι	Genetics and	23US5	1	2	2.4		20	30	50
	Molecular	MBCCP							
	Biology	1							
II	Medical		1	2	2.4		20	30	50
	Microbiology								
	and								
	Immunology -								
	I								

Skill Enhancement Electives										
SEC	Antimicrobial Chemotherapy	23U S5M BSE P	0.5	1	1.2			10	30	40

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER V

Course – I

COURSE TITLE: Genetics and Molecular Biology

COURSE CODE: 23US5MBCC1GMB

[CREDITS - 02]

Course Learning Outcomes: After the successful completion of the Course, the learner will be able to:

- 1) Identify the human genetic traits using pedigree analysis.
- 2) Apply the concepts of Population Genetics to analyse population structure.
- 3) Describe the steps and enzymology of prokaryotic replication.
- 4) Investigate the mechanisms of prokaryotic transcription and translation.

Module	TITLE AND CONTENT	NO OF
		LECTURES -
		12
1	Classical and Population Genetics	
	Learning Objectives:	
	1) To state the branches of Genetics.	
	2) To explore the characteristics of model organisms in Gen	etics.
	3) To describe the human Eukaryotic chromosome structure	
	4) To apply the Hardy-Weinberg rule to the study of popular	tion structure.
	Learning Outcomes: After the successful completion of the	e module, the learner
	will be able to:	
	1) Comprehend the branches of Genetics.	
	2) List the characteristic features of model organisms.	
	3) Describe different structural attributes of eukaryotic chron	mosomes.
	4) Construct a pedigree analysis chart.	1
	5) Calculate different genetic frequencies in a population stu	idy.
	Classical and Population Genetics	
1.1	Branches of Genetics	1L
	Introduction to the following terms:	
1.1.a	Transmission genetics	
1.1.b	Molecular genetics	
1.1.c	Population genetics	

1.1.d	Quantitative genetics	
1.2 1.2.a	Model Organisms Listing the characteristics and studies undertaken of model organisms in Genetics.	1L
1.3 1.3.a	Introduction to Human Genetics Eukaryotic Chromosome structure: Levels of chromosome packaging, histones and non-histone, euchromatin and heterochromatin (types)	5L
1.3.b 1.3.c	Mendelian genetics in humans- pedigree analysis Human genetic traits recessive and dominant (examples) Sex- linked traits (examples)	
1.4 . 1.4.a	Population Genetics Genetic structure of population, genotype and allelic frequencies. Introduction to Hardy- Weinberg Law and problems based on it.	3L
1.4.b	Genetic variation in the natural population Change in genetic structure of population: mutation, genetic drift, migration, natural selection	2L
2	 DNA Replication Learning Objectives: To describe the terminology, concepts and detailed prof DNA replication in prokaryotes. To state a few significant features of replication in eukary Learning Outcomes: After the successful completion of the will be able to: Interpret the results of Meselson and Stahl experimen Describe process of DNA replication in prokaryotes. List the various proteins and enzymes involved in reptheir significance. Differentiate between the process of DNA replication eukaryotic cells and some phages. Evaluate the role of telomerase. Explain rolling circle mode of replication. 	rotes and phages. module, the learner t. lication and explain

Sometinger TRUST

Autonomous (Ai		
	DNA Replication	
2.1	DNA Replication features	2L
	Conservative, Dispersive, Semi-conservative Bidirectional	
	and semi-discontinuous	21
2.2	List contributions of:	2L
	Reiji and Tuneko Okazaki, J Cairns and Gyurasits and Wake	
	Meselson and Stahl experiment	
2.3	Prokaryotic DNA replication	3L
	Details of molecular mechanism involved in Initiation,	
	Elongation and Termination.	
2.4	Enzymes and proteins associated with DNA replication	2L
	Primase, Helicase, Topoisomerase, SSB, DNA polymerases,	
	Ligases, Ter and Tus proteins.	
2.5	Differences between prokaryotic and eukaryotic DNA	2L
	Consequences of telomere shortening, mechanism and role	
	of telomerase	
2.6	Rolling circle (σ)mode of replication	1L
3	Transcription and Translation	
5	Learning Objectives:	
	 To explain the structure of gene to be transcribed. 	
	 To describe the molecular mechanism of transcription 	and translation.
	3) To list the roles of different proteins involved in trans	
	translation.	
	4) To investigate the mode of action of inhibitors of RN.	A polymerase.
	Learning Outcomes: After the successful completion of the	
	will be able to:	,
	1) Describe the molecular mechanism of Transcription a	nd Translation.
	2) Explain the different types of post-translational modif	
		I
	Transcription and Translation	
3.1	Transcription	
3.1.a	Structure of prokaryotic and eukaryotic promoters	1L
	DNA dependent synthesis of RNA:	
	RNA Polymerase- structure and role.	
3.1.b	Stages in Transcription:	3L
	Initiation, Elongation and Termination in prokaryotes in	
	detail.	
	Introduction to transcription in eukaryotes	
	Role of rho protein in transcription -Termination in	
	prokaryotes	1L
3.1.c	Inhibition of DNA dependent RNA polymerase	1L

3.2	Translation	
3.2.a	Structure of prokaryotic and eukaryotic ribosomes	4L
3.2.b	Stages in Translation:	
	Initiation, Elongation and Termination in prokaryotes in	
	detail.	
	Formation of peptide bond.	
	Introduction to translation in eukaryotes	
3.2.c	Post-Translational Modifications (PTM) of proteins	2L
	Types of PTMs with one example each.	
	Phosphorylation.	
	Adenylation	
	Glycosylation	
	Formation of disulphide bonds	

References:

- 1) Peter J. Russell (2006), *i*Genetics-A molecular approach, 2nd edition.
- 2) Benjamin A. Pierce (2008), Genetics a conceptual approach, 3rd edition, W. H. Freeman and company.
- 3) R. H. Tamarin, (2004), Principles of genetics, Tata McGraw Hill.
- 4) M. Madigan, J. Martinko, J. Parkar, (2009), Brock Biology of microorganisms, 12th edition Pearson Education International.
- 5) Robert Weaver (2011), Molecular biology, 5th edition. McGraw Hill international edition.
- 6) Nancy Trun and Jaine Trempy (2004), Fundamental bacterial genetics Blackwell Publishing.
- 7) D Nelson and M Cox, (2005), Lehninger's Principles of Biochemistry, 4th edition Macmillan worth Publishers.
- 8) James Watson (2004), Molecular biology of the gene, 5th edition Pearson.
- 9) James Watson (2017), Molecular biology of the gene, 7th edition, Pearson.

Evaluation Pattern: Theory

For course I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

Probable options: Plickers Testmoz Google form Moodle Objective-MCQ Short answer test

SEMESTER V - Practical

Course-I COURSE CODE: 23US5MBCCP1

[CREDITS - 01]

Experiment	Title and Number of Credits	Number of
Sr. no.		hours
1	Isolation of genomic DNA of E. coli	10
2	Cultivation of model organism-Drosophila melanogaster	15
3	Problems on Population Genetics	05

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course. Internal evaluation: 20 marks

Course – II

COURSE TITLE: Medical Microbiology and Immunology-I

COURSE CODE: 23US5MBCC2MMI

[CREDITS - 02]

Course Learning Outcomes:

After successful completion of the Course, the learner will be able to:

1) Evaluate the components of nonspecific host defence system.

2) Identify the aetiological agents responsible for respiratory and urinary tract infections.

3) Describe the role of Cytokines, APC, MHC and Complement in immune defence mechanism.

Module	TITLE AND CONTENT	NO OF		
		LECTURES: 12		
1	Non-specific Host Defense Mechanism	1		
	Learning Objectives:			
	1) To describe non-specific host defence system.			
	2) To explain the role of anatomic barriers, che	emical mediators, and		
	phagocytosis in host defence system.			
	Learning outcomes:			
	After successful completion of the module, the learner will be able to:			
	1) Describe the different cells, tissues and organs involved in immune			
	response.			
	2) Evaluate the factors contributing to non-specific host defence			
	mechanism.			
	Non-Specific Host Defense Mechanisms			
1.1	First Line of Host Defense	4L		
	Physical and Mechanical Barriers: Skin, Mucous			
	membranes Respiratory System Gastrointestinal Tract			
	Genitourinary Tract			
1.2	Antimicrobial Peptides	4L		
	Cationic Peptides, and Acute Phase Proteins. Interferons,			
	Cytokines, therapeutic uses of cytokines & interferons,			
1.3	Phagocytosis	2L		
	Pathogen Recognition, Toll like Receptors,			
	Intracellular Digestion			
	_			

1.4	Acute Inflammatory Response	2L		
2	Respiratory and Urinary Tract Infections			
	Learning Objectives:			
	1) To describe the causative agents of respiratory and	urinary tract infections.		
	2) To give an account of the clinical manifestations o			
	3) To apply the Laboratory Diagnostic procedures to	o identify the causative		
	agent/s.	-		
	Learning outcomes:			
	After successful completion of the module, the learner wil	l be able to:		
	1) Describe the virulence properties of pathogens ca	ausing respiratory tract		
	and urinary infections.			
	2) Identify the aetiological agents associated with	respiratory tract and		
	urinary infections.			
	Respiratory and Urinary Tract Infections			
	Aetiology, Transmission, Pathogenesis, Clinical			
	Manifestations, Lab Diagnosis, Prophylaxis, and			
	Treatment for:			
2.1	URT (Upper Respiratory Tract infections)			
2.1.a	Streptococcal Pharyngitis	4L		
2.1.b	Diphtheria			
2.2.	LRT (Lower Respiratory Tract infections)			
2.2.a	Tuberculosis	4L		
2.2.b	Bacterial pneumonia			
2.2.c	Influenza			
2.3.	UTI (Urinary Tract infections) caused by:	4L		
2.3.a	Proteus			
2.3.b	Pseudomonas			
2.3.c	E. coli, Staphylococcus			
3	Components of the immune system			
	Learning Objectives:			
	1) To describe the mechanism of action of different	ent components of the		
	immune system.	•		
	2) To state the significance of components of the imm	nune system.		
	Learning Outcomes:			
	After the successful completion of the module, the learner will be able to			
	1) Explain the role of cytokines, Antigen presenting cell, MHC and			
	complement system in immune mechanism.	-		
	2) Assess the biological consequences of complement	t system.		

Sometinger TRUST

K J Somaiya College of Science & Commerce
Autonomous (Affiliated to University of Mumbai)

	Components of the immune system	
3.1	Cytokines	3L
3.1.a	Properties and functions	
3.1.b	Cytokines secreted by Th1 and Th2	
3.2	Antigen Presenting cells	3L
3.2.a	Antigen presentation (Professional and non-professional)	
3.2.b	Antigen processing pathways (Cytosolic and Endocytic	
	Pathway)	
3.3	MHC Complex and MHC molecules	3L
3.3.a	-	JL
	Organization of MHC genes	
3.3.b	Structure of class I and class II molecules	
3.3.c	T-cell antigen receptors and MHC molecule	
3.4	Complement System	3L
3.4.a	Complement component and notation	
3.4.b	Complement activation (Classical, Alternate and Lectin	
	Pathway)	
3.4.c	Biological consequence of complement system	

References:

1) Ananthanarayan and Paniker, (2009), Textbook of Microbiology, 8th Edition. Universal Press

2) Koneman (1992) Diagnostic Microbiology, 4th Edition. J.B. Lippincott Company

3) Thomas J. Kindt, Richard A. G, Barbara A. Osburne Kuby (2007) Immunology: W. H. Freeman and Company, New York.

4) Fahim Halim Khan (2009), The elements of Immunology, Pearson Education.

5) Pathak, S., Palan U (2012), Immunology Essential and Fundamental. Pareen publications, Bombay.

6) Ian R. Tizard (2005) Immunology, An Introduction, 4th Edition, Saunders College.

Evaluation Pattern: Theory

For course II

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without
			Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M) Probable options: Plickers Testmoz Google form Moodle Objective-MCQ Short answer test

Autonomous (Affiliated to University of Mumbai) SEMESTER V - Practical

Course-II

COURSE CODE: 23US5MBCCP1

[CREDITS - 01]

Experiment	Title and Number of Credits	Number of
Sr. no.		hours
1	Study of Diagnostic cycle for:	15
	Upper Respiratory tract infection	
	Lower Respiratory tract infection	
2	Study of Diagnostic cycle for:	10
	Urinary tract infection	
3	Acid fast staining	5

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

Course – III

COURSE TITLE: Microbial Biochemistry-I

COURSE CODE: 23US5MBCC3MBI

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Evaluate the different types of solute transport mechanisms of a living cell.
- 2) Apply principles of bioenergetics to metabolic pathways.

3) Elucidate the convergence of different catabolic pathways in carbohydrate metabolism.

Module	TITLE AND CONTENT	NO OF	
		LECTURES:12	
1	Biological membrane and Solute Transport		
	Learning Objectives:		
	1) To describe the different models of biological membrane.		
	2) To distinguish between simple diffusion, facilitate	d, active and passive	
	transport.		
	3) To state different methods of studying solute transpo	ort.	
	Learning Outcomes: After the successful completion of the	ne module, the learner	
	will be able to:		
	1) Illustrate the use of proteoliposomes in solute transp	oort.	
	2) Describe the mechanism of group translocation.		
	3) Distinguish between different types of solute transpo	ort.	
	Biological membrane and Solute Transport		
1.1	Structure and function of biological membrane		
	Fluid Mosaic Model, lipid rafts, Integral and peripheral	2L	
	proteins. Model membranes.		
1.2	Method of studying solute transport	2L	
	Preparation and use of proteoliposomes		
1.3	Role of membrane in solute transport		
1.4	Different mechanisms for uptake of solutes with one		
	example each:		
1.4. a	Passive diffusion	2L	
1.4. b	Facilitated diffusion		

Autonomous (A	Affiliated to University of Mumbal)	
1.4. c	Active transport	
	Primary active transport: Binding proteins, Shock sensitive	
	system (eg. Histidine uptake model, Maltose uptake)	4L
	Secondary active transport: (Uniport, Antiport, Symport)	
1.4.d	Mechanism of Group translocation	1L
	Phosphotransferase system	
1.4. e	Other examples of transport	1L
	Introduction to Siderophores- Iron Transport	
	T T T T T T T T T T T T T T T T T T T	
2	Bioenergetics	
	Learning Objectives:	
	1) To understand functioning of electron transport syst	em in cells.
	2) To familiarize with mechanism of ATP generation.	
	Learning Outcomes: After the successful completion of the	ne module, the learner
	will be able to:	le module, me leamer
	 Describe the composition and functions of electron to 	transport system
	 Schematically describe electron transport in mitocho 	
	3) Differentiate between prokaryotic and eukaryoti	
	system.	te election transport
	4) Describe the chemiosmotic hypothesis.	
	5) Explain the structure and mechanism of ATP syntha	ise.
	6) Analyse the difference between the shuttle systems.	
	7) Calculate energetics of TCA and EMP pathways.	
	Bioenergetics	
2.1	Components, complexes and functions of Electron	3L
	transport chain	
	Mitochondrial ETC,	
	Bacterial ETC– <i>E. coli</i> -aerobic and anaerobic.	
2.2	Oxidative phosphorylation	3L
	Chemiosmotic coupling hypothesis	
	Inhibitors and uncouplers	
2.3	Structure of Mitochondrial ATP synthase	2L
	Mechanism by Rotational catalysis	
2.4	Generation of electrochemical energy	2L
	Bacteriorhodopsin	
	ATP hydrolysis	
2.5	Shuttle systems	
	Malate aspartate shuttle	1L
	Glycerol -3- phosphate shuttle.	

Autonomous	(Affiliated to University of Mumbai)	1 11 0	
2.6	Calculations of energetics	1L	
	Glycolysis and TCA, Balance sheet to be given with		
	efficiency calculation.		
3	Catabolism of Carbohydrates		
	Learning Objectives:		
	1) To study details of catabolic pathways of selected ca	arbohydrates.	
	2) To analyse the multifunctional role of central metab	olic pathways.	
	3) To identify the ways by which complex substrates converge to centr		
	metabolic pathways.	-	
	4) To define the concept of fermentation.		
	Learning Outcomes: After the successful completion of the	ne module, the learner	
	will be able to:		
	1) Differentiate between various structures of glucos	e polymers and their	
	breakdown.		
	2) Demonstrate the use of radio respirometry to identif	fy simple biochemical	
	pathways e.g. EMP and ED.		
	3) Schematically represent pathways with structures	of intermediates and	
	 enzymes. 4) Compare the various catabolic pathways for glucose catabolism. 5) Analyse the differences between the metabolic pathways of differences 		
	fermentations.		
	Catabolism of Carbohydrates		
3.1	Breakdown of polysaccharides	3L	
	Glycogen, starch, cellulose		
	Breakdown of oligosaccharides		
	Lactose, maltose, sucrose (by phosphorolysis)		
	Utilization of monosaccharides		
	Fructose, galactose		
3.2	Major pathways-		
3.2.a	Glycolysis (EMP), TCA,	6L	
3.2.b	Pentose phosphate pathway, ED pathway		
3.2.c	Use of radio-respirometry with reference to EMP & ED.		
3.2.d	Anaplerotic reactions of TCA, glyoxylate bypass		
3.3	Modes of fermentations in microorganisms:		
	Lactic acid (homo, hetero fermentative pathway, bifidum	3L	
	pathway) mixed acid, butanediol, Butyrate and Acetone-		
	butanol fermentations.		

References:

1) Stanier. R.Y., Ingraham, J.L., Wheelis, M.L., Painter, R.R, (1987) General Microbiology, 5th edition, The Macmillan press Ltd.

2) Conn Stumpf, P. K., Bruening, G. R. H. (1987) Outlines of Biochemistry, 5thedition, John Wiley & sons.

3) Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag.

4) White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rdedition, Oxford University Press

5) Nelson, D, Cox, M, (2005), Lehninger Principles of biochemistry,4th edition, W. H. Freeman and Company.

6) Mathews (2000), Biochemistry 3rd edition, Van Holde, Pearson Education.

7) Voet, D &Voet, J. G., (2004), Biochemistry, 3rd edition, John Wiley& Sons Inc

8) Zubey, G. L (1996), Biochemistry, 4th edition, Wm. C. B Brown publishers.

Evaluation Pattern: Theory

For course III

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

SEMESTER V - Practical

Course-III

COURSE CODE: 23US5MBCCP2

[CREDITS - 01]

Experiment	Title and Number of Credits	Number of
Sr. no.		hours
1	Phosphatase –Qualitative detection and quantitative	06
2	Detection of amylase activity	02
3	Study of homo and hetero fermentations	14
4	Isolation of mitochondria and assay for ETC activity	05
5	Enrichment and isolation of cellulose digestors	03

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

Course – IV

COURSE TITLE: Bioprocess Technology-Upstream Processes

COURSE CODE: 23US5MBCC4BTU

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

1) Comprehend the need for strain improvement.

2) Illustrate the sterilization methods used in industrial fermentation processes.

3) Evaluate the fermenter design most suitable for optimum production of a microbial product.

4) Assess the different methods of monitoring and control of fermentation parameters.

Module	TITLE AND CONTENTNO OF
	LECTURES:12
1	Strain Improvement and Sterilization
	Learning Objectives:
	1) To describe the need for strain improvement.
	2) To explore the different approaches for strain improvement.
	3) To evaluate the methods of sterilization.
	4) To illustrate filtration as an effective method of sterilization of media, air
	and exhaust air.
	Learning Outcomes: After the successful completion of the module, the learner
	will be able to:
	1) Comprehend different methods of Strain improvement.
	2) Assess the advantages and disadvantages of batch and continuous
	sterilization methods.
	3) Differentiate between Depth and Absolute filters.
	4) Establish the process steps for filter sterilization of media.

Autonomous (Al	filiated to University of Mumbai)	
	Strain Improvement and Sterilization	
1.1	Strain Improvement	
1.1.a	Improvement of industrial microorganisms:	
	Selection of induced mutants synthesizing improved	3L
	levels of primary metabolites (with one example of each	_
	method)	
	incurse)	
1.1.b	Isolation of induced mutants producing improved yields	2L
1.1.0		21
	of secondary metabolites (with one example of each	
	method)	
1.1.c	Use of recombination systems for the improvement of	1L
	industrial microorganisms	
	The applications of the Parasexual cycle	
1.2.	Sterilization:	
1.2.a	Consequences of invasion in a fermentation by a foreign	
	organism.	1L
1.2.b	Sterilization criterion	
	Definition and significance.	1L
1.2.c	Methods of sterilization	
	Batch and Continuous sterilization.	2L
1.2.d	Filter sterilization	
	Mechanisms of filtration	2L
	Depth and Absolute filters	
	Sterilization of fermentation media, air and fermenter	
	exhaust air	
2	Types of Bioreactors	
	Learning Objectives:	
	1) To describe the constructional variations of different fe	ermenters.
	 To outline the fermenter designs diagrammatically. 	
	3) To relate the need for different parts in a fermenter to t	he type of product
		ne type of product.
	Learning Outcomes: After the successful completion of	the module, the learner
	will be able to:	
	1) Characterise the different fermenter designs	

Autonomous (Al	ffiliated to University of Mumbai)		
	2) Relate the design of the fermenter to the conditions needed for optimum		
	product formation		
	3) Evaluate the fermenter design with respect to economy of process and		
	product formation		
	4) Justify the need for modified fermenter designs for Animal cell culture		
	Types of Bioreactors		
2.1	Typical constructional features and their importance	4L	
	Types of fermenters based on Power Input for mixing		
	(mechanical, hydrodynamic and pneumatic)		
2.1.a	Mechanical: Waldhof fermenter		
2.1.b	Hydrodynamic : Deep jet fermenter, trickling generator		
2.1.c	Pneumatic : Air-lift fermenter, bubble-cap fermenter,		
	acetator, cavitator.		
	,		
2.2	Animal cell culture reactors		
	Stirred fermenters, Air-Lift fermenters, Radial flow	4L	
	fermenters, Microcarriers, Encapsulation, Hollow fibre		
	chambers, Packed glass bead reactors, Perfusion		
	Cultures.		
2.3	Photo-bioreactor, tower and packed tower		
2.3	fermenters, Biofilters and Fixed film processes	2L	
	Termenters, biointers and Fixed min processes	2L	
2.4	Solid State fermenters, Membrane fermenters and		
2.4	Single use disposable fermenters	2L	
	single use disposable refinencers	212	
3	Fermentation Parameter- Monitoring and control		
5	Learning Objectives:		
	1) To assess the requirement for monitoring of fermentati	on parameters	
	2) To evaluate the limitations of different methods of m	-	
	parameters.	ionitoring rementation	
	3) To explain the control mechanisms for parameters.		
		the module, the learner	
	Learning Outcomes: After the successful completion of the module, the learner will be able to:		
	 will be able to: 1) Categorise different types of sensors. 2) Evaluate the different methods of monitoring fermentation parameters. 2) Derive the ways to control the formentation parameters. 		
	3) Derive the ways to control the fermentation param	CIC13.	
	 Analyse the output of monitoring devices Differentiate between menual and externation control 	al of monometers	
	5) Differentiate between manual and automatic contro	of of parameters	
	Fermentation Parameter- Monitoring and control		
2.1	Different types of sensors based on location and in		
3.1	relation to its application for process control.	11	
		1L	

Autonomous	(Affiliated to University of Mumbal)	
3.2	Temperature Monitoring and Control	
3.2.a	Mercury-in-glass thermometers	1L
3.2.b	Electrical resistance thermometers	
3.2.c	Thermistors	
3.2.d	Temperature control	
3.3.	Flow measurement and control	
3.3.a	Gases	1L
3.3.b	Liquids	
3.3.c	Control of flow of gases and liquids	
3.4.	Pressure measurement and control	
3.4.a	Bourdon tube pressure gauge	1L
3.4.b	Nested diaphragm-type pressure sensor	
3.4.c	Pressure bellows, Strain Gauge, Piezoelectric transducer	
3.3.d	Pressure control	
3.5	Foam sensing and control	1L
3.6	Measurement and control of dissolved oxygen	2L
3.6.a	Galvanic and Polarographic electrodes	
3.6.b	Fluorometric Oxygen sensor	
3.6.c	Control of dissolved oxygen.	
3.7	Inlet and exit gas analysis	2L
3.7.a	Deflection type paramagnetic oxygen analyser	
3.7.b	Thermal-type paramagnetic oxygen analyser	
3.7.c	Infrared analyser	
3.8	pH measurement and control	1L
5.0		1L
3.9	Control systems	2L
3.9 3.9.a	Manual Control	2L
3.9.a 3.9.b	Automatic control	
5.9.0	Two- position controllers	
	1 wo- position controllers	

1) Patel A.H. (1996), Industrial Microbiology. 1st edition, Macmillan India Limited.

2) Waites M.J., Morgan N.L., Rockey J.S. and Higton G. (2001), Industrial Microbiology: An Introduction. 1st edition. Wiley – Blackwell.

3) Crueger W and Crueger A. (2000), Biotechnology: A textbook of Industrial Microbiology. 2nd edition. Panima Publishing Co. New Delhi.

4) Stanbury PF, Whitaker A and Hall SJ. (2006), Principles of Fermentation Technology.2nd edition, Elsevier Science Ltd.

5) Stanbury PF, Whitaker A and Hall SJ. (2017), Principles of Fermentation Technology. 3rd edition, Elsevier Science Ltd.

6) Walsh Gary, (2011), Pharmaceutical Biotechnology. 1st edition, Wiley-India edition.

7) E.M.T.El-Mansi and A.R. Allman (2012), Fermentation Microbiology and Biotechnology. 3rd edition. CRC Press.

Evaluation Pattern: Theory

For course IV **External Evaluation** – Semester End Examination (60 M) - Duration: 2 hours Paper Pattern

Question No	Module	Marks with Option	Marks without
			Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M) Probable options: Plickers Testmoz Google form Moodle Objective-MCQ Short answer test

Piktochart

SEMESTER V - Practical

Course-IV COURSE CODE: 23US5MBCCP2

[CREDITS - 01]

Experiment	Title and Number of Credits	Number of
Sr. no.		hours
1	Gradient plate technique for isolation of mutants	6
2	Study of fermenter parts and demonstration of its working	14
3	Enrichment methods for mutants-Penicillin	10

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course Internal evaluation: 20 marks

Autonomous (Affiliated to University of Mumbai) Discipline Specific Elective DSE-I

COURSE TITLE: Analysis of Biomolecules

COURSE CODE: 23US5MBDS1ANB

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Estimate the concentration of biomolecules by colorimetry and UV-Visible spectrophotometry.
- 2) Apply chromatographic techniques for separation of biomolecules.
- 3) Apply technique of electrophoresis and centrifugation to separate macromolecules

Module	TITLE AND CONTENT	NO OF	
		LECTURES:12	
1	Estimation of Biomolecules and Spectrophoto	metry	
	Learning objectives:		
	1)To evaluate the composition of microbial cells.		
	2) To describe the various methods to estimate biomolecules.		
	3) To state the basic concepts of Spectrophotometry.		
	Learning outcomes: After the successful completion of the module, the learner will be able to:		
	1) Estimate the concentration of biomolecules in microbial cells.		
2) Compare and contrast between different methods of		timation	
	of Macromolecules.		
	3)Describe the basic components and working of the Spec	ctrophotometer.	
	Estimation of Biomolecules and		
	Spectrophotometry		
1.1	Macromolecular composition of a microbial cell,	1L	
	estimation of biomass by wet weight and dry weight.		
1.2	Methods of elemental analysis	1L	
1.2.a	Carbon by Van Slyke's method		
1.2.b	Nitrogen by Micro-kjelhdahl method		
1.2.c	Phosphorus by Fiske Subbarow method		

Autonomous (Affiliated to University of Mumbai)		
1.3	Estimation of Carbohydrates	1L	
1.3.a	Phenol method		
1.3.b	DNSA method		
1.4	Estimation of Proteins	2L	
1.4.a	Biuret method		
1.4.b	Folin-Lowry's method		
1.5	Estimation of Amino acids	1L	
	Ninhydrin method		
1.6	Estimation of Nucleic acids	1L	
1.6.a	DPA method		
1.6.b	Orcinol method.		
1.7	Extraction and estimation of Lipids	1L	
	Soxhlet method		
1.8	Colorimetry	2L	
	Basic instrumentation and applications		
1.0		21	
1.9	Spectrophotometry	2L	
	UV-Visible spectrophotometry		
	Instrumentation: Monochromator, Cuvettes, photocells,		
	slits.		
	Applications: Qualitative and quantitative analysis		
2	n II motor and Chromotography		
2	pH meter and Chromatography Learning objectives:		
	Learning objectives:		
	1) To describe the basic components and working of a pH	meter	
	2) To explain the basic concepts and working of different chromatograp techniques.		
	Learning outcomes:		
	After the successful completion of the module, the learner	will be able to:	
	1) Understand the applications of pH meter in biological experiments.		
	2) Apply chromatographic techniques for separation of	-	
L			

Autonomous (A	Affiliated to University of Mumbai)	1 11 0 1
	pH meter and Chromatography	3L
2.1	pH Meter	
2.1a	Standard Hydrogen electrode	
2.1b	Reference electrode,	
2.1c	Glass electrode, measurement of pH	
2.2	Concepts of Chromatography	2L
2.2.a	Distribution co-efficient	
2.2.b	Modes of chromatography (Tabulation-TLC, Column	
	and Paper)	
2.2.c	Basic Column chromatography components	
2.3	Chromatographic Techniques: Principle, working	7L
	and Applications of:	
2.3.a	Adsorption Chromatography	
2.3.b	Partition Chromatography -Normal phase and Reverse	
	phase	
2.3.c	Ion-exchange Chromatography:	
2.3.d	Molecular Size-Exclusion Chromatography:	
2.3.e	Affinity Chromatography	
2.3.f	High Performance Liquid Chromatography	
2.3.g	Gas Chromatography	
3	Centrifugation and Electrophoresis	
	Learning objectives:	
	1) To explain the principle and working of centrifuga	tion.
	2) To describe the technique of electrophoresis for the separation of macromolecules.	
	Learning Outcomes:	
After successful completion of the module, the learner will		ll be able to:
	1) Explain the principle and applications of Centrifug	ation techniques.
	2) Apply technique of electrophoresis to separate made	cromolecules.
	Centrifugation and Electrophoresis	
3.1	Centrifugation	1L
3.1.a	Basic Principle of Sedimentation, Concepts of	
	Applied Centrifugal field, angular velocity, and	
	sedimentation coefficient.	

3.1.b	Types of rotors	1L
	Swinging Bucket and fixed angle	
3.1.c	Preparative centrifugation	1L
	Differential centrifugation	
	Density-gradient centrifugation	2L
	Nature of gradient materials, practical applications	
3.1.d	Applications of Analytical ultracentrifugation:	1L
	Determination of relative molecular mass and purity	
3.2	Electrophoresis-General principle	2L
3.2.a	Support media	
	Agarose and polyacrylamide gels	
3.2.b	Electrophoresis of Proteins	2L
	SDS PAGE, and Native gels	
3.2.c	Electrophoresis of Nucleic acid	
	Agarose gel Electrophoresis, DNA sequencing gels and	2L
	RNA electrophoresis	

References:

1. Wilson and Walker. (2009). Principles and Techniques of Biochemistry and Molecular Biology. 7th edition.

2. H. R. Bolliger, M. Brenner. (2013). Thin Layer Chromatography, A Laboratory Handbook. Springer Verlag.

3. Norris and Robbins VA. (1971). Methods in Microbiology. New York: Academic Press London.

4. Jayaraman (2011) Laboratory Manual in Biochemistry, 2nd edition, New Age International Publisher.

Evaluation Pattern: Theory

For course: DSE-I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without
			Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

SEMESTER V - Practical

DSE Course-I

COURSE CODE: 23US5MBDSP3

[CREDITS - 01]

Experiment	Title	Number of
Sr. no.		hours
1	Estimation of protein by Biuret method	4
2	Quantitative Estimation of DNA by DPA method	4
3	Preparation of Buffers and standardization of pH meter	4
4	Paper chromatography of amino acids	4
5	Column chromatography	4
6	Study of Centrifuge, Density gradient	4
	centrifugation (Yeast and bacteria)	
7	Agarose gel electrophoresis	6
	I	

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

Discipline Specific Elective DSE-II

COURSE TITLE: Plant and Animal Biotechnology

COURSE CODE: 23US5MB DS2PAB

[CREDITS - 02]

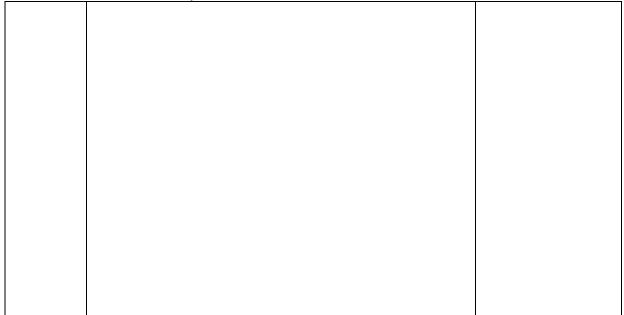
Course Learning outcomes: After successful completion of the Course, the learner will be able to:

- 1) Demonstrate the set-up of plant tissue culture laboratory and culture techniques.
- 2) Describe the set-up of animal tissue culture laboratory and culture techniques.
- 3) Evaluate the applications of transgenic crops and transgenic animals.

Module	TITLE AND CONTENT	NO OF	
		LECTURES:12	
1	Plant Tissue Culture		
	Learning Objective:		
	1) To explain the basic set-up of plant tissue culture la	boratory.	
	2) To familiarize the students with the basic techniques	of plant tissue culture.	
	biotechnology.		
	3) To introduce the recombinant and non-recombinar	nt approaches to plant	
	breeding.		
	Learning outcomes: After successful completion of the m	odule, the learner will	
	be able to:		
	1) Explain the set-up of plant tissue culture laboratory.		
	2) Establish and maintain plant cells in tissue culture.		
	3) Evaluate the physical, chemical and biological methods of gene transfe		
	plants.		
1.1	Plant Tissue Culture	17	
1.1	Laboratory organization	1L	
	Washing & storage facilities, cleaning glassware, using		
	plastic labware, media preparation room, transfer area,		
	culture room, data collection area & specialised facilities		
1.2	Media	1L	
1.4	Media composition, inorganic nutrients, carbon & energy		
	source, organic supplements, growth regulators,		
	source, organie supplements, growin regulators,		

	solidifying agents, pH, media preparation, selection of new	
	medium	
1.3		3L
	Plant growth & development	
	Plant tissue culture, cell culture, organ culture,	
	regeneration of plants, anther & pollen culture	
1.4		2L
1.5	Large scale plant propagation	
1.5		
	Plant germplasm banks	
1.6		5L
	Biotechnology & plant breeding	
	a. Non-recombinant approach:	
	Somaclonal variation, Protoplast fusion, Ancillary	
	techniques	
	b. Recombinant approaches:	
	Plant viruses as vectors, Ti plasmids as vectors, Physical &	
	chemical methods (Microprojectile and particle	
	bombardment)	
	,	
2	Animal Tissue culture Learning objectives:	
2	Learning objectives:	for animal cell
2	 Learning objectives: To describe the requirements and laboratory set-up f 	for animal cell
2	Learning objectives:1. To describe the requirements and laboratory set-up f culture.	
2	 Learning objectives: To describe the requirements and laboratory set-up f 	
2	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal 	al cell culture.
2	 Learning objectives: 1. To describe the requirements and laboratory set-up for culture. 2. To explain the media components required for animal Learning outcomes: After the successful completion of the successful completio	al cell culture.
2	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal 	al cell culture.
2	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: 	al cell culture.
2	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: Culture animal cells. 	al cell culture.
2	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: 	al cell culture.
2	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: Culture animal cells. 	al cell culture.
2	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: Culture animal cells. 	al cell culture.
	 Learning objectives: 1. To describe the requirements and laboratory set-up for culture. 2. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: 1. Culture animal cells. 2. Apply methods to avoid microbial contamination. 	al cell culture.
2	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: Culture animal cells. Apply methods to avoid microbial contamination. 	al cell culture.
	 Learning objectives: 1. To describe the requirements and laboratory set-up for culture. 2. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: 1. Culture animal cells. 2. Apply methods to avoid microbial contamination. Animal Tissue culture Introduction to Tissue culture	al cell culture.
	 Learning objectives: 1. To describe the requirements and laboratory set-up for culture. 2. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: 1. Culture animal cells. 2. Apply methods to avoid microbial contamination. 	al cell culture. e module, the learner
	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: Culture animal cells. Apply methods to avoid microbial contamination. Animal Tissue culture Introduction to Tissue culture Historical background, advantages of tissue culture	al cell culture.
	 Learning objectives: 1. To describe the requirements and laboratory set-up for culture. 2. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: 1. Culture animal cells. 2. Apply methods to avoid microbial contamination. Animal Tissue culture Introduction to Tissue culture Historical background, advantages of tissue culture Types of tissue culture: Organ, Explant, dissociated cell,	al cell culture.
	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: Culture animal cells. Apply methods to avoid microbial contamination. Animal Tissue culture Introduction to Tissue culture Historical background, advantages of tissue culture	al cell culture.
	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: Culture animal cells. Apply methods to avoid microbial contamination. Animal Tissue culture Historical background, advantages of tissue culture Types of tissue culture: Organ, Explant, dissociated cell, organotypic 	al cell culture.
	 Learning objectives: 1. To describe the requirements and laboratory set-up for culture. 2. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: 1. Culture animal cells. 2. Apply methods to avoid microbial contamination. Animal Tissue culture Introduction to Tissue culture Historical background, advantages of tissue culture Types of tissue culture: Organ, Explant, dissociated cell,	al cell culture. e module, the learner 1L
2.1	 Learning objectives: To describe the requirements and laboratory set-up for culture. To explain the media components required for animal Learning outcomes: After the successful completion of the will be able to: Culture animal cells. Apply methods to avoid microbial contamination. Animal Tissue culture Historical background, advantages of tissue culture Types of tissue culture: Organ, Explant, dissociated cell, organotypic 	al cell culture. e module, the learner

Autonomous	(Affiliated to University of Mumbai)	IRU
	Tissue culture lab with adjacent preparation room	
	(diagrammatic representation)	
2.3	Equipment's and Materials	1L
	A brief description of Laminar air flow cabinet, pipette controllers, CO ₂ incubator, Inverted microscope	
2.4	Defined Media and Supplements	2L
	A brief description of physico-chemical properties: pH, CO ₂ , buffering, oxygen, temperature, osmolality, balanced salt solutions	
2.4.	Complete media	2L
	Amino acids, vitamins, salts, glucose, organic supplements, hormones and growth factors, antibiotics, serum-advantages and disadvantages	
2.5	Culture vessels and substrates	2L
	Substrate for attachment and growth: A brief description of common substrate materials, treated surfaces and non- adhesive substrates, choice of culture vessel	
2.6	Primary culture	2L
	A brief description of initiation of a primary cell culture, isolation of the tissue, types of primary culture, options for primary culture	
	Sub-culture and cell lines: Terminology, subculture and propagation	
2.7	Microbial contamination	1L
2.1	Sources of contamination	
	Types of contamination	
	Monitoring for contamination	
1		



,	(Affiliated to University of Mumbri)	TRU
3	(Affiliated to University of Mumbai) Applications of Plant and Animal cell cultures	
5	Learning Objective:	
	To describe applications of transgenesis in plant and animal	biotechnology.
	Learning outcomes:	
	After the successful completion of the module, the learner v	vill be able to:
	1. Demonstrate application of transgenesis in getting resista	-
	2. Demonstrate application of transgenesis in getting imp	proved livestock and
1	poultry.	
	Applications of Plant and Animal cell cultures	
3.1	Transgenics in crop improvement	5L
3.1.a	Insect resistance: <i>Bacillus thuringiensis</i> insecticidal toxin, Increasing expression of Bt protoxin	
3.1.b	Herbicide resistance: Biological manipulations,	
3.1.0	Glyphosate resistant plants	
3.1.c	Salt and drought stress resistant plants	
01110		
3.1.d	Plants as Bioreactors	1L
	Edible vegeines	
3.1.e	Edible vaccines	1L
3.2	Transgenic animals	
		1L
3.2.a	Introduction	21
2.2.1	Transgenic Livestock	3L
3.2.b	Production of pharmaceuticals	
	Production of Donor organs	
	Disease resistant livestock	
	Improving milk Quality	
	Improving animal production traits	
		1 L
3.2.c	Transgenic Poultry	I L
1		

References:

1) S.S. Bhojwani and M.K. Razdan, Elsevier, Amsterdam, (1996). Plant tissue Culture: Theory and Practice

2) Primrose (2016), Principles of Gene Manipulation 8th edition.

3) H. C. Chawla, Oxford and IBH, (2002), An Introduction to Plant Biotechnology

4) I. Potrykus and G. Spangenberg (1997), Gene Transfer to Plants by, Springer Lab Manual, Springer Verlag,

5) R. I. Freshney (2010), Culture of Animal Cells – A manual of basic technique and specialized applications, 6th edition, Wiley-Blackwell.

6) Sudha Gangal (2007), Animal Tissue culture. Second edition. University Press (India) Pvt. Ltd. Hyderabad.

Evaluation Pattern: Theory

For course: DSE-II

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without
			Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M) Probable options:

Plickers Testmoz Google form Moodle Objective-MCQ Short answer test

SEMESTER V - Practical

DSE Course-II

COURSE CODE: 23US5MBDSP3

[CREDITS - 01]

Experiment	Title and Number of Credits	Number of
Sr. no.		hours
1	MS media preparation	6
2	Establishment and maintenance of callus culture	8
3	Preparation of Artificial seeds	7
4	Case study on transgenic animals and transgenic plants	9

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 10 marks

Autonomous (Affiliated to University of Mumbai) SEC - I

COURSE TITLE: ANTIMICROBIAL CHEMOTHERAPY

COURSE CODE: 23US5MBSE1CMT

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Evaluate the mode of action of different antimicrobial agents.
- 2) Apply different tests for determining inhibitory activity of antibiotics.

Module	TITLE AND CONTENT	NO OF LECTURES:14
1	Mode of action of antimicrobial agents	LECIURES:14
	Learning objectives:	
	 To explain basic concepts of Chemotherapy To describe different modes of action of antimicro 	bial agents.
	Learning outcomes:	
	After the successful completion of the module, the learner	will be able to:
	1.Explain different terms associated with Chemotherapy	
	2. Describe the mode of action of different types of antimi	crobial agents.
	Mode of action of antimicrobial agents	
1.1. 1.1.a	The development of Chemotherapy	1L
	General characteristics of antimicrobial drugs	
1.2	Principles of antimicrobial action	
	Mode of action of antibacterial agents	
1.2. a	Inhibitors of cell wall synthesis:	2L
	Beta-lactam antimicrobial agents-Penicillin	
1.2. b	Inhibitors of cell membrane function-Polymyxin	2L
1.2. c	Inhibitors of protein synthesis:	2L

Autonomous	(Affiliated to University of Mumbai) Aminoglycosides-Streptomycin	
	Tetracyclines	
1.2. d	Inhibitors of DNA and RNA synthesis	2L
	Metronidazole	
	Rifampin	
1.2. e	Inhibitors of other metabolic processes	2L
	Sulfonamides	
	Trimethoprim	3L
1.3	Mechanisms of antibiotic resistance	
	Principles	
	Biologic vs clinical resistance	
	Environmentally mediated antimicrobial resistance	
	Microorganism mediated antimicrobial resistance:	
	Intrinsic and acquired resistance	
	Introduction to the new generations of antibiotics	
2.	Tests for antimicrobial agents	
	Learning objective:	
	1.To evaluate methods of testing of antimicrobial agents.	
	Learning outcomes:	
	After the successful completion of the module, the learner	will be able to:
	1.Apply different methods of testing of antimicrobial agen	its.
	Tests for antimicrobial agents	
2.1	Tests for determining inhibitory activity of	
	antibiotics	2L
	Indications	
	Choice of test	

Somanyan TRUST

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

	Selection of antimicrobial agents	
	Standardization and its limitations	
2.2	Conventional testing methods	4L
2.2.a	General considerations, procedure, inoculation, incubation and interpretation of results, advantages and disadvantages:	
2.2.b	Broth dilution	
2.2.c	Agar dilution-disk diffusion-Kirby-Bauer and Stokes method	
2.2.4	Agar dilution derivations	8L
2.2.d	Diffusion in agar derivations-E-test	
	Selection of antibiotics to be reported	
	Macro dilution broth susceptibility test	
	Micro dilution broth susceptibility test	
	Agar dilution broth susceptibility test	
	Disk dilution broth susceptibility test	
	Testing of antibiotic combinations	

References:

- 1) Bailey and Scott (2007), Diagnostic Microbiology 12th edition, Mosby Elsevier.
- Koneman (1992) Diagnostic Microbiology, 4th Edition. J.B. Lippincott Company Thomas J. Kindt, Richard A. G, Barbara A. Osburne Kuby (2007) Immunology: W. H. Freeman and Company, New York.
- 3) Collins and Lyne's (2004) Microbiological methods, 8th edition, Hodder Arnold.

Evaluation Pattern: Theory

For course: SEC -I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without
			Option
1	Ι	40	30
2	II	40	30

SEC Course-I

COURSE CODE: 23US5MBSEP

[CREDITS - 0.5]

Experiment	Title and Number of Credits	Number of
Sr. no.		hours
1	Antimicrobial susceptibility test-Kirby- Bauer and Stokes method	5
2	E-test	2
3	Synergistic action of drugs	4
4	MIC of antibiotic-Streptomycin	4

Evaluation pattern: Practical (40M)

Internal evaluation: 40 Marks practical examination at the end of each semester.

Syllabus -T. Y. B.Sc. Microbiology Semester VI 6 units

Semest er	Course Number	Course Title	Course code	Credits	Hours	Periods (50 min)	Unit/ Module	Lectures (50 minutes)	Examinatio	on	
VI									Internal	External	Total
									Marks	Marks	Marks
THEOR	RY							·			•
Core co	urses										
	Ι	Mutation and	23US6M	2	30	36	3	12	40	60	100
		Genetic	BCC1M								
		Exchange	GE								
	II	Medical	23US6M	2	30	36	3	12	40	60	100
		Microbiology	BCC2M								
		and	EI								
		Immunology-II									
	III	Microbial	23US6M	2	30	36	3	12	40	60	100
		Biochemistry-II	BCC3M								
			BC								
	IV	Bioprocess	23US6M	2	30	36	3	12	40	60	100
		Technology-	BCC4BP								
		Downstream	D								
		Processing and									
		Fermentations									

Autonomous (Affiliated to University of Mumbai)

Discipi	ine Specific E	lectives									
DSE	Ι	Recombinant	23US6M	2	30	36	3	12	40	60	100
		DNA	BDS1R								
		Technology and	DV								
		Advanced									
		Virology									
	II	Advances in	23US6M	2	30	36	3	12	40	60	100
		Immunology	BDS2AI								
		and Medical	М								
		Microbiology									
	III	Research Project	23US6M	Kindly	refer to th	e section un	der practica	l	•	•	•
	OPTIONAL		BDS3RC								
			Н								
Skill E	nhancement I	Electives									
CEC	T	M - 1 1	23US6M	2	30	20	2	10			
SEC	1	Molecular	23030M	~	50	36	3	12	40	60	100
SEC	1	Biotechnology	BSEMB	2	50	30	3	12	40	60	100
SEC	1			2	50	30	3	12	40	60	100
	TICALS	Biotechnology	BSEMB		50	30	3	12	40	60	100
PRAC'	TICALS COURSES	Biotechnology	BSEMB		50	30	3	12	40	60	100
PRAC'		Biotechnology	BSEMB	1	2	2.4	3		20	60	50
PRAC'		Biotechnology and Society	BSEMB S				3				
PRAC'		Biotechnology and Society Mutation and	BSEMB S 23US6M								
PRAC'		Biotechnology and Society Mutation and Genetic	BSEMB S 23US6M								
PRAC'	COURSES I	Biotechnology and Society Mutation and Genetic Exchange	BSEMB S 23US6M		2	2.4			20	30	50
PRAC'	COURSES I	Biotechnology and Society Mutation and Genetic Exchange Medical	BSEMB S 23US6M		2	2.4			20	30	50

Autonomous (Affiliated to University of Mumbai)

 III	Microbial	23US6M	1	2	2.4		20	30	50
	Biochemistry-II	BCCP2							
IV	Bioprocess		1	2	2.4		20	30	50
	Technology-								
	Downstream								
	Processing and								
	Fermentations								

Disciplin	ne Specifio	e Electives								
DSE	Ι	Recombinant DNA	23US6	1	2	2.4		20	30	50
		Technology and	MBDS							
		Advanced Virology	P3							
	II	Advances in		1	2	2.4		20	30	50
		Immunology and								
		Medical								
		Microbiology								
	III	Research Project	23US6	3	6	7.2		150	•	•
			MBDS							
			3RCH							

Syllabus -T. Y. B.Sc. Microbiology Semester VI 3 units

Semest er VI	Course Number	Course Title	Course code	Credits	Hours	Periods (50 min)	Unit/ Module	Lectures (50 minutes)	Examinati	on	
									Internal	External	Total
									Marks	Marks	Marks
THEOR	RY										
Core co	urses										
	Ι	Mutation and	23US6M	2	30	36	3	12	40	60	100
		Genetic	BCC1M								
		Exchange	GE								
	II	Medical	23US6M	2	30	36	3	12	40	60	100
		Microbiology	BCC2M								
		and	EI								
		Immunology-II									
Skill En	hancement	Electives									
SEC	Ι	Molecular	23US6M	2	30	36	3	12	40	60	100
		Biotechnology	BSEMB								
		and Society	S								
PRACT	ICALS			•	•					I	
CORE (COURSES										
	Ι	Mutation and	23US6M	1	2	2.4			20	30	50
		Genetic	BCCP1								
		Exchange									

Autonomous (Affiliated to University of Mumbai)

 atonomous	(Annuacea to or	inversity of Mullibuly							
	II	Medical	1	2	2.4		20	30	50
		Microbiology							
		and							
		Immunology-II							

Autonomous (Affiliated to University of Mumbai) Course - I

COURSE TITLE: Mutation and Genetic Exchange

COURSE CODE: 23US6MBCC1MGE

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

1) Describe the molecular mechanisms of different mutations.

2) Describe the molecular machinery and mechanisms associated with plasmids, transposable elements and recombination.

3) Summarize the molecular mechanisms of Transformation, Conjugation and Transduction.

Module	TITLE AND CONTENT	NO OF
		LECTURES:12
1	MutationLearning Objectives:1)To define mutation and its different types.2)To determine the causative molecularmutations.3)To detect the mutants.Learning Outcomes: After the successful complexitywill be able to:1)State the role of mutation in evolution.2)List different types and agents of mutationUse various techniques for detection of mutants.	r mechanisms for different etion of the module, the learner
1.1.a	Mutation Terminology Alleles, homozygous, heterozygous, genotype, phenotype, Somatic mutation, Germ-line mutation, gene mutation, chromosome mutation, phenotypic lag, hotspots and mutator genes.	2L
1.1.b	Fluctuation test (Adaptation versus Mutation theory)	1L
1.1.c	Types of mutations Point mutation, reverse mutation, suppressor mutation, frame shift mutation, conditional lethal mutation, base pair substitution, transition, transversion, missense mutation, nonsense mutation, silent mutation, neutral mutation, pleiotropic mutation	3L

1.1.d	Causes of mutations Natural/spontaneous mutation-DNA replication error, depurination, deamination	2L
1.1.e	Induced mutation Principle and mechanism with illustrative	2L
1.1.f	diagrams for: Chemical mutagens- base analogues, nitrous acid, hydroxyl amine, NTG Intercalating agents and alkylating agents Radiations- Ionizing and Non-ionizing radiations	1L
1.2.a	Detection of environmental mutagens- Ames test	1L
1.2.b	Detection of mutants – Visible mutants, Nutritional mutants, Conditional mutants, Resistant mutants	
2	Plasmids, Transposons and Recombination	
	Learning Objectives:	
	 To illustrate the steps in plasmid DNA ext 	raction and separation.
	2) To characterize the different types of plasm	_
	3) To describe the different types of transpose	
	4) To investigate the processes of transposition	
	Learning Outcomes : After the successful complex will be able to:	
	1) Summarize the steps and investigate the us	se of reagents in plasmid DNA
	extraction and separation.	
	2) Present an outline of the process of conjug	-
	3) Identify the role of different types of plasm	
	4) Compare and contrast between cor	nposite and non-composite
	transposons.	
	5) Schematically represent transposition and	recombination.

u	tonomous (Af	filiated to University of Mumbai)	
		Plasmids, Transposons and Recombination	
	2.1	Plasmids	
	2.1.a	Physical nature of plasmids	4L
		Modular organization and types of plasmids	
	2.1.b	Detection and isolation of plasmids	
		Separation methods on the bases of size and conformation	
		of plasmid DNA.	
		Plasmid incompatibility and Plasmid curing	
	2.1.c	Cell to cell transfer of plasmids	
	2.1.d	Types and features of following plasmids	
	2.1.4	Resistance Plasmids	
		Plasmids encoding Toxins and other Virulence	
		characteristics	
		Col factor	
		Degradative plasmids	
		Metabolic plasmids	
		Metabolic plasmids	
	2.2	Transposable Elements in Prokaryotes	4L
	2.2 2.2.a		4L
	2.2.a	Insertion sequences	
	2.2.b	Structure and properties	
	2.2.0	Transposons	
		Types: Composite and non-composite with one example	
		each	
		Structure and properties	
		General mechanism of integration of plasmids into	
		chromosome	
		Mechanism for Co-integrate formation for replicative	
		transposition	
			~~
	2.3	Recombination in bacteria	3L
	2.3.a	General/Homologous recombination	
		Molecular mechanism of following models	
		Holliday model of recombination	
		DSB (Double Strand Break) model of recombination	
	2.3.b	Conservative Site –specific recombination-CSSR	
		Types of CSSR: Insertion, Inversion and Deletion	
	2.4		1 T
	2.4	Introduction to Integrons	1L

2	Constis Exchange	
3	Genetic Exchange	
	Learning Objectives:	
	1)	
	2) To investigate the role of F plasmid in conjugation.	mation Continention
	3) To describe the molecular mechanisms of Transfor	mation, Conjugation
	and Transduction.	
	Learning Outcomes : After the successful completion of the will be able to:	le module, the learner
	1) Compare and contrast natural and artificial transform	
	2) Illustrate the steps to induce artificial transformation	
	3) Apply the conjugation process to map the bacterial g	
	4) Differentiate between the generalized and specialised	d transduction.
2.1	Genetic Exchange	41
3.1	Transformation	4L
3.1.a	Introduction and History	
3.1.b	Types of transformation in prokaryotes-Natural	
	transformation in <i>Streptococcus pneumoniae</i> ,	
	Haemophilus influenzae, and Bacillus subtilis	
3.1.c	Mapping of bacterial genes using transformation	
3.1.d	Problems based on transformation	
3.2	Conjugation	4L
3.2.a	Discovery of conjugation in bacteria	
	(Lederberg and Tatum experiment)	
3.2.b	Properties of F plasmid/Sex factor	
3.2.c	The conjugation machinery	
3.2.d	Hfr strains, their formation and mechanism of conjugation.	
3.2.e	F factor, origin and behaviour of F strains, Sex-duction	
3.2.f	Mapping of bacterial genes using conjugation	
	(Interrupted mating experiment)	
3.2.g	Problems based on conjugation	
1		

Somanyan TRUST

K J Somaiya College of Science & Commerce
Autonomous (Affiliated to University of Mumbai)

3.3	Transduction	4L
3.3.a	Introduction and discovery	
3.3.b	Generalized transduction	
3.3.c	Use of Generalized transduction for mapping genes	
3.3.d	Specialized transduction	
3.3.e	Problems based on transduction	

References:

1) Peter J. Russell (2006), *i*Genetics-A molecular approach, 2nd edition.

2) Benjamin A. Pierce (2008), Genetics a conceptual approach, 3rd ed., W. H. Freeman and company.

3) R. H. Tamarin, (2004), Principles of genetics, Tata McGraw Hill.

4) Prescott, Harley and Klein, Microbiology (2001), 5th edition McGraw Hill international edition.

5) Primrose and Twyman (2001), Principles of gene manipulation and genomics, 6th ed, Blackwell Publishing.

6) Nancy Trun and Jaine Trempy (2004), Fundamental bacterial genetics Blackwell Publishing.

7) D Nelson and M Cox, (2005) Lehninger Principles of Biochemistry, 4th edition Macmillan worth Publishers.

8) James Watson (2004), Molecular biology of the gene, 5th edition Pearson.

9) James Watson (2017), Molecular biology of the gene, 7th edition, Pearson.

For course I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without
			Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

Evaluation Pattern: Theory

Probable options: Plickers Testmoz Google form Moodle Objective-MCQ Short answer test

SEMESTER VI - Practical

Course-I

COURSE CODE: 23US6MBCCP1

[CREDITS - 01]

Experiment Sr.	Titles and Number of Credits	Number of
No.		hours
1	Preparation of competent cells and transformation	04
2	Genetics problems on Transformation, Conjugation and	05
	Transduction	
3	UV survival curve – determination of exposure time leading	08
	to 90% reduction	
4	Isolation of mutants using UV mutagenesis	08
5	Replica plate technique for selection & characterization of	05
	auxotrophic mutants	

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

Autonomous (Affiliated to University of Mumbai) Course – II

COURSE TITLE: Medical Microbiology and Immunology-II

COURSE CODE: 23US6MBCC2MEI

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

1) Summarize the pathogenesis of organisms causing GI tract, Skin and CNS infections and control measures.

2) Discuss protozoal and viral infections and sexually transmitted diseases.

3) Describe the ontogeny, differentiation and killing mechanism associated with T cells and B cells.

Module	TITLE AND CONTENT	NO OF	
		LECTURES:12	
1	Infections of the Gastrointestinal tract, Skin and CNS		
	Learning objectives:		
	1) To describe aetiological agents of infections, their transmission and		
	pathogenesis.		
	2) To explain the clinical manifestations and laboratory dia	ignostic procedures of	
	the infections.		
	Learning outcomes:		
	After the successful completion of the module the learners		
	1) Differentiate between the types of Gastrointestina	l tract infections and	
	Skin infections.		
	2) Describe the virulence properties of pathogens causing Gastrointestinal		
	tract infections and Skin infections	Γ	
	Infections of the Gastrointestinal tract, Skin and CNS		
	Aetiology, Transmission, Pathogenesis, Clinical		
	Manifestations, Lab Diagnosis, Prophylaxis and Treatment		
	of:		
1.1	GI (Gastrointestinal Tract Infections)	6L	
	Escherichia coli		
	Salmonella spp		
	Shigella spp		
1.2	Skin Infections	3L	
1.2.a	Pyogenic Streptococcal infections, Pseudomonas		
1.2.b	Opportunistic diseases: Ringworm		

Autonomous	(Affiliated to University of Mumbai)	
1.3	CNS (Central Nervous System Infections)	3L
	Rabies	
	Bacterial Meningitis- Neisseria meningitidis	
2	Protozoal, Viral and Sexually Transmitted diseases	
	Learning objectives:	
	1) To describe the protozoal and viral infections.	
	2) To explain the clinical manifestations and laboratory	diagnostic procedures
	of Sexually Transmitted diseases.	
	Learning outcomes:	
	After the successful completion of the module the learners	
	1) Discuss the life-cycle of protozoal and viral agents of	-
	2) Elaborate the diagnosis and treatment of Emerg	ing and re-emerging
	infections.	
	3) Summarize the clinical manifestations of and o	control measures for
	Sexually transmitted diseases.	Γ
	Protozoal, Viral and Sexually Transmitted diseases	
2.1	Protozoal infections	3L
	Malaria, Amoebiasis (<i>Entamoeba</i>)	
2.2	Viral Infections	3L
2.2.a	Dengue, Hepatitis A	
2.2.b	Emerging and re-emerging infections	2L
	SARS, Zika, Nipah virus	
2.3	Sexually Transmitted Diseases	4L
	HIV infection	
	Syphilis	
	Gonorrhoea	
2		
3	Cells of immune system and their role in Immune responses	nse
	Learning Objectives:	om primour tranchaid
	1) To describe how T cells and B cells are generated fr	om primary lymphold
organs.2) To explain the effector mechanism of T cells and B		cells
	2) To explain the effector mechanism of T cells and B Learning Outcomes:	
	After successful completion of the module, the learner will	he able to
	 Explain generation of T cells and B cells from prima 	
	 Describe the effector mechanism of T cells and B cells 	••••
	2, Desenve the effector mechanism of T cens and D ce	

	Cells of immune system and their role in Immune	
	response	
3.1	T cell	3L
3.1.a	Receptor: Structure and organization	
3.1.b	T cell development and maturation, positive, negative	
	selection T cell activation and differentiation	
3.2	Cell mediated effector response	3L
3.2.a	Generation and target destruction by cytotoxic T cells	
3.2.b	Killing mechanism of NK cells	
3.2.c	Antibody dependent cell cytotoxicity	
3.3	B cell	3L
3.3.a	Receptor, structure and organization	
3.3.b	B cell development and maturation	
3.3.c	B cell activation and differentiation	
3.4.	Humoral response	3L
3.4.a	Induction of humoral response, primary and secondary	
	immune response	
3.4. b	Germinal centres and antigen induced B cell differentiation	

References:

- 1) Ananthanarayan and Paniker, (2009), Textbook of Microbiology, 8th Edition. Universal Press.
- 2) Koneman (1992) Diagnostic Microbiology, 4th Edition. J.B. Lippincott Company.
- 3) Teri Shors (2008) Understanding Viruses Jones and Bartlett Publisher.
- 4) Thomas J. Kindt, Richard A. G, Barbara A. Osburne Kuby (2007) Immunology: W. H. Freeman and Company, New York.
- 5) Fahim Halim Khan (2009), The elements of Immunology, Pearson Education.
- 6) Pathak, S., Palan U (2012), Immunology Essential and Fundamental. Pareen publications, Bombay.
- 7) Ian R. Tizard (2005) Immunology, An Introduction, 4th Edition, Saunders College publishing.
- 8) Bailey and Scott (2007) Diagnostic Microbiology, 12th edition, Elsevier.

Evaluation Pattern: Theory

For course II

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without
			Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

SEMESTER VI - Practical

Course-II

COURSE CODE: 23US6MBCCP1

[CREDITS - 01]

Experiment	Title and Number of Credits	Number of
Sr. no.		hours
1	Study of Diagnostic cycle for:	10
	Gastrointestinal tract	
2	Study of Diagnostic cycle for:	10
	CNS	
3	Study of Diagnostic cycle for:	08
	Skin	
4	Case study on viral/protozoal infections	02

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course. Internal evaluation: 20 marks (proposed)

Autonomous (Affiliated to University of Mumbai) **Course – III**

COURSE TITLE: Microbial Biochemistry-II

COURSE CODE: 23US6MBCC3MBC

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

1) Explain the metabolic pathways of nucleic-acids, proteins and lipids.

2) Evaluate the different regulatory mechanisms for metabolic pathways of a living cell.

3) Describe the anabolic processes for carbohydrates with detailed study of bacterial photosynthesis.

Module	TITLE AND CONTENT	NO OF	
		LECTURES:12	
1	Metabolism of Nucleic-acids, Proteins and Lipids Learning Objectives:		
	1) To describe the metabolic pathways of Nucleic acids, proteins and lipid		
	Learning Outcomes: After the successful completion of the module, the learned		
	will be able to:		
	1) List different proteolytic enzymes and state their n	node of action.	
	2) State the metabolic precursors of amino acids.		
	3) Describe the metabolic pathways associated with p	roteins, nucleotides and	
	lipids.		
	4) Differentiate between glucogenic and ketogenic ar	nino acids.	
	Metabolism of Nucleic acids, Proteins and Lipids		
1.1	Anabolism of proteins	2L	
1.1 1.1.a	Schematic representation of amino acid families	212	
1.1.a 1.1.b	Synthesis of amino acids of Serine family		
1.1.0	Examples – Serine, Cysteine, Glycine		
1.2.	Catabolism of proteins	3L	
1.2.a	Enzymatic degradation of proteins in prokaryotes and	52	
	eukaryotes		
1.2.b	Metabolic fate of amino acids (schematic only)	ly)	
	glucogenic and ketogenic amino acids		
1.2.c	Metabolism of single amino acids –Deamination,		
	decarboxylation, and transamination		

Autonom	ous (Affiliated to University of Mumbai)	
1.2.d	Fermentation of single amino acids	
	Glutamate by Clostridium tetanomorphum	
1.2.e	Fermentation of pair of amino acids (Stickland reaction)	
1.3	Anabolism of nucleotides Synthesis of ribonucleotides and deoxyribonucleotides- De-novo pathways	2L
1.4.	Catabolism of nucleotides	2L
1.4.a	Degradation of purine nucleotides up to uric acid formation	
1.4.b	Degradation of pyrimidine nucleotides	
1.4.c	Recycling of purine and pyrimidine nucleotides by salvage pathway	
1.5	Anabolism of Lipid Synthesis of Palmitic acid and Polyhydroxybutyrate (PHB)	2L
1.6	Catabolism of Lipids Beta oxidation and energetics of palmitic acid Omega oxidation	1L
2	Metabolic Regulation Learning Objectives:	
	 To analyse the regulation and co-ordination betwee To familiarize with the basic concepts of difference mechanisms acting at various cellular levels. 	
	Learning Outcomes: After the successful completion of will be able to:	the module, the learner
	 Define various terms associated with cellular regulation. Describe significance of allosteric proteins and enzymes with the spece example of ATCase. Explain the concept of operons with the example of lac operon. Compare the various end-product inhibitions. 	
	 5) Explain types of covalent modifications with synthetase. 6) Discuss regulation by proteolytic cleavage with example. 	

2.1	Metabolic Regulation Processes that affect the cellular concentration of a protein	1L
2.2	Concepts Repression and Induction, inhibition and activation, house-keeping genes	2L
2.3	Allosteric proteins Role as enzymes (ATCase) and regulatory proteins (Lac repressor, CAP).	2L
2.4	Regulation of gene expression Three types of proteins that regulate transcription Specificity factors, multiple sigma factors Enhancers and Activators	2L
2.5	Introduction to operon model and positive and negative regulation of operons	1L
2.6	DNA binding proteins in positive and negative regulation of Lac operon, Catabolite repression	1L
2.7 2.8	Regulation of enzyme activity (Enzyme inhibition /activation) Mechanism of End-Product Inhibition End-Product Inhibition in branched pathways-Iso- functional enzymes, Concerted, Sequential, Cumulative, Combined activation and inhibition	1L
2.9	Covalent modification of regulatory enzymes Glutamine synthetase system of <i>E. coli</i> in detail	1L
2.10	Regulation by proteolytic cleavage Regulation of EMP & TCA	1L
3	 Anabolism of carbohydrates Learning Objectives: To introduce the concepts of photosynthesis in different groups of bacteria. To explain light-dependent and light-independent reactions in bacteria. To describe bacterial cell wall and glycogen synthesis in prokaryotes and eukaryotes. To describe gluconeogenesis and its role in metabolism. 	

	Learning Outcomes: After the successful completion of the module, the learner will be able to:	
	1) Describe features of various photosynthetic bacteria.	
	2) Describe photosynthetic apparatus and light reactions.	
	3) Compare cyclic and noncyclic photophosphorylation.	
	4) Differentiate between photosynthetic systems in green bacteria, purple	
	bacteria and cyanobacteria.	
	5) Differentiate between Calvin Benson and reductive TCA cycle.	
	6) Describe the biosynthesis of bacterial cell-wall and glycogen in	
	prokaryotes and eukaryotes.	
	7) Interpret different bypass reactions in gluconeogenesis.	
	8) Evaluate the biochemical significance of gluconeogenesis.	
	Anabolism of carbohydrates	
3.1	Anabolism of glucose: Prokaryotic photosynthesis	4L
3.1.a	The phototrophic prokaryotes (Oxygenic phototrophs,	4L
3.1.a 3.1.b	Anoxygenic phototrophs examples only)	
5.1.0	Photosynthetic pigments and photosynthetic apparatus	
3.1.c	Light reactions of purple photosynthetic bacteria, green	
5.1.0	sulphur bacteria (only schematic) and cyanobacteria	
	(with details)	2L
3.1.d	Dark reaction: Calvin Benson cycle and reductive-TCA	2L
3.2	Anabolism of Carbohydrate polymers	
3.2.a	Gluconeogenesis	2L
3.2.b	Biosynthesis of glycogen in prokaryotes and eukaryotes.	2L
3.2.c	Biosynthesis of Peptidoglycan	2L

References:

1) Stanier R.Y., Ingraham, J.L., Wheelis, M.L., Painter, R.R (1987) General Microbiology, 5th edition, The Macmillan press Ltd.

2) Conn, Stumpf, P. K., Bruening, G. R. H. (1987) Outlines of Biochemistry, 5thedition, John Wiley and Sons.

3) Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag

4) White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rdedition, Oxford University Press

5) Nelson, D, Cox, M, (2005), Lehninger Principles of biochemistry,4th edition, W. H. Freeman and Company

6) Voet, D & Voet, J. G., (2004), Biochemistry, 3rd edition, John Wiley& Sons Inc

7) Zubey, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers.

Evaluation Pattern: Theory

For course III

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

Probable options: Plickers Testmoz Google form Moodle Objective-MCQ Short answer test

SEMESTER VI - Practical

Course-III

COURSE CODE: 23US6MBCCP2

[CREDITS - 01]

Experiment	Titles and Number of Credits	Number of
Sr. No.		hours
1.	Estimation of chlorophyll in cells	5
2.	Estimation of β -galactosidase activity in induced and non-	5
	induced cells of E. coli	
3.	To study catabolite repression in <i>E. coli</i> by diauxic growth curve	10
4	Estimation of uric acid	10

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

Course – IV

COURSE TITLE: Bioprocess Technology- Downstream Processing and Fermentations

COURSE CODE: 23US6MBCC4BPD

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

1) Predict the use of downstream processes for efficient recovery of fermentation products.

- 2) Validate the purity of the product and the process steps.
- 3) Plan a logical flow for treatment of industrial wastes.
- 4) Describe the production of important microbial fermentation products.

Module	TITLE AND CONTENT	NO OF		
		LECTURES:12		
1	Recovery and Purification of Fermentation products			
	Learning Objectives:			
	1) To understand the principle of methods employed for product recovery.			
	2) To explore the different downstream processes in relation to the product			
	to be isolated.			
	3) To formulate an appropriate plan for product recov	very and purification.		
	Learning Outcomes: After the successful completion of the module, the learner			
	will be able to:			
	1) Analyse the criteria for the recovery processes.			
	2) Formulate the steps in the recovery of the given microbial product based			
on its physical, chemical and biological characteristics.3) Logically plan the downstream processes in sequence w				
		sence with respect to a		
	product.			
	Recovery and Purification of Fermentation products			
1.1	Criteria for choice of recovery process	1L		
1.2	Biomass separation from fermentation media	3L		
1.2.a	Foam Separation			
1.2.b	Precipitation			

Automonious (A		
1.2.c	Filtration, filter aids, plate-frame and rotary vacuum	
	filters	
1.2.d	Centrifugation - Cell aggregation and flocculation, Range	2L
	of centrifuges	
1.3	Cell Disruption for intracellular products	
1.3.a	Physico-mechanical methods	1L
1.3.b	Chemical methods	
1.4	Liquid –liquid extraction Solvent recovery, two phase	1L
	aqueous extraction, Reversed Micelle extraction	17
	Supercritical fluid extraction	1L
1.5	Adsorption and removal of volatile products	17
1.6	Chromatography	1L
	Ion Exchange chromatography for Streptomycin	
	extraction	
1.7	Membrane processes	1L
1.7.a	Filtration-Ultra filtration, Microfiltration and Nano	
	filtration	
1.7.b	Reverse osmosis	
1.7.c	Liquid membranes	
1.8	Drying	1L
1.9	Crystallization and Whole broth processing	
2	Product analysis and Treatment of Industrial Wastes	
	Learning Objectives:	
	1) To assess the product quality.	
	2) To integrate the waste treatment methods for effici	ent and safe disposal of
	industrial waste.	
	3) To review the treatment of pharmaceutical industry	
	Learning Outcomes: After the successful completion of	the module, the learner
	will be able to:	
	1) Verify the product quality and validate its purity.	the constituents of the
	2) Choose the appropriate treatment process based or industrial waste.	i me constituents of the
		namical and historical
		lennical and biological
	methods.	
2.1	Product analysis and Treatment of Industrial Wastes Product analysis (Pharmacoutical product)	51
2.1 2.1.a	Product analysis (Pharmaceutical product) Protein –Based contaminants	5L
2.1.a 2.1.b		
	Detection of Protein based product impurities	
2.1.c	Immunological approaches to detection of contaminants	
2.1.d	Endotoxin and other pyrogenic contaminants	
	Pyrogen detection	

Microbial and viral contaminants 2.1.e Miscellaneous contaminants 2.1.f Validation studies			
2.1.f Validation studies			
2.2Treatment of Industrial Wastes2L			
2.2.a Methods for determination of organic matter content in			
waste waters: Dissolved oxygen, PV test, BOD, COD			
Total Organic carbon			
Total solids: Total suspended solids, Total dissolved			
solids, Volatile suspended solids			
2.2.bWastes from major industries- an overview2L			
2.2.c Systems for the treatment of wastes			
Aerobic breakdown of raw waste waters			
Activated sludge system and its modifications			
Trickling filter			
Rotating discs			
2.2.dAnaerobic breakdown of sludge2L			
2.2.e Waste water disposal in pharmaceutical industry 1L			
2.2.f Government Regulatory Bodies (EPA)	Government Regulatory Bodies (EPA)		
3 Industrial Fermentations	Industrial Fermentations		
Learning Objectives:	Learning Objectives:		
1) To chart out microbial fermentation processes.			
2) To integrate the upstream processing, fermentation proper			
downstream processing as a whole unit.			
3) To predict the consequences of deviation from optimum parameters	3) To predict the consequences of deviation from optimum parameters set.		
Learning Outcomes: After the successful completion of the module, the le	Learning Outcomes: After the successful completion of the module, the learner		
will be able to:	will be able to:		
1) Illustrate the microbial productions.			
2) Analyse the effect of various physical and chemical parameter	s on		
fermentation.			
3) Schematically represent the microbial fermentation processes.			
Industrial Fermentations			
3.1 Baker's and Brewer's Yeast 1L			
3.1Baker's and Brewer's Yeast1L3.2Alcohol from molasses1L			
3.2 Alcohol from molasses 1L			
3.2Alcohol from molasses1L3.3Beer –Ale and Lager2L3.4Wine1L3.5Penicillin and semisynthetic penicillins2L			
3.2Alcohol from molasses1L3.3Beer – Ale and Lager2L3.4Wine1L			
3.2Alcohol from molasses1L3.3Beer –Ale and Lager2L3.4Wine1L3.5Penicillin and semisynthetic penicillins2L			

1) Patel A.H. (1996). Industrial Microbiology. 1st edition, Macmillan India Limited

2) Okafor N. (2007). Modern Industrial Microbiology and Biotechnology. 1st edition. Bios Scientific Publishers Limited. USA

3) Waites M.J., Morgan N.L., Rockey J.S. and Higton G. (2001). Industrial Microbiology: An Introduction. 1st edition. Wiley – Blackwell

4) Glaze A.N. and Nikaido H. (1995). Microbial Biotechnology: Fundamentals of Applied Microbiology. 1st edition. W.H. Freeman and Company

5) Casida LE. (1991). Industrial Microbiology. 1st edition. Wiley Eastern Limited.

6) Crueger W and Crueger A. (2000). Biotechnology: A textbook of Industrial Microbiology. 2nd edition. Panima Publishing Co. New Delhi.

7) Stanbury PF, Whitaker A and Hall SJ. (2006). Principles of Fermentation Technology.2nd edition, Elsevier Science Ltd.

8) Stanbury PF, Whitaker A and Hall SJ. (2017). Principles of Fermentation Technology. 3rd edition, Elsevier Science Ltd.

9) Walsh Gary, (2011). Pharmaceutical Biotechnology. 1st edition, Wiley-India edition.

10) E.M.T. El-Mansi and A.R. Allman (2012). Fermentation Microbiology and Biotechnology. 3rd edition. CRC Press.

Evaluation Pattern: Theory

For course IV

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without
			Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

Probable options: Plickers Testmoz Google form Moodle Objective-MCQ Short answer test Chart preparation using ICT tools

SEMESTER VI - Practical

Course-IV

COURSE CODE: 23US6MBCCP2

[CREDITS - 01]

Experiment	Titles and Number of Credits	Number of
Sr. No.		hours
1.	Estimation of BOD	4
2.	Estimation of COD	3
3.	Fermentation efficiency of alcohol fermentation	6
	Sugar tolerance	
	Alcohol tolerance	
	Sugar estimation by Cole's ferricyanide method	
	Alcohol estimation	
4.	Bioassay of Penicillin	6
5.	Bioassay of Vitamin B ₁₂	6
6.	Visit to a fermentation industry-Report writing	5

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

Discipline Specific Elective DSE-I

COURSE TITLE: Recombinant DNA Technology and Advanced Virology

COURSE CODE: 23US6MBDS1RDV

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

1) Describe the role of different tools and the methods associated with recombinant DNA technology.

- 2) Analyse the applications of recombinant DNA technology.
- 3) Enumerate virus particles.

Module	TITLE AND CONTENT	NO OF	
		LECTURES:12	
1	Introduction to Recombinant DNA Technology		
	Learning Objectives:		
	1) To describe the steps in gene cloning.		
	2) To explain different methods adopted to obtain and	process DNA.	
	3) To state characteristics of different vectors.		
	4) To discuss the process of transformation of the host.		
	Learning Outcomes: After the successful completion of the	ne module, the learner	
	will be able to:		
	1) Define the basic terms associated with recombinant	DNA technology.	
	2) Describe the steps to use vectors to clone gene segn	nents.	
	3) Compare and contrast between genomic and cDNA library.		
	4) Evaluate the properties of an ideal host and a vector		
	Introduction to Recombinant DNA Technology		
1.1	Basic terminology		
	Concept of recombinant DNA, gene cloning, chimeric	1L	
	DNA		
1.1.a	Tools required		
	Different enzymes and proteins required in gene cloning,	2L	
	Restriction endonucleases and its types		
1.1.b	Modification of cut ends- use of Linkers and Adaptors		
1.1.c			
1.1.0	Basic steps of gene cloning	1L	
	Genomic and cDNA library		
	Concept and preparation		

Autonomous (Ai		
1.1.d	Methods of generating DNA fragments	2L
	Restriction digestion, Mechanical shear, PCR, Chemical	
	synthesis, properties of an ideal host and a vector	
1.1.e	Vectors used in Recombinant DNA Technology	1L
	Cloning and Expression vectors	
1.2	Cloning and selection in following vectors	3L
	Plasmids: pBR322 and pUC-19 vector.	
	Phage: Lambda phage	
	Cosmids	
	Shuttle vectors	
	BAC and YAC	
	Integration of DNA insert into vector	
1.3	Different situations:	1L
	Both sides cohesive and compatible	
	L. L	
	Both ends cohesive and separately matched	
	Both ends cohesive and unmatched	
	Both ends blunt	
	One end cohesive and compatible, the other end blunt	
	Introduction of recombinant DNA into a suitable host	
1.4	Methods of transformation of host:	1L
	Increased competence by Calcium chloride treatment	
	Infection by recombinant DNAs packaged as virions	
2	Screening, selection of recombinant clones and Applicat	ions of Recombinant
2	DNA Technology	
	Learning Objectives:	
	1) To explain the different methods of screening and sel	action of recombinant
	clones.	
	 To describe the applications of recombinant DNA te 	chnology
	Learning Outcomes: After the successful completion of the	•••
	will be able to:	le module, the learner
	1) Evaluate different strategies to screen and select rec	ombinant alonas
		technology.
	Screening, selection of recombinant clones and	
	Applications of Recombinant DNA Technology	
2.1	Solution of recombinant clause containing	11
2.1	Selection of recombinant clones containing recombinant DNA	1L
	Reporter genes	
	Elimination of non-recombinant DNA	

K J Somaiya Co	TRUS			
Autonomous (Af	ffiliated to University of Mumbai)			
	Identification of clones having recombinant DNAs			
2.2	Selection of clone containing a specific DNA insert			
2.2.a.	Sequence dependent screening:	2L		
	Colony hybridization			
	Gene tagging			
	Screening by PCR			
2.2.b.	Screening of expression protein product:	2L		
2.2.0.	Unique gene products			
	Antibodies specific to a protein product			
	FACS			
	South-Western and North-Western screening			
2.3.	Applications of Recombinant DNA Technology	7L		
2.3.a.	Site-directed mutagenesis			
	Method and application			
2.3.b.	Yeast two-hybrid system			
	Protein-protein interaction			
2.3.c.	DNA fingerprinting			
	Method and application			
2.3.d.	DNA polymorphism			
2.3.4.				
	Types and detection: SNP, STR and VNTR			
3	Advanced Virology			
	Learning Objectives:			
	1) To describe the different methods for cultivation of	viruses.		
	2) To explain the methods for visualization and e	enumeration of virus		
	particles.			
	3) To state the characteristics of prions and viroids.			
	Learning Outcomes : After the successful completion of the	e module the learner		
	will be able to:	le module, the learner		
		imaga		
	1) Implement different methods for the cultivation of v			
	2) Describe methods to visualize and enumerate virus	particles.		
	3) List the characteristics of prions and viroids.	l		
	Advanced Virology			
3.1	Cultivation of viruses	2L		
	Cell culture techniques, embryonated egg, laboratory			
	animals, CPE and inclusion bodies.			
3.2	Visualization and enumeration of virus particles	1L		

3.3	s (Affiliated to University of Mumbai) Measurement of infectious units	4L
	Plaque assay	
	Fluorescent focus assay	
	Infectious centre assay	
	Transformation assay	
	Endpoint dilution assay	
	Efficiency of plating	
3.4	Measurement of virus particles and their components	3L
	Electron microscopy	
	Atomic force microscopy	
	Hemagglutination	
	Measurement of viral enzyme activity	
3.5	Introduction to Prions and Viroids	2L

References:

- 1) Peter J. Russell (2006), iGenetics-A molecular approach, 2nd ed.
- 2) Benjamin A. Pierce (2008), Genetics a conceptual approach, 3rd ed., W. H. Freeman and company.
- 3) R. H. Tamarin, (2004), Principles of genetics, Tata McGraw Hill.
- 4) M. Madigan, J. Martinko, J. Parkar, (2009), Brock Biology of microorganisms¹,12th ed., Pearson Education International.
- 5) Fairbanks and Anderson, (1999), Genetics, Wadsworth Publishing Company.
- 6) Edward Wagner and Martinez Hewlett, (2005) Basic Virology, 2nd edition, Blackwell Publishing
- 7) Teri Shors (2009), Understanding viruses, Jones and Bartlett publishers.
- Primrose and Twyman, (2006), Principles of gene manipulation and genomics, 7th ed, Blackwell Publishing.

Evaluation Pattern: Theory

For course: DSE-I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M) Probable options: Plickers Testmoz Google form Moodle Objective-MCQ Short answer test

SEMESTER VI - Practical

COURSE: DSE I

COURSE CODE: 23US6MBDSP3

[CREDITS - 01]

Experiment	Title and Number of Credits	Number of
Sr. no.		hours
1	Enrichment of coliphages, phage assay	13
2	Restriction enzyme digestion analysis (Demonstration)	05
3	PCR (Demonstration)	12

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

Discipline Specific Elective DSE-II

COURSE TITLE: Advances in Immunology and Health Care Biotechnology

COURSE CODE: 23US6MBDS2AIM

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Summarize production and applications of monoclonal antibodies.
- 2) Evaluate the need for vaccination.

3) Explain different types of hypersensitivity reactions, autoimmune disorders and transplantation.

4) Explain the various methods for detecting genetic disease, drug designing and use of DNA fingerprinting in forensic science.

Module	TITLE AND CONTENT	NO OF
		LECTURES:12
1	Monoclonal Antibodies, Immunohematology, Vaccines	
	Learning Objectives:	
	1) To describe production and application of monocle	onal antibodies.
	2) To describe human blood group systems.	
	3) To explain different types of active-passive immur	nization.
	Learning Outcomes:	
	After the successful completion of module, the learner wil	l be able to:
	1) Discuss the use of monoclonal antibodies in different	ent areas of research.
	2) Recognize different blood group systems.	
	3) Describe role of vaccines in human health.	
	Monoclonal Antibodies, Immunohematology,	
	Vaccines	
1.1	Monoclonal antibodies	3L
	Principle of Hybridoma technology-	
	Production by cell culture	
	and applications of Monoclonal antibodies	
1.2	Immunohematology	4L
	Human blood group system, ABO secretors and non-	
	secretors, Rhesus system and list of other blood group	

Autonomous (Al	ffiliated to University of Mumbai)		
	systems, Haemolytic disease among new born, Coombs		
	test		
1.3	Vaccines	5L	
1.3.a	Active, passive immunization		
1.3.b	Types of vaccines: Killed and attenuated vaccines, whole		
	organism vaccine, purified macromolecules as vaccine,		
	DNA vaccine		
1.3.c	Use of adjuvant in vaccine		
1.3.d	New vaccine strategies		
1.3.e	Ideal vaccines		
1.3. f	Route of vaccine administration schedule and failure in		
1.5.1	clinical vaccine		
2	Hypersensitivity, Autoimmunity, Transplantation		
	Learning Objectives:		
	1) To describe the mechanism and manifestations of I		
	2) To explain different types of autoimmune response		
	3) To describe different types of transplantation, its immune mechanism and		
	methods for preventing its rejections.		
	Learning Outcomes:		
	After the successful completion of module, the learner will be able to:		
	1) Explain the hypersensitivity reaction and its mecha	anism.	
	2) Describe various autoimmune disorders.		
	3) Elaborate on different types of transplantations.		
	Hypersensitivity, Autoimmunity, Transplantation		
2.1	Hypersensitivity	5L	
2.1.a	Coombs and Gell's classification		
2.1.b	Type I to Type IV hypersensitivity mechanism and		
	manifestation		
2.2	Introduction to Autoimmunity	3L	
2.2.a	Definition of immune tolerance; immune suppression and		
	auto immunity		
2.2.b	Examples of autoimmune disorders		
2.2.c	Possible mechanisms		
2.3	Transplantation	4L	
2.3 2.3.a	Terms used to denote different types of transplantation		
2.3.a 2.3.b	Mechanisms of graft rejection		
2.3.0 2.3.c	Methods of increasing the acceptance of allograft		
2.5.0	memous of mercasing the acceptance of anograft		

Autonomous (/	Affiliated to University of Mumbai) Health Care Biotechnology			
5	Learning objectives:			
	2) To introduce the methods of detecting and treating genetic diseases.			
	3) To describe applications of DNA fingerprinting in Forensic medicine.			
	Learning outcomes: After the successful completion of	the module the learner		
	will be able to:			
	1) Justify the role of recent methods of diagnosis at	nd detection of genetic		
	diseases.			
	2) Elaborate drug designing, delivery and targeting.			
	3) Explain the concept of Gene therapy.			
	4) Apply the use of DNA fingerprinting technique in	forensic medicine.		
	Health Care Biotechnology			
3.1.	Disease diagnosis	2L		
3.1.a	DNA/RNA Probe			
3.1.b	Autoantibodies			
3.1.c	Commercial potential of Diagnostics			
3.2	Detection of genetic diseases	2L		
3.2.a	Obtaining foetal cells			
3.2.b	Disease detection			
3.2.c	Identification of genes causing genetic diseases			
3.3	Disease treatment	3L		
3.3.a	Products from non-recombinant organisms			
3.3.b	Products from Recombinant organisms			
3.3.c	Interferons			
3.3.d	Growth factors			
3.3.e	Artificial tissues/organs			
3.3.f	Therapeutic oligonucleotides			
		1L		
3.4	Drug designing, Drug delivery and targeting			
3.5	Gene therapy	2L		
3.5.a	Types of gene therapy			
	Augmentation gene therapy			
	Targeted gene transfer			
3.5.b	Ethical issues			
5.5.0				

Somaiyan TRUST

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

autonomous (Annated to oniversity of Manibal)		
3.6	DNA fingerprinting in forensic medicine	2L
	VNTR loci and alleles	
	Preparation of the DNA sample	
	DNA profiling	

References:

1) Thomas J. Kindt, Richard A. G, Barbara A. Osburne (2007) Kuby Immunology: W. H. Freeman and Company, New York.

2) Pathak S.S. and Palan U. (1997). Immunology essential and Fundamentals, Pareen publications, Bombay.

3) Ian R. Tizard (2005), "Immunology- An introduction" 4th edition, Saunders College publishing.

4) Fahim Halim Khan (2009) "The Elements of immunology "Pearson Education, India.

For course: DSE -II

Evaluation Pattern: Theory

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without
			Option
1	Ι	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

Probable options: Plickers Testmoz Google form Moodle Objective-MCQ Short answer test

SEMESTER VI - Practical

COURSE: DSE II

COURSE CODE: 23US6MBDSP3

[CREDITS - 01]

Experiment	Title and Number of Credits	Number of
Sr. no.		hours
1	Blood grouping, direct and reverse typing	5
2	Major- Minor compatibility test	
3	Determination of isoagglutinin titre	4
4	Coomb test- direct method and indirect method	5
5	Preparation of heat killed vaccine and sterility testing	5
6	a) Visit to Microbiological Diagnostic laboratory	
	b) Visit to Forensic laboratory	7

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course. Internal evaluation: 20 marks

SEC – I

COURSE TITLE: MOLECULAR BIOTECHNOLOGY AND SOCIETY

COURSE CODE: 23US6MBSEMBS

[CREDITS - 02]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1. Practise regulatory guidelines pertaining to Biotechnology.
- 2. Summarize the safety aspects pertaining to genetically modified foods.
- 3. Elaborate the environmental impacts of genetically modified organisms.

Module	TITLE AND CONTENT	NO OF
		LECTURES:12
1	Regulations for use of Biotechnology Learning Objectives: 1. To familiarize the students with the regulations pertaining to recombinant DNA technology. 2. To assess the impact of production of food ingredients from genetically modified organisms. Learning Outcomes: After the completion of this module learner will be able to: 1. Evaluate the production of food ingredients from genetically modified organisms.	
	 Describe the regulations related to recombinant DN. Regulations for use of 	A technology.
1.1	Biotechnology Concerns about safety, ethics, NIH & RAC guidelines Deliberate release of genetically modified microorganisms (Field trials of <i>Pseudomonas syringae</i>)	4L
1.2.	Food ingredients produced by genetically engineered organisms Chymosin Tryptophan Bovine Somatotropin	3L
1.3	Genetically modified crops	2L
1.4	Genetically engineered lifestock	2L

K J Somaiya College of Science & Commerce

	(Affiliated to University of Mumbai)	TRU
1.5	Introduction to terms: US FDA GRAS and European food	1L
	safety authority	
2	Safety of genetically modified foods	
4	Learning Objective:	
	1) To provide insight about the concerns regarding the consu	unption of genetically
	modified foods.	imption of genetical
	Learning Outcomes: After completion of this module, the	learner will able to:
	1. Compare between the products obtained from clone	
	bred organisms.	
	2. Describe the procedures followed by different co	ountries for labellin
	GMOs.	
	Safety of genetically modified foods	
2.1.a	Concerns about the safety of genetically modified foods	1L
2.1.a 2.1.b	Alteration of nutritional content of food	4L
	Potential of introducing toxins or allergens into food	4L 2L
2.1.c	Transgenic potato	2L
	Bt -brinjal	
	Bt – rice	
2.1.d	Potential of transferring transgene from food to human or	2L
	intestinal microorganisms	
2.1.e		3L
2.1.0	Controversy about the labelling of genetically modified	51
	foods	
3	Environmental impact and patent laws	
-	1) Learning Objectives:	
	1) To sensitize the students about the impact of GMOs on	the environment an
	Biodiversity.	
	2) To introduce the learner to the concept of patenting.	
	Learning Outcomes: After completion of this module the l	
	1. To explain the criteria required for patenting any inv	
	2. Elaborate on the negative and positive impact	s of GMOs on th
	environment and Biodiversity.	
	Environmental impact and patent laws	
3.1	Biotechnology and patent law	4L
3.1.a	Categories of patentable invention	
3.1.b	Patenting plants and animals	
3.1.c	Uncertainty of patent law	
3.2	Environmental impacts	
3.2.a	Impact of Bt - toxin on nontarget insects	6L
3.2.a 3.2.b	Impact of Bt - toxin on nontarget insects Impact on Biodiversity	6L
3.2.a	Impact of Bt - toxin on nontarget insects	6L

3.3 **Economic issues**

References:

- 1. Bernard. R. Glick (2017), Jack J. Pasternak, Cherly L. Patten, Molecular Biotechnology-Principles and Applications - 4th Edition.
 S. B. primrose (2016) Principles of gene manipulation, 8th edition.

Evaluation Pattern: Theory

For course: SEC I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without Option
1	Ι	40	30
2	II	40	30

Internal Evaluation - (40 M)

Probable options: Plickers Testmoz Google form Moodle Objective-MCQ Short answer test