

K. J. Somaiya College of Science and Commerce

Autonomous- Affiliated to University of Mumbai

(Re-accredited "A" Grade by NAAC)

Department of Mathematics

T.Y.B.Sc.

Proposed Syllabus

(With effect from 2023-24)

T.Y. B. Sc. (Mathematics) SEMESTER V Core Course- I COURSE TITLE: Multivariate Differential Calculus COURSE CODE: 23US5MTCC1MDC CREDITS - 02

After the successful completion of the Course, the learner will be able to:CLO 1:Analyze limits and continuity of scalar and vector functionsCLO 2:Analyze the concept of differentiability of scalar valued functionsCLO 3:Apply the concept of differentiability of scalar and vector valued functionsModule 1Limits and continuity of functions in the n-dimensional Euclidean space1211Image: State one coordinate system to another2:Sketch level curves and level surfaces3:Establish results on limits and continuity of scalar and vector valued functions4:Solve problems on limits and continuity of scalar and vector valued functions4:Solve problems on limits and continuity of scalar and vector valued functions4:Solve problems of Vector Algebra2:Apply the ideas of polar coordinates to solve problems on limits and continuity3:Understand shapes of surfaces in terms of level curves4:Evaluate limit and iterated limits5:Use the tool to check the continuity of scalar and vector valued functions1:1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector.1:1Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1:2Lines and planes in $\mathbb{R}^n (n = 2, 3)$. Angle between two lines and angle between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, c		Course Learning Outcome	
CL0 1:Analyze limits and continuity of scalar and vector functionsCL0 2:Analyze the concept of differentiability of scalar valued functionsCL0 3:Apply the concept of differentiability of scalar and vector valued functionsModule 1Limits and continuity of functions in the n-dimensional Euclidean space[12L]Learning Objectives:The learner should be able to:1.Relate one coordinate system to another2.Sketch level curves and level surfaces3.Establish results on limits and continuity of scalar and vector valued functions4.Solve problems on limits and continuity of scalar and vector valued functions4.Solve problems of Vector Algebra2.Apply the ideas of polar coordinates to solve problems on limits and continuity3.Understand shapes of surfaces in terms of level curves4.Evaluate limit and iterated limits5.Use the tool to check the continuity of scalar and vector valued functions1.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector. Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.2Lines and planes in $\mathbb{R}^n(\mathbf{n} = 2, 3)$. Angle between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	Aftort		
CLO 2:Analyze the concept of differentiability of scalar valued functionsCLO 3:Apply the concept of differentiability of scalar and vector valued functionsModule 1Limits and continuity of functions in the n-dimensional Euclidean space[12L]Learning Objectives:Image: State one coordinate system to anotherImage: State one coordinate system to another2.Sketch level curves and level surfacesSketch level curves and level surfacesImage: State one coordinate system to another3.Establish results on limits and continuity of scalar and vector valued functionsImage: State one coordinate system to another4.Solve problems on limits and continuity of scalar and vector valued functionsImage: State one coordinate system to another4.Solve problems on limits and continuity of scalar and vector valued functionsImage: State one coordinate state one coordinate state one coordinate state one coordinate state solve problems on limits and continuity4.Solve problems of Vector AlgebraImage: State one coordinate state solve problems on limits and continuity3.Understand shapes of surfaces in terms of level curvesImage: State one coordinate state solve product and norm of a vector.11Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector.Image: State one coordinate state one coordinate state one coordinate state one coordinate state on a scalar triple product in case of vectors in the three-dimensional space. Geometrical interpretationImage: State one coordinate state stripe product in case of vectors in the three-dim			
CLO 3:Apply the concept of differentiability of scalar and vector valued functions[12L JModule 1Limits and continuity of functions in the n-dimensional Euclidean space[12L JLearning Objectives:Image: Standard			
Module 1Limits and continuity of functions in the n-dimensional Euclidean space[12L]Learning Objectives:[12L]The learner should be able to:.1. Relate one coordinate system to another.2. Sketch level curves and level surfaces.3. Establish results on limits and continuity of scalar and vector valued functions4. Solve problems on limits and continuity of scalar and vector valued functions4. Solve problems on limits and continuity of scalar and vector valued functions4. Solve problems of Vector Algebra2. Apply the ideas of polar coordinates to solve problems on limits and continuity3. Understand shapes of surfaces in terms of level curves4. Evaluate limit and iterated limits5. Use the tool to check the continuity of scalar and vector valued functions1.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector.1.1Vectors. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.2Lines and planes in $R^n (n = 2, 3)$. Angle between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.			
Module 1Limits and continuity of functions in the n-dimensional Euclidean space[12LLearning Objectives:Image: Second Secon	CLU 5		
Image: I	Modul		[12]
The learner should be able to:1.Relate one coordinate system to another2.Sketch level curves and level surfaces3.Establish results on limits and continuity of scalar and vector valued functions4.Solve problems on limits and continuity of scalar and vector valued functions4.Solve problems on limits and continuity of scalar and vector valued functionsLearning Outcomes:After the successful completion of the module, the learner will be able to:1.Solve problems of Vector Algebra2.Apply the ideas of polar coordinates to solve problems on limits and continuity3.Understand shapes of surfaces in terms of level curves4.Evaluate limit and iterated limits5.Use the tool to check the continuity of scalar and vector valued functions1.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector.1.2Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.2Lines and planes in $\mathbb{R}^n (n = 2, 3)$. Angle between two lines and angle between two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	wouu		
1. Relate one coordinate system to another2. Sketch level curves and level surfaces3. Establish results on limits and continuity of scalar and vector valued functions4. Solve problems on limits and continuity of scalar and vector valued functionsLearning Outcomes:After the successful completion of the module, the learner will be able to:1. Solve problems of Vector Algebra2. Apply the ideas of polar coordinates to solve problems on limits and continuity3. Understand shapes of surfaces in terms of level curves4. Evaluate limit and iterated limits5. Use the tool to check the continuity of scalar and vector valued functions1.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector.1.2Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.21.31.4Lines and planes in $\mathbb{R}^n (n = 2, 3)$. Angle between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	Learnii	ng Objectives:	
2. Sketch level curves and level surfaces3. Establish results on limits and continuity of scalar and vector valued functions4. Solve problems on limits and continuity of scalar and vector valued functionsLearning Outcomes:After the successful completion of the module, the learner will be able to:1. Solve problems of Vector Algebra2. Apply the ideas of polar coordinates to solve problems on limits and continuity3. Understand shapes of surfaces in terms of level curves4. Evaluate limit and iterated limits5. Use the tool to check the continuity of scalar and vector valued functions1.11.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector. Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.2Lines and planes in $\mathbb{R}^n (n = 2, 3)$. Angle between two lines and angle between two planes. Angle between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	The lea	rner should be able to:	
3. Establish results on limits and continuity of scalar and vector valued functions4. Solve problems on limits and continuity of scalar and vector valued functionsLearning Outcomes:After the successful completion of the module, the learner will be able to:1. Solve problems of Vector Algebra2. Apply the ideas of polar coordinates to solve problems on limits and continuity3. Understand shapes of surfaces in terms of level curves4. Evaluate limit and iterated limits5. Use the tool to check the continuity of scalar and vector valued functions1.11.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector. Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.2Lines and planes in \mathbb{R}^n ($n = 2, 3$). Angle between two lines and angle between two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	1.	Relate one coordinate system to another	
4. Solve problems on limits and continuity of scalar and vector valued functionsLearning Outcomes:After the successful completion of the module, the learner will be able to:1. Solve problems of Vector Algebra2. Apply the ideas of polar coordinates to solve problems on limits and continuity3. Understand shapes of surfaces in terms of level curves4. Evaluate limit and iterated limits5. Use the tool to check the continuity of scalar and vector valued functions1.11.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector. Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.2Lines and planes in $\mathbb{R}^n (n = 2, 3)$. Angle between two lines and angle between user and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	2.	Sketch level curves and level surfaces	
Learning Outcomes:After the successful completion of the module, the learner will be able to:1.Solve problems of Vector Algebra2.Apply the ideas of polar coordinates to solve problems on limits and continuity3.Understand shapes of surfaces in terms of level curves4.Evaluate limit and iterated limits5.Use the tool to check the continuity of scalar and vector valued functions1.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector.1.1Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.2Lines and planes in $R^n (n = 2, 3)$. Angle between two lines and angle between two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	3.	Establish results on limits and continuity of scalar and vector valued functions	
After the successful completion of the module, the learner will be able to:1.Solve problems of Vector Algebra2.Apply the ideas of polar coordinates to solve problems on limits and continuity3.Understand shapes of surfaces in terms of level curves4.Evaluate limit and iterated limits5.Use the tool to check the continuity of scalar and vector valued functions1.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector.1.1Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.2Lines and planes in $\mathbb{R}^n (n = 2, 3)$. Angle between two lines and angle between two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	4.	Solve problems on limits and continuity of scalar and vector valued functions	
1.Solve problems of Vector Algebra2.Apply the ideas of polar coordinates to solve problems on limits and continuity3.Understand shapes of surfaces in terms of level curves4.Evaluate limit and iterated limits5.Use the tool to check the continuity of scalar and vector valued functions1.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector.1.1Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.2Lines and planes in \mathbb{R}^n ($n = 2, 3$). Angle between two lines and angle between two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	Learnii	ng Outcomes:	
2. Apply the ideas of polar coordinates to solve problems on limits and continuity3. Understand shapes of surfaces in terms of level curves4. Evaluate limit and iterated limits5. Use the tool to check the continuity of scalar and vector valued functions1.11.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector. Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation1.21.2Lines and planes in $\mathbb{R}^n (n = 2, 3)$. Angle between two lines and angle between two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	After t	ne successful completion of the module, the learner will be able to:	
 3. Understand shapes of surfaces in terms of level curves 4. Evaluate limit and iterated limits 5. Use the tool to check the continuity of scalar and vector valued functions 1.1 Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector. Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three-dimensional space. Geometrical interpretation 1.2 Lines and planes in Rⁿ(n = 2, 3). Angle between two lines and angle between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space. 	1.	Solve problems of Vector Algebra	
4.Evaluate limit and iterated limits5.Use the tool to check the continuity of scalar and vector valued functions1.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector. Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation[1L]1.2Lines and planes in \mathbb{R}^n ($n = 2, 3$). Angle between two lines and angle between 	2.	Apply the ideas of polar coordinates to solve problems on limits and continuity	
5. Use the tool to check the continuity of scalar and vector valued functions1.1Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector. Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation[1L]1.2Lines and planes in \mathbb{R}^n ($n = 2, 3$). Angle between two lines and angle between two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.[4L]	3.	Understand shapes of surfaces in terms of level curves	
 1.1 Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector. [1L] Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three-dimensional space. Geometrical interpretation 1.2 Lines and planes in Rⁿ(n = 2, 3). Angle between two lines and angle between two parallel lines and distance between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space. 	4.	Evaluate limit and iterated limits	
Angle between two vectors. Projection of a vector in the direction of another vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation[4L]1.2Lines and planes in \mathbb{R}^n ($n = 2, 3$). Angle between two lines and angle between two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	5.	Use the tool to check the continuity of scalar and vector valued functions	
vector. Cross product and scalar triple product in case of vectors in the three- dimensional space. Geometrical interpretation[4L]1.2Lines and planes in \mathbb{R}^n ($n = 2, 3$). Angle between two lines and angle between two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	1.1	Vectors in n-dimensional Euclidean space. Scalar product and norm of a vector.	[1L]
dimensional space. Geometrical interpretation[4L]1.2Lines and planes in \mathbb{R}^n ($n = 2, 3$). Angle between two lines and angle between[4L]two planes. Angle between a line and a plane. Distance between two parallel[4L]lines and distance between two parallel planes. Standard equations of quadricsurfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder.Polar coordinates in the plane. Cylindrical and spherical coordinates in space.Standard equations of space.		Angle between two vectors. Projection of a vector in the direction of another	
1.2Lines and planes in \mathbb{R}^n ($n = 2, 3$). Angle between two lines and angle between[4L]two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.[4L]		vector. Cross product and scalar triple product in case of vectors in the three-	
two planes. Angle between a line and a plane. Distance between two parallel lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.		dimensional space. Geometrical interpretation	
lines and distance between two parallel planes. Standard equations of quadric surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	1.2	Lines and planes in R^n ($n = 2, 3$). Angle between two lines and angle between	[4L]
surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder. Polar coordinates in the plane. Cylindrical and spherical coordinates in space.		two planes. Angle between a line and a plane. Distance between two parallel	
Polar coordinates in the plane. Cylindrical and spherical coordinates in space.		lines and distance between two parallel planes. Standard equations of quadric	
		surfaces in space: sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder.	
Function of two variables taking real values. Its graph is a surface in space.		Polar coordinates in the plane. Cylindrical and spherical coordinates in space.	
		Function of two variables taking real values. Its graph is a surface in space.	

	Level curves. Functions of three variables and level surfaces.	
1.3	Neighborhood of a point in \mathbb{R}^n . Scalar valued functions of two or more	[4L]
	variables. limit of a function at a point in R^n in terms of epsilon and delta and	
	ilterated limits.	
	Use of polar coordinates and Two path test in the evaluation of limits.	
	Continuity of scalar valued functions. Algebra of continuous functions.	
1.4	Vector valued functions. Limits and continuity of vector valued functions.	[3L]
Refere	nce books	
	T. M. Anostely Coloridus (Mol. 1), John (Miley and Sone (Asia) D. Itd	
•	T. M. Apostol; Calculus (Vol. I); John Wiley and Sons (Asia) P. Ltd.	
•	T. M. Apostol, Calculus, Vol. 2, Second Ed., John Wiley, New York, 1969	
•	G.B. Thomas and R.L. Finney; Calculus; Pearson Education.	
•	James Stewart; Multivariable Calculus	
A .1 -1***		
	onal Reference books:	
•	G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Repri	nt),
-	Addison- Wesley, Reading Mass, 1992	
•	D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989	1070)
•	Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, S. Chand and Co	1979),
●	M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Ver	
•	York, 1995	ag, new
	TOIK, 1995	
Modul	e 2 Differentiability of scalar and vector valued functions.	[12L]
Learnii	ng Objectives	
The lea	irner should be able to:	
1.	Analyse the concepts of Differentiability :	
2.	Compute directional derivative, partial derivatives, gradient and Jacobian matrix	
Learnii	ng outcomes	
The lea	rner will be able to:	
1. Use	the definition to solve problems	
	y tools developed to determine directional derivative gradient, partial derivatives	and
2. Appl		
	bian matrix	
Jaco	bian matrix y the chain rule	
Jaco		[4L]
Jaco 3. Appl	y the chain rule	[4L]

1	a point in terms of a linear transformation. Uniqueness of the derivative as a	
l	linear transformation. Sum and product rule, Derivative of a scalar multiple of	
l	a differentiable function. Differentiability of scalar valued function implies	
1	continuity	
2.2	Continuity of partial derivatives and relationship between Derivative of a	[4L]
1	scalar valued function and its gradient. Chain rule for scalar valued functions	
1	Clairaut's Theorem. Euler's theorem for homogeneous functions.	
1		
2.3	Differentiation of vector valued functions in terms of linear transformation	[4L]
l	and related results	
l	Jacobian matrix of a differentiable function.	
1	Chain rule of differentiation and its verification using Jacobian matrices.	
Deferre	nas basks	
Refere	nce books	
•	T. M. Apostol, Calculus, Vol. 2, Second Ed., John Wiley, New York, 1969	
•	G.B. Thomas and R.L. Finney; Calculus; Pearson Education.	
•	James Stewart; Multivariable Calculus	
•		
•	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus	
• •	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus	
	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus	at)
	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprir	1t) <i>,</i>
•	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992	nt),
•	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989	-
•	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2	-
•	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2 S. Chand and Co	1979),
•	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verla	1979),
•	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verla York, 1995	1979), ag, New
• • • Modul	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verla York, 1995 e 3 Mean value theorem, Taylor's theorem and applications	1979),
• • • Modul Learnir	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 1 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verk York, 1995 e 3 Mean value theorem, Taylor's theorem and applications [1	1979), ag, New
• • • • • • • • • • • • • • • • • • •	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verla York, 1995 e 3 Mean value theorem, Taylor's theorem and applications [1 The Second Be able to]	1979), ag, New
• • • • • • • • • • • • • • • • • • •	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 1 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verk York, 1995 e 3 Mean value theorem, Taylor's theorem and applications [1	1979), ag, New
• • • • • • • • • • • • • • • • • • •	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verla York, 1995 e 3 Mean value theorem, Taylor's theorem and applications [1 The Second Be able to]	1979), ag, New
Modul Learnin The lea 1. 2. Learnin	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verlar York, 1995 e 3 Mean value theorem, Taylor's theorem and applications [1 ng Objectives Immer should be able to Prove Mean value theorem, Taylor's Theorem and other results. Apply results to solve real life problems ng outcomes	1979), ag, New
Modul Learnin The lea 1. 2. Learnin	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verk York, 1995 e 3 Mean value theorem, Taylor's theorem and applications [1 ng Objectives Inner should be able to Prove Mean value theorem, Taylor's Theorem and other results. Apply results to solve real life problems	1979), ag, New
• • • • • • • • • • • • • • • • • • •	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verlar York, 1995 e 3 Mean value theorem, Taylor's theorem and applications [1 ng Objectives Immer should be able to Prove Mean value theorem, Taylor's Theorem and other results. Apply results to solve real life problems ng outcomes	1979), ag, New
• • • • • • • • • • • • • • • • • • •	Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus onal Reference books: G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprin Addison- Wesley, Reading Mass, 1992 D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 2 S. Chand and Co M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verla York, 1995 e 3 Mean value theorem, Taylor's theorem and applications Inter should be able to Prove Mean value theorem, Taylor's Theorem and other results. Apply results to solve real life problems ng outcomes mer will be able to:	1979), ag, New

4.	Use Lagrange's Multiplier to find Extreme Values	
3.1	Mean value theorem in case of scalar valued functions of several variables. Its	[2L]
	illustration for two or three variables.	
3.2	Linearization of a scalar valued function in the neighborhood of a point.	[3L]
	Computation of tangent planes and normal vectors to a surface using gradient.	
	Related results.	
3.3	Taylor's formula of first order and second order in case of scalar valued	[3L]
	functions. Computation of approximate values using this formula.	
3.4	Critical points, Hessian matrix, Computation of Extreme values of a scalar	[4L]
	valued function and saddle points using second derivative test.	
	Use of Lagrange multipliers to determine extreme values.	

Reference books

- T. M. Apostol, Calculus, Vol. 2, Second Ed., John Wiley, New York, 1969
- G.B. Thomas and R.L. Finney; Calculus; Pearson Education.
- James Stewart; Multivariable Calculus
- Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus

Additional Reference books:

- G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprint), Addison- Wesley, Reading Mass, 1992
- D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989
- Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 1979), S. Chand and Co
- M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verlag, New York, 1995

T.Y. B. Sc. (Mathematics) SEMESTER V Core Course- II COURSE TITLE: Algebra-II COURSE CODE: 23US5MTCC2ALG CREDITS - 02

	Course Learning Outcome	
After th	e successful completion of the Course, the learner will be able to:	
CLO 1:	Apply Caley Hamilton theorem and Diagonalization results.	
CLO 2:	Identify quadrics and conics using orthogonal change of variables.	
CLO 3:	Apply various properties of groups to solve related problems.	
Module	1 Diagonalisation	[12L]
Learnin	g Objectives:	
The lea	ner should be able to:	
1.	Inderstand eigen values, eigen vectors and related results	
2.	Prove Cayley Hamilton theorem; necessary & sufficient condition for	
	diagonalizability.	
3.	Apply Cayley Hamilton theorem.	
4.	Apply the results proved to diagonalize a matrix.	
Learnin	g Outcomes:	
After th	e successful completion of the module, the learner will be able to:	
1. Solv	e problems related to eigen values, eigen vectors	
2. Prov	e results such as Cayley Hamilton theorem; Diagonalization criteria	
3. App	y Cayley Hamilton theorem	
4. Use	the tools developed to diagonalize a matrix and linear transformation.	
1.1 Ei	en values and eigen vectors, characteristic polynomial, eigen space,	[4L]
al	ebraic and geometric multiplicity, related results.	

1.3	and suf	matrices, diagonalizable matrix and a linear transformation. Necessar ficient conditions for diagonalizability, algebraic multiplicity and tric multiplicity.	у	[6L]
Addi	LineaLineaitional R	ooks r Algebra : A geometric approach- S. Kumareson r Algebra- Hoffmann and Kunze r algebra – Gilbert Strang eference books: ng- Introduction to Linear Algebra		
•	L. Sm	ith- Linear Algebra, Springer choff and J Wermer- Linear Algebra, Prentice Hall of India.		
Mod	lule 2	Quadratic Forms [12L]
	Apply Prove Redu Comp	should be able to: the concepts of orthogonal diagonalization. the results related to orthogonal diagonalization and quadratic form ce a quadratic form to a sum of squares and identify it pute index, rank and signature of a quadratic form rmine the definiteness of a quadratic form		
The 1. Fi 2. Aj 3. fir	nd an or pply tool nd defini	comes will be able to: thogonal change of variables to reduce a quadratic form in standard fo s developed to identify the conic or quadric represented by quadratic teness of given quadratic form ndex, rank and signature of a quadratic form		
2.1	values.	onally diagonalizable matrix, a real symmetric matrix has real eigen Eigen vectors of a real symmetric matrix with respect to distinct eigen are orthogonal.	۱	[5L]
2.2	form, r	tic form in n variables, symmetric matrix associated with a quadratic educing a quadratic form to a sum of squares (standard form), index, d signature of a quadratic form.		[4L]

2.3	Identification of a conic and quadric surface using quadratic form, positive definite, negative definite and indefinite forms.	[3L]
Refe	ence books Linear Algebra : A geometric approach- S. Kumareson Linear Algebra- Hoffmann and Kunze Linear algebra – Gilbert Strang	
Addi 4	ional Reference books: S. Lang- Introduction to Linear Algebra L. Smith- Linear Algebra, Springer. T Banchoff and J Wermer- Linear Algebra, Prentice Hall of India.	
Mod	ale 3 Groups [[12L]
	ing Objectives earner should be able to Prove various results in a group Study cyclic group and its properties Appreciate groups such as Dihedral group, Quaternion group Identify group homomorphism and find its kernel	
	ing outcomes earner will be able to: Prove results related to concepts in a group. Find number of generators, number of subgroups of a cyclic group Generators of a dihedral group of order six and eight Solving problems in a group and subgroup Verify properties of group homomorphism	
3.1	Review of groups and subgroups; properties and examples.	[1L]
3.2	Order of a group, order of an element in a group and the properties, center and normalizer.	[2L]
3.3	Permutation groups, groups of rotations and reflection of a regular polygon, the alternating group An, related results.	[1L]

3.4	Cyclic group, definition and examples, subgroups of a cyclic group is cyclic, number of generators of a cyclic group, describing all subgroups of a cyclic group, groups generated by two elements	[4L]
3.5	Cosets, Langrange's theorem	[2L]
3.6	Homomorphisms and isomorphism of groups, examples and properties, kernel of a homomorphism.	[2L]
Refe	erence books:	
•	Lautein Texico in Alashus	
	I.N.Herstein – Topics in Algebra	
•	J. Gallion – contemporary abstract algebra	
•		
•	J. Gallion – contemporary abstract algebra	
• • •	J. Gallion – contemporary abstract algebra J.B. Fraliegh- A first course in abstract algebra	
• • •	J. Gallion – contemporary abstract algebra J.B. Fraliegh- A first course in abstract algebra M. Artin – Algebra	
•	J. Gallion – contemporary abstract algebra J.B. Fraliegh- A first course in abstract algebra M. Artin – Algebra N.S. Gopalkrishnan – University Algebra	

T.Y. B. Sc. (Mathematics) SEMESTER V Core Course- III COURSE TITLE: Topology of Metric spaces - I COURSE CODE: 23US5MTCC3TMS1 CREDITS - 02]

		Course Learning Outcome			
1. Des 2. App	cribe di ly prop	essful completion of the Course, the learner will be able to: fferent examples of metrics over R, C and other spaces erties of sequence in a metric to solve problems I consequences of completeness			
Modu	le 1	Introduction to Metric space	[12L]		
1. Stu 2. Con	 Learning Objectives: 1. Study of different types of metrics 2. Comprehend open sets, closed sets and limit points, interior points, exterior point and boundary points. 				
After t 1. Pro 2. Sol	ve resul ve prob	come: essful completion of the module, the learner will be able to: Its related to metric space lems on metrics Il points of a set with respect to a given metric			
1.1	Discre Norm with E Trans The sp [a,b] a contir	ition of Metric space, examples of metric spaces \mathbb{R} , \mathbb{R}^2 , \mathbb{C} , ete metric space. ed linear space, Metric induced by the norm; Euclidean space \mathbb{R}^n Euclidean, sup and sum metric; \mathfrak{e}^1 and \mathfrak{e}^2 spaces of sequences. lation invariance of the metric induced by the norm. pace of all bounded real valued functions defined on an interval and the metric induced by sup norm. The space of real valued huous functions on [a,b]. c subspaces, Product of two metric spaces.	[6L]		

1.2	Open ball and open set in a metric space, examples of open sets in various metric spaces, Hausdorff property Definition of closed set as a complement of an open set. Results based on taking union or intersection of one or more open sets and closed sets. Limit point of a set. Characterization of closed set as a set which contains all its limit points. Interior and closure of a set. Boundary of a set. Properties of open sets, Structure of an open set in ℝ.	[6L]
•	nce books Metric Spaces P. K. Jain and Khalid Ahmad, Narosa Publications Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi. onal Reference books: Kumaresan, S. (2005) Topology of Metric spaces	
Modul	e 2 Sequence in a metric space	[12L]
The air 1. Stud 2. Lear 3. Cha Learnir The lea 1. App	ng Objectives n of the module is to: dy equivalence of metrics in convergent sequences in a metric space racterize limit points ng Outcomes irner will be able to: ly properties of convergent sequences erstand dense sets and separability	
2.1	Equivalent metrics. Distance of a point from a set, distance between two sets, diameter of a set in a metric space, bounded sets.	[3L]
2.2	Sequence in a metric space, Bounded sequence, Convergent sequence, Uniqueness of limit, Cauchy sequence. Every convergent sequence is Cauchy but the converse is false. Subsequence of a sequence, examples and results related to convergent and Cauchy sequence.	[5L]
2.3	Characterization of limit points and closure points in terms of sequences. Definition and examples of open and closed sets in subspaces, Dense subsets in a metric space and Separability.	[4L]

Reference books

• Metric Spaces P. K. Jain and Khalid Ahmad, Narosa Publication

• Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi Additional Reference books:

• Kumaresan, S. (2005) Topology of Metric spaces

Module	3 Complete metric spaces.	[12L]
The aim 1. Stud 2. Char 3. Unde Learnin The leas 1. Decid 2. Verif	g Objectives a of the module is to: y complete metric space acterize completeness erstand contraction principle g Outcomes rner will be able to: de completeness of a metric space iy a set with respect to denseness	
3. Appl	y results proved Definition of complete metric space, Examples of complete metric spaces. A subset of a complete metric space is complete metric space X if and only if it is closed in X. Interpretation of uniform convergence as convergence in the complete metric space B[a,b] under the metric given by _{sup} . C[a,b], the set of all continuous real valued functions defined on an interval [a,b], is a closed subset of B[a,b] under the metric induced by _{sup} .	[3L]
3.2	Review of Nested Intervals property in ℝ. Generalization of Nested Intervals Property to Cantor's Intersection Property in a complete metric space. Characterization of complete metric spaces using Cantor Intersection Theorem.	[3L]

3.3	Applications of Cantor Intersection Theorem. Density of rational numbers. Decimal representation of real numbers. Bolzano-weierstrass theorem for \mathbb{R} under usual metric. Intermediate value property of real valued continuous functions defined over closed and bounded intervals.	[3L]	
3.4	Completion of a metric space. Every metric space can be completed. Contraction Mapping and Banach's fixed point theorem.	[3L]	
Reference books 1. Metric Spaces P. K. Jain and Khalid Ahmad, Narosa Publications 2. Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi. Additional Reference books: 1. Kumaresan, S. (2005) Topology of Metric spaces			

T.Y. B. Sc. (Mathematics) SEMESTER V Core Course- IV COURSE TITLE: -Real Analysis III COURSE CODE: 23US5MTCC4RA CREDITS - 02]

Course Learning Outcome After the successful completion of the Course, the learner will be able to: CLO 1. Apply results proved on sequence of real valued functions CLO 2. Discuss convergence and uniform convergence of series of real valued function CLO 3. Express a real valued function as a series in terms of sin and cos functions		
Module 1 Sequence of functions		[12L]
This m 1. S	ng Objectives: odule is intended to: tudy point wise and uniform convergence of sequences of real valued olving problems on uniform convergence	functions
Learning Outcome: After the successful completion of the module, the learner will be able to: 1. Prove results associated with uniform convergence of sequences of real valued functions 2. Solve problems on pointwise and uniform convergence of sequences of real va functions		
	Pointwise convergence of sequence of functions with examples Uniform convergence of sequence of functions with examples Uniform convergence implies pointwise convergence, examples to sho converse is not true.	[6L] w
	Consequences of uniform convergence of sequences of functions on Continuity with examples Consequences of uniform convergence of sequences of functions on Integrability with examples Consequences of uniform convergence of sequences of functions on differentiability with examples Use of second derivative test to decide the maximum difference betwo function and the limit function at any point in the domain. Cauchy's criterion for uniform convergence and its equivalence with the definition. Mn test for convergence of sequence of functions.	

1. Richard R. Goldberg ,Methods of Real Analysis, Oxford & IBH Publishing Co Pvt.Ltd

2. Robert G. Bartle, Donald R. Sherbert ,Introduction to Real Analysis, John Wiley and sons 2000

3. Apostol, Mathematical Analysis, Narosa Publishing house Additional Reference books:

1. Principles of Mathematical Analysis, Walter Rudin, third edition, McGraw-Hill, Inc.

Modu	ule 2	Series of functions	[12L]
This r	modul	bjectives: le is intended to:	
	Solvin	point wise and uniform convergence of series of real valued functions g problems on pointwise and uniform convergence of series of real value	d
	•	utcome: uccessful completion of the module, the learner will be able to:	
1. So	olve pr	adius and interval of convergence	2.
2.1		t wise convergence and Uniform convergence of series of functions erstrass' M-test. Examples	[6L]
	Cons	equences of uniform convergence of series of functions on continuity equences of uniform convergence of series of functions on grability, examples	
	Cons	sequences of uniform convergence of series of functions on rentiability, examples	
		n by term differentiation and integration, simple problems based on it.	
2.2	pow	nitions of radius of convergence and interval of convergence of a real er series and the techniques used to compute the radius of	[6L]
	Justi	rergence. fication of above concepts and techniques with r.t. Uniform rergence.	

Reference books 1. Richard R. Goldberg , Methods of Real Analysis, Oxford & IBH Publishing Co Pvt.Ltd 2. Robert G. Bartle, Donald R. Sherbert , Introduction to Real Analysis, John Wiley and sons 2000 3. Apostol, Mathematical Analysis, Narosa Publishing house Additional Reference books: 1. Principles of Mathematical Analysis, Walter Rudin, third edition, McGraw-Hill, Inc. Module 3 **Fourier Series** [12L] Learning Objectives: This module is intended to: 1. Study Fourier series on $C[-\pi,\pi]$ 2. Prove standard results on Fourier series Learning Outcome: After the successful completion of the module, the learner will be able to: 1. Find Fourier series of a real valued function 2. Apply the results proved. 3.1 Fourier series of functions on $C[-\pi,\pi]$ [4L] 3.2 Dirichlet kernel, Fejer kernel, Cesaro summability of Fourier series of [4L] functions on C[$-\pi,\pi$] Bessel's inequality and Pareseval's identity, 3.3 [4L] Convergence of the Fourier series in l^2 norm, Fourier series is best approximation in terms of trigonometric functions of a function in l^2 Reference books 1. Richard R. Goldberg , Methods of Real Analysis, Oxford & IBH Publishing Co Pvt.Ltd Additional Reference books:

1. Apostol, Mathematical Analysis, Narosa Publishing house

T. Y. B. Sc. (Mathematics) SEMESTER V - Practical COURSE CODE: 23USMTCCP1 Credit- 02

Learning Objectives:

The Practical is intended to

1. Solve problems based on the concepts learnt

2. Apply the concepts in various situation

Learning Outcome:

After the successful completion of the practical, the learner will be able to:

- 1. Solve problems
- 2. Apply the results proved
- 3. Generate examples and counterexamples

Module I Multivariate Differential Calculus

1.1 Problems on dot product, cross product, box product, calculating length of a vector, angle between lines, area of parallelograms, volume of parallelepiped. Finding equations of lines and planes in space. Identifying standard quadric surfaces. Conversion between cartesian coordinates and polar, cylindrical and spherical coordinates. Sketching of simple curves in polar coordinates. Sketching level curves.

1.2 Problems on iterated limits, limits and continuity in case of scalar valued functions. Use of two path tests and use of polar coordinates. Problems on limits and continuity in case of vector valued functions

1.3 Computation of partial derivatives and directional derivatives. Use of gradients in computing the directional derivatives. Computing the derivative of a homogeneous function.

1.4 Computation of Jacobian matrices. Verification of chain rule. Verification of Mean value theorem in case of scalar valued functions.

1.5 Computing linearization of a scalar valued function of two or more variables. Tangential planes and normal vectors to surfaces at a given point

1.6 Use of Taylor's second order formula in finding approximate values of complicated functions. Finding extrema and saddle points of a scalar valued function of two variables.Computing extreme values using Lagrange's multipliers.

Module 2	Algebra II
2.1 Problems	based on Eigen values and eigen vectors
2.2 Problems	pased on Cayley Hamilton theorem
2.3 Problems	pased on Diagonalization of a matrix
2.4 Problems	based on Quadratic forms
2.5 Problems	pased on Groups and Subgroups
2.6 Problems	pased on Group Homomorphisms

T. Y. B. Sc. (Mathematics)

SEMESTER V - Practical

COURSE CODE: 23USMT5CCP2 Credit- 02

Learning Objectives:

The Practical is intended to

- 1. Solve problems based on the concepts learnt
- 2. Apply the concepts in various situation

Learning Outcome:

After the successful completion of the practical, the learner will be able to:

- 1. Solve problems
- 2. Apply the results proved
- 3. Generate examples and counterexamples

Module I Topology of Metric spaces - I

1.1 Problems on various examples of metric spaces

1.2 Problems on Open sets, closed sets, interior points, limit points, boundary of a set. Drawing open balls in a given metric space.

1.3 Problems on equivalent metric, distance between two sets, diameter of a set.

1.4 Problems on convergent sequences and cauchy sequences, Limit point as a limit of a sequence. characterization of closed sets in terms of limit points.

1.5 Problems on complete metric spaces and Cantor intersection theorem

1.6 Problems on Applications of Cantor intersection theorem, contraction mapping and fixed point theorem.

Module II Real Analysis III

2.1 Problems on Pointwise convergence of sequence of functions and Uniform convergence of sequence of functions

2.2 Problems on Consequences of uniform convergence of sequences of functions on Continuity, Integrability, differentiability. Use of second derivative test to decide the maximum difference between function and the limit function at any point in the domain. Problems on Cauchy's criterion for uniform convergence, Mn test for convergence of sequence of functions.

2.3 Problems on Point wise convergence and Uniform convergence of series of functions, Weierstrass' M-test, Consequences of uniform. convergence of series of functions on continuity, Integrability, differentiability.

2.4 Problems on Term by term differentiation and integration, radius of convergence and interval of convergence of a real power series,

2.5 Problems on Fourier series of functions on C[$-\pi,\pi$], Dirichlet kernel, Fejer kernel, Cesaro summability of Fourier series of functions on C[$-\pi,\pi$]

2.6 Problems on Bessel's inequality and Pareseval's identity, Convergence of the Fourier series in I2 norm.

TYBSC (MATHEMATICS) SEMESTER VI Discipline Specific Elective Courses Students are required to select any two courses

Of the following DSE courses, learners can select any two of the courses. The courses having maximum number of votes will be considered for the year and subject to availability of the concerned teacher. A learner can also opt for Swayam/NPTEL course as one of the DSE courses after it is vetted by the department.

DSE	Title
DSE 1	Number Theory and its applications I
DSE 2	Algorithm and C Programming
DSE 3	Advanced Graph Theory
DSE 4	Financial Mathematics

T.Y. B. Sc. (Mathematics) SEMESTER V Discipline Specific Course- I COURSE TITLE: Number Theory and its applications I COURSE CODE: 23US5MTDS1NTA CREDITS - 02]

Course Lea	rning Outcome	
After the su	accessful completion of the Course, the learner will be able to:	
CLO 1:	Prove standard theorems in Number Theory	
CLO 2:	Find solutions of Diophantine equations	
CLO 3:	Find solutions of quadratic congruences	
Module 1	Prime numbers and congruences [12L]
Learning O	bjectives	
The learner	should be able to:	
1. Pro v	ve the results involving congruence	
2. App	ly results proved in solving problems	
Learning O	utcomes	
After the su	accessful completion of the module, the learner will be able to:	
1. Prove the	e results involving congruence	
2. Apply the	eorems proved to solve problems related to congruence	

	Review: Divisibility, Definition of Prime, Definition and elementary properties of	[2L]
	Congruence, The Fundamental Theorem of Arithmetic, Number of primes are	
	infinite, Distribution of Primes (There are arbitrarily large gaps between consecutive	
	primes). (No questions from this in the semester end exam).	
1.2	Definition and examples of Twin primes, linear congruence, Complete Residue system modulo m, Reduced residue system modulo m, Euler's Phi Function, Euler's Phi function is multiplicative.	[4L]
1.3	Fermat little Theorem, Euler's generalization of Fermat Little Theorem, Wilson	[6L]
	Theorem, Chinese Remainder theorem.	
Refer	rence books	
1. Da	vid M. Burton. An Introduction to the Theory of Numbers. Tata McGraw Hill	
2. H.	Zuckerman and H. Montgomery. Elementary number theory. John Wiley & Sons. Inc.	
Addit	ional Reference books	
1. G.	H. Hardy, and E.M. Wright, An Introduction to the Theory of Numbers. Low priced edition	on.
The E	nglish Language Book Society and Oxford University Press, 1981	
Mod	ule 2 Diophantine equations and their solutions	[12L]
Learn	ing Objectives	
The l	earner should be able to:	
	earner should be able to: tudy solutions of Diophantine equations	
1. S		
1. S 2. S	tudy solutions of Diophantine equations olve problems based on proved results	
1. S 2. S Learn	tudy solutions of Diophantine equations olve problems based on proved results ing outcomes	
1. S 2. S Learn The learn	tudy solutions of Diophantine equations olve problems based on proved results ing outcomes earner will be able to:	
1. S 2. S Learn The lo 1. S	tudy solutions of Diophantine equations olve problems based on proved results ing outcomes earner will be able to: olve linear Diophantine equation.	
1. S 2. S Learn The lo 1. S 2. F	tudy solutions of Diophantine equations olve problems based on proved results ning outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples	
1. S 2. S Learn The lo 1. S 2. F 3. P	tudy solutions of Diophantine equations olve problems based on proved results ing outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples prove results associated with higher order Diophantine equations	[6L]
1. S 2. S Learn The lo 1. S 2. F 3. P	tudy solutions of Diophantine equations olve problems based on proved results ing outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples prove results associated with higher order Diophantine equations The linear equations ax + by = c. Representation of Prime as sum of two squares,	[6L]
1. S 2. S Learn The lo 1. S 2. F	tudy solutions of Diophantine equations olve problems based on proved results ing outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples prove results associated with higher order Diophantine equations The linear equations ax + by = c. Representation of Prime as sum of two squares, Thue's Lemma, Representation of integers of the type N^2m for square free m as sum	[6L]
1. S 2. S Learn The k 1. S 2. F 3. P 2.1	tudy solutions of Diophantine equations olve problems based on proved results ing outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples prove results associated with higher order Diophantine equations The linear equations ax + by = c. Representation of Prime as sum of two squares, Thue's Lemma, Representation of integers of the type N^2m for square free m as sum of two squares.	
1. S 2. S Learn The k 1. S 2. F 3. P 2.1	tudy solutions of Diophantine equations olve problems based on proved results ning outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples prove results associated with higher order Diophantine equations The linear equations ax + by = c. Representation of Prime as sum of two squares, Thue's Lemma, Representation of integers of the type N^2m for square free m as sum of two squares. Pythagorean triples and their solutions.	
1. S 2. S Learn The lo 1. S 2. F 3. P	tudy solutions of Diophantine equations olve problems based on proved results ing outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples prove results associated with higher order Diophantine equations The linear equations ax + by = c. Representation of Prime as sum of two squares, Thue's Lemma, Representation of integers of the type N^2m for square free m as sum of two squares.	[6L] [4L]
1. S 2. S Learn The k 1. S 2. F 3. P 2.1	tudy solutions of Diophantine equations olve problems based on proved results hing outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples prove results associated with higher order Diophantine equations The linear equations $ax + by = c$. Representation of Prime as sum of two squares, Thue's Lemma, Representation of integers of the type N^2m for square free m as sum of two squares. Pythagorean triples and their solutions. $x^4 + y^4 = z^2$ has no solutions in positive integers, $x^4 - y^4 = z^2$ has no solutions in	
1. S 2. S Learn The k 1. S 2. F 3. P 2.1 2.2	tudy solutions of Diophantine equations olve problems based on proved results sing outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples rove results associated with higher order Diophantine equations The linear equations ax + by = c. Representation of Prime as sum of two squares, Thue's Lemma, Representation of integers of the type N^2m for square free m as sum of two squares. Pythagorean triples and their solutions. $x^4 + y^4 = z^2$ has no solutions in positive integers, $x^4 - y^4 = z^2$ has no solutions in positive integers.	[4L]
1. S 2. S Learn The k 1. S 2. F 3. P 2.1 2.2	tudy solutions of Diophantine equations olve problems based on proved results ing outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples rove results associated with higher order Diophantine equations The linear equations $ax + by = c$. Representation of Prime as sum of two squares, Thue's Lemma, Representation of integers of the type N^2m for square free m as sum of two squares. Pythagorean triples and their solutions. $x^4 + y^4 = z^2$ has no solutions in positive integers, $x^4 - y^4 = z^2$ has no solutions in positive integers. The radius of the inscribed circle of a Pythagorean triangle is integer. The area of a	[4L]
1. S 2. S Learn The k 1. S 2. F 3. P 2.1 2.2 2.3 Refer	tudy solutions of Diophantine equations olve problems based on proved results ing outcomes earner will be able to: olve linear Diophantine equation. ind solutions of Pythagorean triples prove results associated with higher order Diophantine equations The linear equations ax + by = c. Representation of Prime as sum of two squares, Thue's Lemma, Representation of integers of the type N^2m for square free m as sum of two squares. Pythagorean triples and their solutions. $x^4 + y^4 = z^2$ has no solutions in positive integers, $x^4 - y^4 = z^2$ has no solutions in positive integers. The radius of the inscribed circle of a Pythagorean triangle is integer. The area of a Pythagorean triangle can never be a perfect square.	[4L]

Additional Reference books

1. G. H. Hardy, and E.M. Wright, An Introduction to the Theory of Numbers. Low priced edition. The English Language Book Society and Oxford University Press, 1981

Modu	ale 3	Quadratic Reciprocity	[12L]
Learn	Learning Objectives		
The le	The learner should be able to:		
1.	Und	erstand the Legendre symbol and Jacobi symbol	
2.	Solv	e problems based on proved results	
Learn	ing ou	utcomes	
The le	earner	will be able to:	
1. Pro	ove re	sults associated to Quadratic Reciprocity	
	•	e Legendre and Jacobi symbol	
	3. Decide about solvability of a quadratic congruence with prime		
	nodulus as well as composite modulus		
3.1	Qua	dratic Residues, Euler's Criterion with proof. Legendre symbol and its propertie	s. [4L]
3.2	Gaus	ss Lemma, Quadratic Reciprocity Law.	[4L]
3.3		e are infinitely many primes of the form 4k+1, 8k-1, 6k+1. For a prime p acterizing (2/p), (3/p), (5/p). Solving quadratic congruence equations.	[4L]
		Jacobi Symbol and law of Reciprocity for Jacobi Symbol.	
Refer	ence l	books	·
1. Da	vid M	Burton. An Introduction to the Theory of Numbers. Tata McGraw Hill	
2. H. 3	Zucke	rman and H. Montgomery. Elementary number theory. John Wiley & Sons. Inc.	
Addit	ional	Reference books	
		dy, and E.M. Wright, An Introduction to the Theory of Numbers. Low priced ed Language Book Society and Oxford University Press, 1981	ition.

T.Y. B. Sc. (Mathematics) SEMESTER V Discipline Specific Course- II COURSE TITLE: Algorithm and C Programming COURSE CODE: 23US5MTDS2ACP CREDITS - 02]

Course	Learning Outcome	
After t	After the successful completion of the Course, the learner will be able to:	
CLO 1: Write algorithm for solving mathematical problems using		
programming		
CLO 2	: Implement various mathematical concepts using C	
CLO 3	: Write User defined functions for various mathematical concepts	
Modul	e 1 Algorithm and Introduction to C Programming [:	12L]
Learnii	ng Objectives:	
The lea	rner should be able to:	
1.	Comprehend logic development	
2.	Understand the syntax used in C	
3.	Use various data type, Input/output statements in C	
Learnii	ng Outcome:	
After t	ne successful completion of the module, the learner will be able to:	
1	1. Develop program logic for a given problem	
2. Express C concepts with examples		
3. Use different data type and qualifiers and operators as per the requirement		t of a
	problem	
4	. Typecast as per requirement	1
1.1	Algorithm	[5L]
	Fundamentals of algorithm	
	Counting, exchange,	
	Summation of a set of numbers, factorization, prime factorization,	
	checking primes, sorting, searching, matrix multiplication, maximum,	
	minimum in an array	
1.2	Structure of C program: Header and body, Concept of header files, Use of	[1L]
	comments, Compilation of a program.	
	Storage classes in C.	
1.3	Data Concepts: Variables, Constants, data types like: int, float char,	[2L]
	double and void. Qualifiers: short and long size qualifiers. Declaring	
	variables, Scope of the variables according to block, Hierarchy of data	
	types.	

1.4	Types of operators: Arithmetic, Relational, Logical, Compound	[2L]
	Assignment, Increment and decrement, Conditional or ternary operators.	
	Precedence and order of evaluation. Statements and Expressions.	
1.5	Type conversions: Automatic and Explicit type conversion.	[2L]
	Data Input and Output functions: Formatted I/O: printf(), scanf().	
	Character I/O : getch(), gets(), putch(), puts().	
	Numeric Mathematical functions such as pow(), sqrt(), etc.	
Refer	ence book	
•	Let us C by Yashwant Kanetkar, BPB	
Addit	ional References:	
•	Programming in ANSI C (Third Edition) : E Balagurusamy, TMH	
٠	Programming with C by Byron Gottfried, Schaum's outlines, Mc Graw Hill.	
•	Mastering Algorithms with C, Kyle Loudon, Shroff Publishers.	
•	Algorithms in C (Third Edition): Robert Sedgewick, Pearson Education Asia.	
•	Programming in ANSI C by Ram Kumar, Rakesh Agrawal, TMH. Programming with C (Second Edition): Byron S Gottfried (Adapted by Jitende	vr
•	Kumar Chhabra) Schaum's Outlines (TMH)	:1
•	Programming with C : K R Venugopal, Sudeep R Prasad TMH Outline Series.	
Modu		12L]
Learn	ing Objectives	
The le	arner should be able to:	
1.	Comprehend the use of arrays	
2.	Use conditional statements, various loops and loop interrupters	
Learn	······································	
	ing outcomes	
The le		
	ing outcomes	
1.	ing outcomes arner will be able to:	
1.	ing outcomes arner will be able to: understand the syntax and use of various branching statements and loops Apply control transfer statements	
1. 2. 3.	ing outcomes arner will be able to: understand the syntax and use of various branching statements and loops Apply control transfer statements	
1. 2. 3. 4.	ing outcomes arner will be able to: understand the syntax and use of various branching statements and loops Apply control transfer statements Apply break and continue statements as per requirement	
1. 2. 3. 4. 5.	ing outcomes arner will be able to: understand the syntax and use of various branching statements and loops Apply control transfer statements Apply break and continue statements as per requirement Apply arrays to deal with different scenarios	[3L]
1. 2. 3. 4. 5.	ing outcomes arner will be able to: understand the syntax and use of various branching statements and loops Apply control transfer statements Apply break and continue statements as per requirement Apply arrays to deal with different scenarios Analyze the program for errors and predict the output	[3L]
1. 2. 3. 4. 5.	ing outcomes arner will be able to: understand the syntax and use of various branching statements and loops Apply control transfer statements Apply break and continue statements as per requirement Apply arrays to deal with different scenarios Analyze the program for errors and predict the output Control statements for decision making: Branching: if statement, if-else	[3L]
1. 2. 3. 4. 5. 2.1	ing outcomes arner will be able to: understand the syntax and use of various branching statements and loops Apply control transfer statements Apply break and continue statements as per requirement Apply arrays to deal with different scenarios Analyze the program for errors and predict the output Control statements for decision making: Branching: if statement, if-else statement, if-else-if statement	
1. 2. 3. 4. 5. 2.1	ing outcomes arner will be able to: understand the syntax and use of various branching statements and loops Apply control transfer statements Apply break and continue statements as per requirement Apply arrays to deal with different scenarios Analyze the program for errors and predict the output Control statements for decision making: Branching: if statement, if-else statement, if-else-if statement Switch statement Looping: while loop, do- while, for loop, nested loop.	[3L] [4L]
1. 2. 3. 4. 5. 2.1 2.2	ing outcomes arner will be able to: understand the syntax and use of various branching statements and loops Apply control transfer statements Apply break and continue statements as per requirement Apply arrays to deal with different scenarios Analyze the program for errors and predict the output Control statements for decision making: Branching: if statement, if-else statement, if-else-if statement Switch statement Looping: while loop, do- while, for loop, nested loop. Loop interruption statements: break, continue.	[4L]
1. 2. 3. 4. 5. 2.1	ing outcomes arner will be able to: understand the syntax and use of various branching statements and loops Apply control transfer statements Apply break and continue statements as per requirement Apply arrays to deal with different scenarios Analyze the program for errors and predict the output Control statements for decision making: Branching: if statement, if-else statement, if-else-if statement Switch statement Looping: while loop, do- while, for loop, nested loop.	

Reference book

• Let us C by Yashwant Kanetkar, BPB

Additional References:

- Programming in ANSI C (Third Edition) : E Balagurusamy, TMH
- Programming with C by Byron Gottfried, Schaum's outlines, Mc Graw Hill.
- Mastering Algorithms with C, Kyle Loudon, Shroff Publishers.
- Algorithms in C (Third Edition): Robert Sedgewick , Pearson Education Asia.
- Programming in ANSI C by Ram Kumar, Rakesh Agrawal, TMH.
- Programming with C (Second Edition): Byron S Gottfried (Adapted by Jitender Kumar Chhabra) Schaum's Outlines (TMH)

[12L]

• Programming with C : K R Venugopal, Sudeep R Prasad TMH Outline Series.

0	Functions in C
Learning Obje	ectives

The learner should be able to:

- 1. Understand the syntax and use of various string functions
- 2. Implement user defined simple and recursive functions.
- 3. Apply macros

Learning outcomes

The learner will be able to:

- 1. Introduce String functions and
- 2. Implement user defined functions
- 3. Apply the principle of recurring function
- 4. Apply macros such as #define directives etc

3.1	Strings, String Functions: strlen(), strcpy(), strcat(), strcmp().	[3L]
	Array of characters	
3.2	The C Preprocessor:	[3L]
	Macro expansion: Macros with arguments,	
	#define directives, #if and #elif directives.	
3.3	User defined Functions: Function definition, return statement, calling a	[4L]
	function.	
3.4	Recursion: Definition, Recursion functions	[2L]
-		

Reference book

• Let us C by Yashwant Kanetkar, BPB

Additional References:

- Programming in ANSI C (Third Edition) : E Balagurusamy, TMH
- Programming with C by Byron Gottfried, Schaum's outlines, Mc Graw Hill.
- Mastering Algorithms with C, Kyle Loudon, Shroff Publishers.

- Algorithms in C (Third Edition): Robert Sedgewick, Pearson Education Asia.
- Programming in ANSI C by Ram Kumar, Rakesh Agrawal, TMH.
- Programming with C (Second Edition): Byron S Gottfried (Adapted by Jitender Kumar Chhabra) Schaum's Outlines (TMH)
- Programming with C : K R Venugopal, Sudeep R Prasad TMH Outline Series.

T.Y. B. Sc. (Mathematics) SEMESTER V Discipline Specific Course- III COURSE TITLE: Advanced Graph Theory COURSE CODE: 23US5MTDS2AGT CREDITS - 02]

Course	e Learning Outcome		
	he successful completion of the Course, the learner will be able to:		
CLO 1	•		
	CLO 2: Analyze results on matching to solve problems related to matching		
	CLO 3: Apply results on Planar graph and Polya theory to solve related problems		
Modu		[12L]	
	ng Objectives:	[]	
	arner should be able to:		
	Understand some of the basic concepts in Graph theory		
	Understand connectivity		
	ng Outcome:		
	he successful completion of the module, the learner will be able to:		
	Apply Menger's theorem to certain graphs.		
	Construct a simple communication network.		
1.1	Review: Graphs, Subgraphs, Graph isomorphism, incidence and	[5L]	
	adjacency matrix, vertex degree, walks, trails and paths		
	Trees		
	Cut vertex, cut edges (bridges) Vector space associated with graph,		
	Cayley's formula and the connector problem		
1.2	operations on graphs, degree sequences.	[7L]	
	Distance, cut vertices, cut-edges, blocks, connectivity, weighted graphs.		
	Vertex and Edge connectivity-Result $\kappa \leq \kappa 0 \leq \delta$, Block-cut point theorem,		
	Construction of reliable communication network, Menger's theorem.		
Refere	nce books		
•	Graph theory with application by J. A. Bondy and U. S. R. Murty		
(Freely	v downloadable)		
Graph Theory by Reinhard Diestel Electronic edition Springer Verlag. (Freely			
downloadable)			
Graph theory with application, Narsingh DeoPrentice Hall publication			
Modu	, in the second s	[12L]	
	ng Objectives		
	arner should be able to:		
1.	Understand some of the concepts in Matching		

2	Apply Matching for assignment problems			
Learr	ing outcomes			
The le	The learner will be able to:			
1	 Apply concepts of Matching in bipartite graphs 			
2	 Apply Matching to assignment problems 			
2.1	Matching, Matching and covering in bipartite graphs Perfect matching [8L]			
2.2	2 Applications: [4L]			
	The personnel assignment problem			
	Optimal assignment problem			
Refer	ence books	•		
•	Graph theory with application by J. A. Bondy and U. S. R. Murty			
(Free	ly downloadable)			
•	Graph Theory by Reinhard Diestel Electronic edition Springer Verlag. (Freely			
	downloadable)			
Mod	Graph theory with application, Narsingh DeoPrentice Hall publication ule 3 Planar graphs and Coloring in a graph	[12L]		
	ning Objectives	נזכרן		
	earner should be able to:			
_	Understand graph coloring			
	find Chromatic polynomial			
	Apply concepts learnt in various situation.			
	ing outcomes			
	earner will be able to:			
	verify planarity of a graph			
	Find the minimum chromatic number			
3				
	correlate the relation of roots and chromatic number vis-à-vis chromatic			
4	polynomials.			
3.1	Planar graph and Euler formula, 5 color theorem four color theorem. In any	[6L]		
	simple connected planar graphs having f regions, n vertices and e edges the	[]		
	following inequalities hold:			
	$e \ge \frac{3}{2}$ f and $e \le 3n - 6$. K _{3,3} is not a planar graph.			
	Chromatic polynomial of some simple graph such as trees, cycles, complete			
	graph wheel etc.			
	Chromatic equivalence of graphs. Isomorphic graphs are chromatically			
	equivalent.			
3.2				
	Application			

	Timetabling	
3.3	Polya theory	
Reference books		
1) Graph theory with application by J. A. Bondy and U. S. R. Murty		
(Freely downloadable)		
2) Graph Theory by Reinhard Diestel Electronic edition Springer Verlag. (Freely		
downloadable)		
3) Graph theory with application, Narsingh DeoPrentice Hall publication		

T.Y. B. Sc. (Mathematics) SEMESTER V Discipline Specific Course- III COURSE TITLE: Financial Mathematics COURSE CODE: 23US5MTDS3FIN

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

CLO 1: Apply principles of no arbitrage and solve problems based on forward contract and options

[12L]

- CLO 2: Solve problems of evaluating non risky assets
- CLO 3: Manage portfolio using different models

Module 1 Introduction: A Simple Market Model

Learning Objectives

The learner should be able to

- 1. Understand various models
- 2. Calculate returns
- 3. Solve problems based on forward contract, options
- 4. Manage risk with options

Learning Outcomes

At the end of the module, the learner will be able to

- 1. Differentiate various models
- 2. Apply principles to solve a problems based on on different models
- 3. Calculate returns
- 4. Solve problems based on forward contract, options
- 5. Manage risk with options

1.1	Basic Notions and Assumptions	[1L]
1.2	No-Arbitrage Principle	[1L]
1.3	One-Step Binomial Model, Application to the Binomial Tree Model	[1L]
1.4	Risk and Expected Return on a Portfolio	[2L]
1.5	Forward Contracts	[2L]

1.6	Call	and Put Options	[2L]
1.7	Man	aging Risk with Options	[3L]
Refer	•	: Mathematics for finance: An Introduction to financial Engineering by Marek Capin and Tomasz Zastawniak An Introduction to Mathematical Finance with Applications: Understanding and B Financial Intuition; Arlie O. Petters, Xiaoying Dong; Springer Mathematics for Finance: An Introduction to Financial Engineering; b y Marek Capi Tomasz Zastawniak; Springer	uilding
Modu	ule 2	Risk-Free Assets	[12L]
The le 1. 2. Learn	earnen . Stud . Cald	bjectives r should be able to dy various non risky investment culate the rate of returns in these type of investment utcomes	
		of the module, the learner will be able to culate the rate of returns by investing in various types of non risky investment	
2.1 Time Value of Money, Simple Interest, Periodic Compounding, Streams of Payments, Continuous Compounding, Comparing Compounding Methods		[6L]	
2.2	2 Money Market, Zero-Coupon Bonds, Coupon Bonds, Money Market Account		[6L]
Refer	•	: Mathematics for finance: An Introduction to financial Engineering by Marek Capin and Tomasz Zastawniak An Introduction to Mathematical Finance with Applications: Understanding and B Financial Intuition; Arlie O. Petters, Xiaoying Dong; Springer Mathematics for Finance: An Introduction to Financial Engineering; b y Marek Cap Tomasz Zastawniak; Springer	uilding
	ule 3	Discrete Time Market Models	[12L]

Learning Objectives

The learner should be able to

- 1. Study various types investment strategies
- 2. Manage portfolio
- 3. Study American and European options

Learning Outcomes

At the end of the module, the learner will be able to

- 1. Strategize various investment
- 2. Manage portfolio
- 3. Solve problems based on American and European options

3.1	 Investment Strategies, Fundamental Theorem of Asset Pricing, Portfolio Management, Capital Asset Pricing Model 	
3.2	9.2 Put-Call Parity, Bounds on Option Prices, European Options, European and American Calls on Non-Dividend Paying Stock	
 References: Mathematics for finance: An Introduction to financial Engineering by Marek Capinski and Tomasz Zastawniak An Introduction to Mathematical Finance with Applications: Understanding and Building 		

- Financial Intuition; Arlie O. Petters, Xiaoying Dong; Springer
- Mathematics for Finance: An Introduction to Financial Engineering; **b**y Marek Capiński, Tomasz Zastawniak; Springer

T.Y. B. Sc. (Mathematics) SEMESTER V Discipline Specific Practical Course COURSE TITLE: Discipline Specific Elective Practical COURSE CODE: 23US5MTDSP CREDITS - 02]

Learning Objectives:

The Practical is intended to

- 1. Solve problems based on the concepts learnt
- 2. Apply the concepts in various situation

Learning Outcome:

After the successful completion of the practical, the learner will be able to:

- 1. Solve problems
- 2. Apply the results proved
- 3. Generate examples and counterexamples

Elective 1 Number Theory and its applications I

1.1 Problems based on Twin primes, linear congruence, Complete Residue system modulo m, Reduced residue system modulo m, Euler's Phi Function.

1.2 Problems based on Fermat little Theorem, Euler's generalization of Fermat Little Theorem, Wilson Theorem, Chinese Remainder theorem.

1.3 Problems based on the linear equations ax + by = c. Representation of Prime as sum of two squares, Thue's Lemma, Representation of integers of the type N²m for square free m as sum of two squares.

1.4 Problems based on Pythagorean triples and their solutions.

1.5 Problems based on Quadratic Residues, Euler's Criterion, Legendre symbol and its properties.

1.6 Problems based on Gauss Lemma, Quadratic Reciprocity Law, quadratic congruence equations, the Jacobi Symbol.

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

CLO 1: Write Program to implement Mathematical concepts

CLO 2: Apply Concepts learnt to solve problems

Elective 2 Algorithm and C programming

[12L]

Loarni	ng Objectives:	
	arner should be able to:	
	Introduce programming techniques in C	
	Implementation of various mathematical concepts	
	ng Outcome:	
	he successful completion of the module, the learner will be able to:	
	Write simple programs	
2.	Implement mathematical concepts	
3.	Debug simple programs	
4.	Predict the output before running the program	
1.1	Write a C program that illustrates the concepts of different	[2L]
	iterations and conditional requirements.	
1.2	Write a C program that illustrates the concepts of one- and two-	[4L]
	dimensional arrays.	
1.3	Write a C program that illustrates the concepts of #define directives,	[3L]
	functions, recursion.	
Refere	nce book	
٠	Let us C by Yashwant Kanetkar, BPB	
Additi	onal References:	
٠	Programming in ANSI C (Third Edition) : E Balagurusamy, TMH	
•	Programming with C by Byron Gottfried, Schaum's outlines, Mc Graw H Mastering Algorithms with C, Kyle Loudon, Shroff Publishers.	111.
•	Algorithms in C (Third Edition): Robert Sedgewick , Pearson Education A	Asia
•	Programming in ANSI C by Ram Kumar, Rakesh Agrawal, TMH.	- 51 a .
٠	Programming with C (Second Edition): Byron S Gottfried (Adapted by Jit	ender Kumar
	Chhabra) Schaum's Outlines (TMH)	
٠	Programming with C : K R Venugopal, Sudeep R Prasad TMH Outline Ser	ries.
Electiv		[12L]
	ng Objectives	
	arner should be able to:	
	Understand how to apply results	
	Create network	
	Appreciate concepts in planar graphs	
	ng outcomes	
	arner will be able to:	
	Construct network	
	Apply results proved	
3.	Apply Polya's theory to solve some of the problems of Chemistry	

2.1	Construction of network	[4L]	
	Application of Cayley's formula		
	Application of Menger's theorem		
2.2	Problems based on matching, perfect matching and assignment	[2L]	
	problems		
2.3	Problems based on planarity	[4L]	
	Chromatic polynomial		
	Timetabling		
2.4	Problems based on Polya theory	[2L]	
Refer	ence books		
• (Freel	Graph theory with application by J. A. Bondy and U. S. R. Murty y downloadable)		
•	Graph Theory by Reinhard Diestel Electronic edition Springer Ver Graph theory with application, Narsingh DeoPrentice Hall publica	• • • •	
Electi	ve 4 Financial Mathematics	[12L]	
Learn	ing Objectives		
The le	earner should be able to:		
1.	Appreciate the concepts and how mathematics plays a role in the	e world of finances	
2.	Apply principles and process to evaluate the returns of a portfolio)	
Learn	ing outcomes		
The le	earner will be able to:		
1.	Apply Principle of no arbitrage, forward contract and options		
2.	Evaluate the returns of a portfolio with risky and non risky assets		
3.1	Identify problems which are based on no arbitrage principles.	[3L]	
	Solve problem based on forward contract and options		
3.2	Solve problems based on non risky assets	[3L]	
3.3	Generate a good portfolio of an investor with constraints	[6L]	
References:			
 Mathematics for finance: An Introduction to financial Engineering by Marek Capinski and Tomasz Zastawniak; Springer An Introduction to Mathematical Finance with Applications: Understanding and Building Financial Intuition; Arlie O. Petters, Xiaoying Dong; Springer Mathematics for Finance: An Introduction to Financial Engineering; by Marek Capiński, 			
	Tomasz Zastawniak;		

Students are required to select any one courses

Of the following Generic courses courses, learners can select any one of the courses. The courses having maximum number of votes will be considered for the year and subject to availability of the concerned teacher.

DSE	Title
GE 1	Operation Research -I
GE 2	SQL

T.Y. B. Sc. (Mathematics) SEMESTER V General Elective -I COURSE TITLE: Operations Research COURSE CODE: 23US5MTGEOR CREDITS - 02]

This is a practical oriented course

After t	ne successful completion of the Course, the learner will be able to:	
CLO 1: Prepare mathematical model of real-life problems		
CLO 2		
CLO 3	: Generate a method to solve problems of LPP with more than 2 variab	les
Modul	e 1 Basics of Operations Research:	[10L]
Learnir	ng Objectives:	
The lea	rner should be able to:	
1.	Comprehend scope and limitation of Operational research	
2.	Understand the origin and various development in Operations Research	
3.	How Linear Algebra is applied to develop Operations Research	
Learnir	ng Outcome:	
After tl	ne successful completion of the module, the learner will be able to:	
1.	Comprehend scope and limitation of Operational research	
2.	Apply various stages of development of Operational research	
3.	Apply Linear Algebra to various problems of Operations Research	
1.1	Origin & Development of Operations Research, Definition and Meaning	[3L]
	of Operations Research, Different Phases of an Operational Research	
	Study, Scope and Limitations of Operations Research.	
1.2	Six Stages of Development of Operations Research	[3L]
	I: Observe the problem environment	
	II: Analyze and define the problem	

IV: Select appropriate data input V: Provide a solution and test its reasonableness [41] I.3 Mathematical Modeling of Real-Life Problems. [41] Reference books [41] • G. Hadley: Linear Programming. Narosa, Reprint, 2002. [41] • Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. • F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. [121] Module 2 Linear Programming [121] Learning Objectives [121] The learner should be able to: 1. Understand various concepts used in Linear Programming 2. Use Graphical methods to solve Linear Programming problems 3. Use Iso cost line in graphical solutions Learning outcomes Image: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. [6L] Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. [6L] Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. [6L]			r		
V: Provide a solution and test its reasonableness [41] Reference books [41] A hadley: Linear Programming. Narosa, Reprint, 2002. Handy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 2 Linear Programming [12] Learning Objectives Independence Solve Linear Programming problems 3. Use Iso cost line in graphical solutions Learning outcomes Independence and dependence of vectors, Concept of Basis. [61] Review of Linear algebra: Solution of a system of Linear Equations, Linear Independence and dependence of vectors, Concept of Basis. [61] Reference books Inear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to		III: Develop a model			
VI: Implement the solution [4L] Reference books [4L] Review of Linear Programming [42] Learning Objectives [42] The learner should be able to: [41] 1. Understand various concepts used in Linear Programming problems [41] 2. Use Graphical methods to solve Linear Programming problems [61] 1. Formulate the linear programming problems graphically [61] 2. Solve the linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. [61] Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedr		IV: Select appropriate data input			
1.3 Mathematical Modeling of Real-Life Problems. [41] Reference books [41] Reference books 6. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 2 Linear Programming [121] Learning Objectives [121] The learner should be able to: 1. Understand various concepts used in Linear Programming problems 3. Use Graphical methods to solve Linear Programming problems 3. Use Iso cost line in graphical solutions Learning outcomes Inear programming problems graphically 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. [6L] Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] Method, Graphical Solution Sesearch-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solbe		V: Provide a solution and test its reasonableness			
Reference books [1 - 2] Reference books 6. Hadley: Linear Programming. Narosa, Reprint, 2002. • Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. • F. S. Hillier, G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. [121] Module 2 Linear Programming [121] Learning Objectives [121] The learner should be able to: 1. Understand various concepts used in Linear Programming 2. Use Graphical methods to solve Linear Programming problems 3. Use lso cost line in graphical solutions 3. Use lso cost line in graphical solutions [6L] Learning outcomes [6L] [6L] The learner will be able to: 1. Formulate the linear programming problems graphically [6L] 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. [6L] Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. [6L] Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] Method, Graphical Solution of LPP-		VI: Implement the solution			
 G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F. S. Hillier, G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 2 Linear Programming [121] Learning Objectives The learner should be able to: Understand various concepts used in Linear Programming Use Graphical methods to solve Linear Programming problems Use Graphical methods to solve Linear Programming problems Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: Formulate the linear programming problems Solve the linear programming problems graphically 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F. S. Hillier, G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. 	1.3	Mathematical Modeling of Real-Life Problems.	[4L]		
 Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier, G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 2 Linear Programming [12] Learning Objectives The learner should be able to: Understand various concepts used in Linear Programming Use Graphical methods to solve Linear Programming problems Use Graphical methods to solve Linear Programming problems Use Iso cost line in graphical solutions Learning outcomes Formulate the linear programming problems Solve the linear programming problems graphically Review of Linear algebra: Solution of a system of Linear Equations, Linear linear Programming Problems Easible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier, G. J. Lieberman: Introduction to Operations Research - Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. 	Refere	nce books			
2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier, G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 2 Linear Programming [121] Learning Objectives [11] The learner should be able to: 1. Understand various concepts used in Linear Programming 2. 2. Use Graphical methods to solve Linear Programming problems 3. Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: 1. Formulate the linear programming problems 2. Solve the linear programming problems graphically [6L] 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. [6L] 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] Method, Graphical Solution Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F. S. Hillier, G. J. Lieberman: Introduction to Operations	٠	G. Hadley: Linear Programming. Narosa, Reprint, 2002.			
 A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier, G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 2 Linear Programming [121] Learning Objectives The learner should be able to: Understand various concepts used in Linear Programming problems Use Graphical methods to solve Linear Programming problems Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: Formulate the linear programming problems Solve the linear programming problems graphically Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research - Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research - Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. 	•	Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Ed	ition,		
and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 2 Linear Programming [121] Learning Objectives The learner should be able to: 1. Understand various concepts used in Linear Programming 2. Use Graphical methods to solve Linear Programming problems 3. Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: 1. Formulate the linear programming problems 2. Solve the linear programming problems graphically 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [14L]		2010.			
 F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 2 Linear Programming [212] Learning Objectives The learner should be able to: Understand various concepts used in Linear Programming Use Graphical methods to solve Linear Programming problems Use Iso cost line in graphical solutions Learning outcomes Formulate the linear programming problems Solve the linear programming problems graphically Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research - Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. 	٠	A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Prince	ciples		
Cases, 9th Edition, Tata Mc-Graw Hill, 2010. [121] Module 2 Linear Programming [121] Learning Objectives I. Understand various concepts used in Linear Programming 2. The learner should be able to: 1. Understand various concepts used in Linear Programming problems 3. 3. Use Graphical methods to solve Linear Programming problems 3. Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: 1. Formulate the linear programming problems graphically 2. Solve the linear programming problems graphically [6L] independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. [6L] Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] e G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010.		• •			
Module 2 Linear Programming [121] Learning Objectives The learner should be able to: 1. Understand various concepts used in Linear Programming 2. Use Graphical methods to solve Linear Programming problems 3. Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: 1. Formulate the linear programming problems 2. Solve the linear programming problems graphically Image Programming problems [6L] 2. Solve the linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. [6L] Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. [6L] 2.2. Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research - Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research - Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method <td>٠</td> <td></td> <td>and</td>	٠		and		
Learning Objectives The learner should be able to: 1. Understand various concepts used in Linear Programming 2. Use Graphical methods to solve Linear Programming problems 3. Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: 1. Formulate the linear programming problems 2. Solve the linear programming problems graphically 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, use of Iso-Cost/profit lines to find solution Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method					
The learner should be able to: 1. Understand various concepts used in Linear Programming 2. Use Graphical methods to solve Linear Programming problems 3. Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: 1. Formulate the linear programming problems 2. Solve the linear programming problems graphically 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] Reference books • G. Hadley: Linear Programming. Narosa, Reprint, 2002. • • Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. . • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. • • F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010.			[12L]		
 Understand various concepts used in Linear Programming Use Graphical methods to solve Linear Programming problems Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: Formulate the linear programming problems Solve the linear programming problems graphically Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, Use of Iso-Cost/profit lines to find solution Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. 					
 Use Graphical methods to solve Linear Programming problems Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: Formulate the linear programming problems Solve the linear programming problems graphically Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. 	The lea	arner should be able to:			
3. Use Iso cost line in graphical solutions Learning outcomes The learner will be able to: 1. Formulate the linear programming problems 2. Solve the linear programming problems graphically 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books • G. Hadley: Linear Programming. Narosa, Reprint, 2002. • Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. • F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [141]	1.	Understand various concepts used in Linear Programming			
Learning outcomes The learner will be able to: 1. Formulate the linear programming problems 2. Solve the linear programming problems graphically 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books • G. Hadley: Linear Programming. Narosa, Reprint, 2002. • Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. • F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [141]	2.	Use Graphical methods to solve Linear Programming problems			
The learner will be able to: 1. Formulate the linear programming problems 2. Solve the linear programming problems graphically 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, ubounded region, Use of Iso-Cost/profit lines to find solution Reference books • G. Hadley: Linear Programming. Narosa, Reprint, 2002. • Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. • F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010.	3.	Use Iso cost line in graphical solutions			
1. Formulate the linear programming problems 2. Solve the linear programming problems graphically 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] Reference books • G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [14L]	Learni	ng outcomes			
2. Solve the linear programming problems graphically 2.1 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. [6L] 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, use of Iso-Cost/profit lines to find solution [6L] Reference books 6 Hadley: Linear Programming. Narosa, Reprint, 2002. [6L] Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. . A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. [14L]	The lea	arner will be able to:			
 Review of Linear algebra: Solution of a system of Linear Equations, Linear independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method Guide and Cases (14) G. 14L] 	1.	Formulate the linear programming problems			
independence and dependence of vectors, Concept of Basis. Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, [6L] Reference books . G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. [14L]	2.	Solve the linear programming problems graphically			
Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. [6L] 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] Reference books • G. Hadley: Linear Programming. Narosa, Reprint, 2002. • • Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. • • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. • • F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. [14L]	2.1	Review of Linear algebra: Solution of a system of Linear Equations, Linear	[6L]		
Basic Feasible solution, Convex sets. Extreme points, Hyperplanes and Halfspaces, Convex cones, Polyhedral sets and cones. [6L] 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] Reference books • G. Hadley: Linear Programming. Narosa, Reprint, 2002. • • Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. • • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. • • F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. [14L]		independence and dependence of vectors, Concept of Basis.			
Halfspaces, Convex cones, Polyhedral sets and cones. [6L] A.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution [6L] Reference books 6. Hadley: Linear Programming. Narosa, Reprint, 2002. Image: Convextore of the second					
 2.2 Linear Programming Problem Formulation, solution by Graphical Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [14L] 					
Method, Graphical Solution of LPP- Bounded region, unbounded region, Use of Iso-Cost/profit lines to find solution Reference books • G. Hadley: Linear Programming. Narosa, Reprint, 2002. • Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. • F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method	2.2		[6L]		
Use of Iso-Cost/profit lines to find solution Reference books • G. Hadley: Linear Programming. Narosa, Reprint, 2002. • Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. • A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. • F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method			[]		
 Reference books G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [14L] 					
 G. Hadley: Linear Programming. Narosa, Reprint, 2002. Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [14L] 	Refere				
 Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [14L] 					
 2010. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [14L] 	•		ition		
 A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [14L] 	•		,		
 and Practice, John Wiley & Sons, 2005. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [14L] 	•		ciples		
 F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010. Module 3 Simplex Method [14L] 					
Cases, 9th Edition, Tata Mc-Graw Hill, 2010. [14L]	•				
Learning Objectives	Modu	e 3 Simplex Method	[14L]		
	Learni	ng Objectives			

The learner should be able to:

- 1. Understand various concepts applied for solving Linear programming problems by Simplex method and other methods
- 2. Apply Simplex method to solve Linear Programming problems

Learning outcomes

The learner will be able to:

- 1. Understand various concepts applied for solving Linear programming problems by Simplex method and other methods
- 2. Apply Simplex method to solve Linear Programming problems

3.1	Theory of Simplex Method, slack variables, surplus variables and artificial	[14L]
	variables, Simplex Algorithm	

Reference books

- G. Hadley: Linear Programming. Narosa, Reprint, 2002.
- Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010.
- A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005.
- F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010.

T.Y. B. Sc. (Mathematics) SEMESTER V General Elective -II COURSE TITLE: SQL COURSE CODE: 23US5MTGESQL CREDITS - 02]

This is a practical oriented course

After t	he successful completion of the Course, the learner will be able to:	
CLO 1	: Apply commands to fire a query	
Modul	e1 SQL	[36L]
Learni	ng Objectives:	
The lea	arner should be able to:	
1. U	Inderstand the commands of SQL	
Learni	ng Outcome:	
After t	he successful completion of the module, the learner will be able to:	
1.	Fire queries to obtain the desired output	
1.1	SQL Overview, SQL commands, Concepts of RDBMS, field, record,	[10L]
	column, SQL constraints, NULL, NOT NULL constraints, default	
	constraints, DROP, Primary key, creating and deleting primary key,	
	Foreign key, drop a foreign key, CHECK constraints, DROP a CHECK	
	constraint, INDEX, DROP INDEX constraint	
1.2	SELECT statement, arithmetic operators, logical operators, comparison	[13L]
	operators, USE statement, CREATE and DROP a DATABASE, creating,	
	listing and dropping a table, Truncate table, ALTER table, INSERT INTO,	
	UPDATE, DELETE	
1.3	DISTINCT clause, WHERE clause, AND/OR IN clause, BETWEEN clause,	[13L]
	LIKE clause, ORDERBY clause, GROUPBY clause, COUNT, HAVING clause	
Refere	nce books	
•	SQL Tutorial	

T.Y. B. Sc. (Mathematics) SEMESTER V Skill Enhancement Course COURSE TITLE: LaTeX COURSE CODE: 23US6MTSELTX CREDITS - 02]

Course L	earning Outcome	
After the	e successful completion of the Course, the learner will be able to:	
CLO 1:	Use LaTeX for writing mathematical articles	
	and books	
CLO 2:	Make presentation using LaTeX	
Module	1 LaTeX	[18L]
Learning	Objectives	
The lear	ner should be able to:	
1. L	lse LaTeX for documentation of Mathematical work	
Learning	Outcomes	
After the	e successful completion of the module, the learner will be able to:	
1. Write	mathematical expressions using LaTeX	
2. Draw	figures using LaTeX	
1.1	Documentation, letter writing	[6L]
1.2	Tables, Matrices, Mathematical functions	[6L]
1.3	Drawing a diagram, Labelling	[6L]
Referen	ce books	
• L	aTeX Manual	
Module	2 Beamer	[18L]
Learning	Objectives	
The lear	ner should be able to:	
1. Use La	TeX to make presentation	
Learning	outcomes	
The lear	ner will be able to:	
1. Make	presentation using LaTeX	
2.1	Documentation and compiling beamer presentation	[9L]
2.2	Preparing and formatting slides	[9L]
Referen	ce books	I
• L	aTeX manual	

T.Y. B. Sc. (Mathematics) SEMESTER VI Core Course- I COURSE TITLE: Multivariate Integral Calculus COURSE CODE: 23US6MTCC1MIC CREDITS - 02

Cours	e Learning Outcome	
After	the successful completion of the Course, the learner will be able to:	
CLO	1: Evaluation of double and triple integrals	
CLO	2: Apply Green's theorem	
CLO	3: Apply Stokes and Divergence theorem	
Modu	Ile 1Double and Triple integrals[1]	2L]
Learn	ing Objectives:	
The le	earner should be able to:	
1.	Solve problems on double and triple integrals	
2.	Apply the concept to real life situations	
Learn	ing Outcome:	
After	the successful completion of the module, the learner will be able to:	
1.	Appreciate the concepts of double and triple integrals	
2.	Prove Fubini's Theorem and other results	
3.	Solve problems based on Fubini's Theorem and change of variables formula	
4.	Compute area, volume, the center of gravity and moments of inertia	
1.1	Review of Riemann integration.	[2L]
	Definition of double (resp: triple) integral of a function and bounded on a	
	rectangle (resp:box).	
1.2	Fubini's Theorem over rectangles and on any closed bounded region, Iterated Integrals.	[4L]
	Basic properties of double and triple integrals proved using the Fubini's theorem such as	
	(i) Integrability of the sums, scalar multiples, products, and (under suitable conditions) quotients of integrable functions.	
	(ii) Integrability of continuous functions.	
	(iii) Domain additivity of the integral. Integrability and the integral over	
	arbitrary bounded domains.	
1.3	Change of variables formula. Use of Polar coordinates in evaluation of	[3L]
	double integrals.	
	Cylindrical and spherical coordinates, and triple integration using these	
	coordinates.	

	Simple examples using other changes of variables in double integration.	
1.4	Applications to finding area and volume, the center of gravity and moments	[3L]
	of inertia.	
Refer	ence books	
•	T. M. Apostol, Calculus, Vol. 2, Second Ed., John Wiley, New York, 1969	
•	G.B. Thomas and R.L. Finney; Calculus; Pearson Education.	
•	James Stewart; Multivariable Calculus	
Addit	ional Reference books:	
•	D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989	
•	Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edit	ion.
	1979), S. Chand and Co	,
•	M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer	-
	Verlag, New York, 1995	
Modu		.2L]
	ing Objectives	
	arner should be able to:	
	Parametrize curves	
	Apply tools developed to solve problems	
3.	Appreciate the independence of path in evaluating line integral under a	
	conservative force field	
	ing outcomes	
	arner will be able to:	
	Find parametrization of a given curve	
	Understand the concept of line integrals for scalar and vector functions	
3.	Solve problems using the above	
4.	Apply the Green's Theorem	
5.	Solve problems on conservative force fields	
2.1	Parametrization of a curve in the plane or in space. Line integral of a scalar	[3L]
	valued function. Finding length of a curve	
2.2	Line integral of a vector valued function. Application in computation of	[3L]
	work done by a force and flow in a medium.	
2.3	Green's theorem and its use in evaluation of line integrals, the area of	[3L]
	regions enclosed by a simple closed curve	
2.4		[[]]
2.7	Conservative fields and path independence of the line integral, its equivalence with the existence of potential function. Applications	[3L]

Reference books

- T. M. Apostol, Calculus, Vol. 2, Second Ed., John Wiley, New York, 1969
- G.B. Thomas and R.L. Finney; Calculus; Pearson Education.
- James Stewart; Multivariable Calculus
- Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariable calculus

Additional Reference books:

- G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprint), Addison- Wesley, Reading Mass, 1992
- D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989
- Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (12th Edition, 1979), S. Chand and Co
- M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed., Springer-Verlag, New York, 1995

Modul	e 3	Surface Integrals and Volume Integrals	[12L]	
Learnii	Learning Objectives			
The lea	arner should be able	to:		
1.	Parametrize surface	S		
2.	Find a normal vecto	r to the surface		
3.	Understand the con	cept of surface integrals		
4.	Prove Stoke's Theor	em and Divergence Theorem		
5.	Study other applicat	tions of surface integrals		
Learnii	ng outcomes			
The lea	arner will be able to:			
1.	Find parametrizatio	n for a given surface		
2.	Find a normal vecto	r to the surface using parametrization		
3.	Apply the idea of su	rface integrals and solve problems		
4.	Prove Stoke's Theor	em and Divergence Theorem		
5.	Apply Stoke's Theor	em and Divergence Theorem		
3.1	Parametrization of	surfaces. Finding area of a surface using	[3L]	
	fundamental vecto	r product		
3.2	Definition of surfac	e integrals of scalar valued as well as of vector	[3L]	
	valued functions de	fined on a surface		
3.3	Curl and divergence	e of a vector field. Elementary identities involvi	ng [6L]	
	gradient, curl and c	livergence.		
	Stokes Theorem (p	roof assuming the general form of Green's		
	•			

Theorem). Examples. Gauss Divergence Theorem (proof only in the	case
of cubical domains). Examples	
Reference books	·
• T. M. Apostol, Calculus, Vol. 2, Second Ed., John Wiley, New York, 19	69
 G.B. Thomas and R.L. Finney; Calculus; Pearson Education. 	
 James Stewart; Multivariable Calculus 	
Jerrold E. Marsden, Anthony Tromba Vector Calculus; Basic multivariation	able calculus
Additional Reference books:	
G.B. Thomas and R.L Finney, Calculus and Analytic Geometry, Ninth	Ed. (ISE
Reprint), Addison- Wesley, Reading Mass, 1992	
• D.V.Widder, Advanced Calculus, Second Ed., Dover Pub., New York.	1989
• Shanti Narayan and P.K. Mittal, A Course of Mathematical Analysis (2	L2th Edition,
1979), S. Chand and Co	
• M.H. Protter and C.B.Morrey Jr., Intermediate Calculus, Second Ed.,	Springer-
Verlag, New York, 1995	-

T.Y. B. Sc. (Mathematics) SEMESTER VI Core Course- II COURSE TITLE: Algebra-III COURSE CODE: 23US6MTCC2ALG [CREDITS - 02]

Cours	e Learning Outcome		
After	the successful completion of the course, the learner will be able to:		
CLO	1: Classify groups up to order 7		
CLO	2: Establish results of ideals and ring homomorphism		
CLO	3: Solve problems associated with factorization of rings		
Modu	Ile 1 Normal Subgroups [1	.2L]	
The le 1. 2.	ing Objectives earner should be able to: Appreciate the concept of normal subgroups Generate quotient groups Classify groups of order upto 7		
	Learning Outcomes After the successful completion of the module, the learner will be able to:		
 Prove results related to normal subgroups, quotient groups, isomorphism theorems, and external direct product Solve problems based on normal subgroups. Generate quotient groups Solve problems based on group homomorphism Classify all groups of order less than or equal to seven 			
1.1	Normal subgroups, quotient groups, examples.	[3L]	
1.2	First, second and third isomorphism theorems. Problems based on their application. Correspondence theorem	[3L]	

1.4	External direct product and its properties, order of an element in external direct product, criteria for external direct product to be cyclic.	[3L]
1.5	Classification of groups of order up to 7	[2L]
Refere • •	ence books I.N.Herstein – Topics in Algebra N.S. Gopalkrishnan – University Algebra J.B.Fraleigh- A first course in abstract algebra M. Artin – Algebra J. Gallion – contemporary abstract algebra	
Additi •	onal Reference books: D. Dummit and R. Foote- Abstract algebra Bhattacharya Jain Nagpal – Abstract Algebra	
Modu	le 2 Rings and Fields [12L]
The le 1 2 3	ng Objectives arner should be able to: . Prove all results related to rings, subrings, ideals, and ring homomorphism . Identify special elements in a ring . Study prime and maximal ideals . Appreciate ring homorphism	
	ing outcomes arner will be able to: Prove all results related to rings, subrings, ideals, and ring homomorphism Find zero divisors, units, idempotent elements, nilpotent elements in a ring Classify prime and maximal ideals Construct quotient field Solve problems based on rings and ring homomorphism	
2.1	Definition of Rings (with unity), zero divisors, Integral domain, Division rings and fields, various examples including polynomial rings	[3L]
2.2	Units in a ring, idempotent and nilpotent elements, the multiplicative group of units in a ring, characteristic of a ring	[2L]

2.3	Subrings and ideals, prime and maximal ideals	[2L]
2.4	Quotient rings, characterization in terms of prime and maximal ideals, construction of quotient field, correspondence theorem	[3L]
2.5	Ring homomorphism and isomorphism, kernel, and properties	[2L]
Refer	ence books	I
• • • • •	I.N.Herstein – Topics in Algebra N.S. Gopalkrishnan – University Algebra J.B.Fraleigh- A first course in abstract algebra M. Artin – Algebra J. Gallion – contemporary abstract algebra	
Addit •	ional Reference books: D. Dummit and R. Foote- Abstract algebra Bhattacharya Jain Nagpal – Abstract Algebra	
Made	ula 2 Eastarization in Dinge	54013
Modu	Ile 3 Factorization in Rings	[12L]
Learn	 ing Objectives earner should be able to: Prove results related to various concepts of factorization in rings Verify irreducibility and prime elements in a ring Appreciate prime and maximal ideals Establish the properties of Euclidean domain, Principal ideal domain 	
Learn The le Learn The le 1. 2. 3. 4.	 ing Objectives earner should be able to: Prove results related to various concepts of factorization in rings Verify irreducibility and prime elements in a ring Appreciate prime and maximal ideals Establish the properties of Euclidean domain, Principal ideal domain Unique factorization domain ing outcomes earner will be able to: Prove results related to various concepts of factorization in rings Classify irreducibility and prime elements in a ring Find prime and maximal ideals in a polynomial ring	n and

3.2	Irreducible and prime elements, ideal generated by irreducible and prime elements, prime and maximal ideals in a polynomial ring	[4L]
3.3	Euclidean domain (ED), principal ideal domain (PID) and unique factorization domain (UFD)	[3L]
3.4	Every ED is PID, every PID is UFD	[3L]
	 I.N.Herstein – Topics in Algebra N.S. Gopalkrishnan – University Algebra J.B.Fraleigh- A first course in abstract algebra M. Artin – Algebra J. Gallion – contemporary abstract algebra 	
Addi		

T.Y. B. Sc. (Mathematics) SEMESTER VI Core Course- III COURSE TITLE: Topology of Metric Spaces II COURSE CODE: 23US6MTCC4TMS2 CREDITS - 02

Course	Learning Outcome	
After th	ne successful completion of the course, the learner will be able to: Appreciate various characterizations of continuous functions and uniformly continuous functions.	
CLO 2	Understand Compact space	
Modu le 1	Continuous functions defined on metric spaces	[12L]
The ain 1.	g Objectives: n of the module is to: Study various characterizations of continuous functions over a metric spa Establish unique extension of a uniformly continuous function over a der subset of a metric with complete codomain	
After th 1. P 2. So 3. E	g Outcome: The successful completion of the module, the learner will be able to: The rove results based on continuous functions on a metric space The problems using $\varepsilon - \delta$ definition of continuity and sequential criterion Stablish unique extension of a uniformly continuous function over a dense to metric with complete codomain	subset
1.1	$\varepsilon - \delta$ definition of continuity at a point of a function from one metric space to another. Examples. Algebra of continuous real valued functions.	[3L]
1.2	Characterization of continuity at a point in terms of sequences. Characterization in terms of inverse image of open sets and closed sets.	[3L]

1.3	 Uniform continuity in a metric space, definition and examples (emphasis on R). Contraction mapping is uniformly continuous. Image of a Cauchy sequence under a uniformly continuous function forms a Cauchy sequence. Set of real or complex valued uniformly continuous functions defined on a metric space forms a vector space. Product of two uniformly continuous functions need not be uniformly continuous. 	[3L]
1.4	Continuous image of a complete metric space need not be a complete metric space. If A is a dense subset of a metric space X and f is a uniformly continuous function from A to Y, where Y is a complete metric space, then f can be uniquely extended to a continuous function on taking values in . As a consequence of this, we can define irrational powers of positive real numbers.	[4L]
Refere	nce books	
• • Additic	Metric Spaces P. K. Jain and Khalid Ahmad, Narosa Publications Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi. onal Reference books: Topology of Metric spaces; Kumaresan, S. (2005)	
• Additio • Modul	Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi. onal Reference books: Topology of Metric spaces; Kumaresan, S. (2005)	[12L]
• Modul Learnin The air 1. Stud	Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi. onal Reference books: Topology of Metric spaces; Kumaresan, S. (2005)	
• Modul Learnin The air 1. Stuc 2. App Learnin The lea 1. Prov	Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi. onal Reference books: Topology of Metric spaces; Kumaresan, S. (2005) e 2 Compactness m of the module is to: dy compact metric space	

2.2	 Properties of compact sets such as a compact set is closed and bounded. Converse is false. Every infinite bounded subset of a compact metric space has a limit point. As a consequence, every compact Metric space is complete. Closed subset of a compact space is compact as well as complete. Heine Borel theorem: Every subset of Euclidean metric space Rⁿ is compact if and only if it is closed and bounded. 	[5L]
2.3	A continuous function on a compact set is uniformly continuous. Continuous image of a compact set is compact. Fixed point theorem for a contractive map defined on a compact space.	[2L]
2.4	Totally bounded sets. Bolzano-Weierstrass property, sequentially compactness property. Characterization of compact sets in: The equivalent statements for a subset of metric space to be compact.	[2L]
• Additic	nce books Metric Spaces P. K. Jain and Khalid Ahmad, Narosa Publications Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi onal Reference books: Kumaresan, S. (2005) Topology of Metric spaces	
Addition Modul Learnin The air 1. Stud	Metric Spaces P. K. Jain and Khalid Ahmad, Narosa Publications Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi onal Reference books: Kumaresan, S. (2005) Topology of Metric spaces	[9L]
Addition Addition Modul Learnin The air 1. Stud 2. Diffe Learnin The lea 1. Prov	Metric Spaces P. K. Jain and Khalid Ahmad, Narosa Publications Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi onal Reference books: Kumaresan, S. (2005) Topology of Metric spaces e 3 Connected metric spaces ng Objectives n of the module is to: dy Connected subsets of a metric space	
Addition Addition Modul Learnin The air 1. Stud 2. Diffe Learnin The lea 1. Prov	Metric Spaces P. K. Jain and Khalid Ahmad, Narosa Publications Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi. In al Reference books: Kumaresan, S. (2005) Topology of Metric spaces e 3 Connected metric spaces In g Objectives In of the module is to: dy Connected subsets of a metric space erentiate between connected sets and path connected sets In g Outcomes arner will be able to: we results associated with connected sets and path connected sets	

3.3	 A continuous image of a connected set is connected. A subset of ℝ is connected if and only if it is either an interval or a singleton. Intermediate value property of real valued functions defined on connected metric spaces. Characterization of a connected space, namely a metric space X is connected if and only if every continuous function from X to {-1,1} is a constant function. 	[5L]
3.4	Path connectedness in \mathbb{R}^n , definitions and examples.A path connected subset of \mathbb{R}^n is connected.An example of a connected subset of \mathbb{R}^2 which is not path connected.	[3L]
•	ence books Metric Spaces P. K. Jain and Khalid Ahmad, Narosa Publications Copson, E. T. (1996) Metric Spaces. Universal Book Stall, New Delhi ional Reference books: Kumaresan, S. (2005) Topology of Metric spaces	

T.Y. B. Sc. (Mathematics) SEMESTER VI

Core Course- IV

COURSE TITLE: Complex Analysis

COURSE CODE: 23US6MTCC4CA CREDITS - 02

Course	e Learning C	Dutcome	
After t	he successf	ul completion of the Course, the learner will be able to:	
CLO 1	.: Compu	ute derivatives of complex valued functions	
CLO 2	2: Find in	ntegration of complex valued of functions	
CLO 3	3: Identif	fy the singularities	
Modul	e 1	Analytic Function	12 L
Learni	ng Objectiv	es	
		d be able to:	
1. Ur	nderstand tl	he concept of differentiability of a complex function using Cauchy-	
	emann equ		
	•	vative of a complex function if it exists	
	ng Outcom		
	-	ful completion of the module, the learner will be able to:	
		out differentiability of a complex function using Cauchy-Riemann	
	equations	· · · · · · · · · · · · · · · · · · ·	
2.		lems to find the derivative of a complex function if it exists	
3.	•	chy-Riemann equation for finding harmonic Conjugates	
4.		Ilts such as Cauchy Riemann Equations and related theory	
1.1	Review of	complex number, Algebraic properties of complex numbers,	[3L]
	Complex (Conjugate, Exponential form, Roots of complex numbers.	
	(No quest	ions to be asked in semester end examination)	
	-	pology of Complex Numbers: Neighbourhood of a point. Open	
		losed sets, limit point, Boundary of a set,	
		s and series of complex numbers, converges in ${\mathbb C}$ if and only if	
	both real	and imaginary part converges in $\mathbb R.$	
1.2		of complex Variable, Limits and Theorem on Limits (connection	[3L]
		limits of a function of complex variable and limits of real valued	
		of two real variables)	
		y of a function, Derivatives, Differentiation Rules and Examples	
1.3		emann Equations, Sufficient Conditions for differentiability, Polar	[3L]
		es, Analytic functions (if it is differentiable in neighbourhood of	
	point) f, g	g analytic then f + g, f – g, f.g and f /g are analytic, chain rule of	

	differentiation.	
1.4	Theorem: If f(z) = 0 everywhere in a domain D, then f(z) must be constant throughout D.	[3L]
	Harmonic functions, Harmonic conjugate and examples	
Refere		1
•	J.W. Brown and R.V. Churchill, Complex Variables and Applications, Internati Student Edition, 2009. (Eighth Edition).	onal
•	S. Ponnusamy, Complex Analysis, Second Edition (Narosa)	
Additi	onal Reference books:	
•	A.R. Shastri, An Introduction to Complex Analysis, (MacMillan). John B. Conway Functions of one Complex variable, Second Edition, Springer	-Verlag
Modu	e 2 Elementary Functions & Integral along a curve	12L
	ng Objectives	
	arner should be able to:	
	dy Exponential function, trigonometric and hyperbolic functions	
	derstand logarithm of complex number and observe how it is different from	
-	hm of real numbers	
	I the contour integral of a complex function	
	ng Outcomes he successful completion of the module, the learner will be able to:	
	blish the periodicity of Exponential function	
	I the principal and general branch of logarithm of a complex number	
	uate the contour integral of a function	
4. App	ly Cauchy Integral formula to find Contour integral	
2.1	The Exponential function, Periodicity of the Exponential function.	[4L]
	The Logarithmic function, Branch of logarithms,	
	Some identities involving logarithms,	
	Trigonometric functions, Hyperbolic functions,	
2.2	Definition of a Line integral of a function along a curve.	[2L]
	Contours, Contour integral, Examples.	
	Upper bounds for Moduli of contour integrals	
2.3	Anti-derivatives, Examples	[3L]
	Cauchy Groursat's Theorem (without proof), Simply and multiply Connected domains	
2.4	Evaluation of line integral $\int f(z) dz$ over $ z-z_0 = r$,	[3L]
2.7		
	Lauchy Integral formula (with proof). An Extension of the Cauchy Integral	
	Cauchy integral formula (with proof), An Extension of the Cauchy Integral formula.	

Refere	ences:	
•	J.W. Brown and R.V. Churchill, Complex Variables and Applications, Internat	ional
	Student Edition, 2009. (Eighth Edition).	
•	S. Ponnusamy, Complex Analysis, Second Edition (Narosa)	
Additi	onal Reference books:	
•	A.R. Shastri, An Introduction to Complex Analysis, (MacMillan).	
John E	B. Conway Functions of one Complex variable, Second Edition, Springer-Verlag	3
Modu	le 3 Power Series and Singularities	12L
	ng Objectives	
	arner should be able to:	
	oduce power series of complex numbers	
	Taylor's series, Laurent series of a complex function	
	sify singularities	
	ain residues	
	ng Outcomes	
	he successful completion of the module, the learner will be able to:	
	Find radius of convergence of a power series	
	Find Taylor's series and Laurent series of a complex function	
	Categorize singularities as removable or isolated singularity	
4.	Obtain residues and poles of Complex function	
3.1	Power series of complex numbers definition and examples	[2L]
	Radius of convergences, disc of convergence, uniqueness of series	
	representation, examples	
3.2	Taylor's series, Taylor's theorem for analytic function, Laurent series	[3L]
	(without proof), example	
3.3	Isolated singular points, Types of isolated singular points, Examples	[3L]
3.4	Residues, Cauchy residue theorem, Residue at Infinity, residues at poles, zeros of analytic functions	[4L]
Refere		
•	J.W. Brown and R.V. Churchill, Complex Variables and Applications, Internat	ional
	Student Edition, 2009. (Eighth Edition).	
•	S. Ponnusamy, Complex Analysis, Second Edition (Narosa)	
Additi	onal Reference books:	
•	A R Shastri An Introduction to Complex Analysis (MacMillan)	

- A.R. Shastri, An Introduction to Complex Analysis, (MacMillan).
- John B. Conway Functions of one Complex variable, Second Edition, Springer-Verlag

T. Y. B. Sc. (Mathematics)

SEMESTER VI - Practical - I

COURSE CODE: 23US6MTCCP1 Credit- 02

Learning Objectives:

The Practical is intended to

1. Solve problems based on the concepts learnt

2. Apply the concepts in various situation

Learning Outcome:

After the successful completion of the practical, the learner will be able to:

- 1. Solve problems
- 2. Apply the results proved
- 3. Generate examples and counterexamples

Module I Multivariate Integral Calculus

1.1 Sketching region of integration for double and triple integral. Computation using iterated integrals. Change of order of integration.

1.2 Change of variables. Use of polar, cylindrical and spherical coordinates. Finding center of mass, moment of inertia.

1.3 Parametrization of a curve in two or three dimensions. Computation of line integral for scalar valued as well as vector valued functions. Finding length of a curve. Finding work done by a force, flow and flux.

1.4 Use of Green's theorem. Integration by change of parametrization. Computation of area of a region enclosed by a simple closed curve Conservative functions, potential function for a conservative function. Verification of path independence in case of a conservative functions

1.5 Parametrization of surfaces. Computation of vectors normal to the given surface. Simple problems on computation of surface integrals. Using change of variables

1.6 Divergence and curl. Problems on use of Stoke's theorem and Divergence theorem. Verification of Stoke's theorem and Divergence theorem

Module 2 Group theory and Ring theory

2.1.Normal subgroups, quotient groups

- 2.2.Cayley's thm and external direct product
- 2.3.Ring, subring Integral domain
- 2.4. Homomorphism and isomorphism of rings
- 2.5. Polynomial rings
- 2.6. Divisibility, prime and maximal ideals

T. Y. B. Sc. (Mathematics) SEMESTER VI - Practical - II COURSE CODE: 23US6MTCCP2 Credit- 02

2. Apply the con	
 Solve problem Apply the rest 	
Module I	Topology of Metric Spaces II
1.1 Problems on Contin	uous functions and sequential continuity.
1.2 Problems on Uniform	n continuity.
1.3 Problems based on	the definition of compact sets. Heine Borel theorem.
1.4 Problems based or under continuous map.	n sequential compactness, fixed point theorem. Image of compact sets
1.5 Problems based on S	Separated sets and connected spaces. Components
1.6 Problems on path co	onnected sets. Intermediate value property.
Module II	Complex Analysis
between limits of a fur	tion of complex Variable, Limits and Theorem on Limits (connection action of complex variable and limits of real valued functions of two real a function, Derivatives, Differentiation Rules .
	hy-Riemann Equations, Sufficient Conditions for Differentiability, Polar nctions, Harmonic functions, Harmonic conjugate.
function, Branch of log	ponential function, Periodicity of the Exponential function, the Logarithmic garithms, Trigonometric functions, Hyperbolic functions, Line integral of a Contours, Contour integral.

2.4 Problems on Anti-derivatives, Cauchy Groursat's Theorem, Simply and multiply Connected domains. Evaluation of line integral $\int f(z) dz$ over |z-z0| = r. Problems on Cauchy integral formula, An Extension of the Cauchy Integral formula, Liouville's Theorem.

2.5 Problems on Radius of convergences, disc of convergence, uniqueness of series representation, Taylor's series, Taylor's theorem for analytic function, Laurent series

2.6 Problems on Isolated singular points, Types of isolated singular points, Residues, Cauchy residue theorem, Residue at Infinity, residues at poles, zeros of analytic functions

References:

- 1. S. Ponnusamy, Complex Analysis, Second Edition (Narosa)
- 2. J.W. Brown and R.V. Churchill, Complex Variables and Applications, International Student Edition, 2009. (Eighth Edition).
- 3. Complex Function theory; Donald Sarason; Hindustan book agency

TYBSC (MATHEMATICS) SEMESTER VI

Discipline Specific Elective Courses

Students are required to select any two courses

DSE	Title
DSE 1	Number Theory and its applications II
DSE 2	JAVA Programming
DSE 3	Combinatorics
DSE 4	Game Theory
DSE 5	Mathematical elements in computer graphics

Discipline Specific Course- I COURSE TITLE: Number Theory and its applications II COURSE CODE: 23US6MTDS1NTA CREDITS - 02]

Cours	se Learning Outcome	
After	the successful completion of the Course, the learner will be able to:	
CLO	1: Represent a real number with simple continued fraction	
CLO	2: Find solutions of Pell's equations	
CLO	3: Use classical cryptosystem to encrypt and decrypt a message	
Modu	Ile 1 Continued Fractions [12L]
Learn	ing Objectives	
The le	earner should be able to:	
1. Un	derstand the concept of continued fraction	
2. App	ply theory of continued fraction to solve problems	
Learn	ing Outcomes	
The le	earner will be able to:	
1. Pro	ove results related to finite and infinite continued fractions	
2. App	proximate an irrational with a rational with desired accuracy.	
3. Sol	ve Diophantine a equation using continued fraction	
1.1	Definition of finite continued fraction. Two different representations of a rational	[4]
	number as a finite simple continued fraction. Value of a finite continued fraction is	
	always rational. Solving linear Diophantine equation using Continued Fraction.	
1.2	K^{th} convergent (C _k) of a continued fraction. Representation of C _k as p_k / q_{k} . The	[4]
	convergents with even subscript forms a strictly increasing sequence and	

	convergents with odd subscript forms a strictly decreasing sequence.	
1.3	Definition of infinite continued fraction. Representation of an irrational number as an infinite simple continued fraction. Value of an infinite continued fraction is alway irrational. Every irrational number has a unique representation as an infinite continued fraction. Rational approximation of an irrational number. If $1 \le b \le q_n$ then p_n/q_n is better rational approximation for irrational number x than any rational number a/b.	
Refer	ence books	
•	David M. Burton. An Introduction to the Theory of Numbers. Tata McGraw Hill H. Zuckerman and H. Montgomery. Elementary number theory. John Wiley & Son	
Addit •	ional Reference books G. H. Hardy, and E.M. Wright, An Introduction to the Theory of Numbers. Low pric edition. The English Language Book Society and Oxford University Press	
Mod		12L]
Learn	ing Objectives	
The le	earner should be able to:	
1. So	lve Pell's equations	
2. Pro	ove certain properties of some Special Numbers	
Learn	ing outcomes	
The le	earner will be able to:	
1. Fin	d solutions of Pell's equations	
	mpute arithmetic functions $d(n)$ (or $\tau(n)$), $\sigma(n)$	
	ove results related to special numbers mentioned.	1
2.1	Pell's equation $x^2 - dy^2 = n$, where d is not a square of an integer. Solutions of Pell's equation. (The proofs of convergence theorems to be omitted)	[4L]
2.2	Arithmetic functions of number theory: d(n) (or τ (n)), σ (n) and their properties. μ (n) and the Mobius inversion formula	[3L]
2.3	Special numbers: Fermats numbers, Perfect numbers, Amicable numbers, Pseudo primes, Carmichael numbers. Algebraic and transcendental numbers. Algebraic integers, minimal polynomial of algebraic numbers.	[5L]
Refer	ence books	
•	David M. Burton. An Introduction to the Theory of Numbers. Tata McGraw Hill	
•	H. Zuckerman and H. Montgomery. Elementary number theory. John Wiley & Son	s. Inc.
Addit	ional Reference books	
	Hardy, and E.M. Wright, An Introduction to the Theory of Numbers. Low priced edit nglish Language Book Society and Oxford University Press	ion.

Mod	ule 3	Cryptography	[12L]
Learr	ning Obj	jectives	
The l	earner s	should be able to:	
1. Us	e some	classical methods to encrypt and decrypt a message	
Learr	ning Ou ^r	tcomes	
The l	earner v	will be able to:	
1. En	crypt ar	nd decrypt a message using classical cryptosystem.	
3.1	Classi	cal Cryptosystems, Shift cipher, affine cipher, Vigenere cipher.	[4]
3.2	Play F	air cipher, ADFGX cipher, Block Cipher.	[4]
3.3	Public	Key cryptosystem, RSA algorithm	[4]
Refe	rence b	ooks	
•	David	M. Burton. An Introduction to the Theory of Numbers. Tata McGraw Hill	
•	Wade	e Trappe, Lawrence C Washington Introduction to Cryptography with Codi	ng Theory.
Addi	tional R	eference books	
•	H. Zu	ckerman and H. Montgomery. Elementary number theory. John Wiley & S	ons. Inc.
•	G. H.	Hardy, and E.M. Wright, An Introduction to the Theory of Numbers. Low	oriced

• G. H. Hardy, and E.M. Wright, An Introduction to the Theory of Numbers. Low priced edition. The English Language Book Society and Oxford University Press, 1981

T.Y. B. Sc. (Mathematics) SEMESTER VI Discipline Specific Course- II COURSE TITLE: COURSE CODE: 23US6MTDSE2JP CREDITS - 02]

Cours	e Learning Outcome	
CLO	1: Write programs using basic tools available in Java including built in functions	
CLO	2: Apply principles of inheritance and write programs	
CLO	3: Create various geometrical figures using Applet	
Modu	5 5 5 11	[12L]
	ing Objectives:	[120]
	arner should be able to:	
1.	Understand the difference in structured programming and object-oriented	
	programming, Features of OOPs.	
2.	Accept data from the command prompt.	
	Create classes and objects.	
4.	Understand various data types and their conversion to another data type.	
5.	Understand Some special methods its uses	
6.	Understand difference in Java's approach to arrays as compared to C.	
Learn	ing Outcome:	
After	the successful completion of the module, the learner will be able to:	
1.	Create classes with or without instance variables/ methods	
2.	Typecast different types of data as per requirement	
3.	Create arrays and access them	
1.1	Object-Oriented approach: Comparison between structured and object-oriented	[2L]
	approach. Features of object-orientations: Abstraction, Inheritance,	
	Encapsulation and Polymorphism. Concept of package. Integer class method:	
	parseInt().	
1.2	Introduction: History of Java, Java features, different types of Java programs,	[4L]
	Differentiate Java with C. Java Virtual Machine.	
1.3	Java Basics: Variables and data types, declaring variables, literals: numeric,	[3L]
	Boolean, character and String literals, keywords, type conversion and casting.	
	Standard default values. Java Operators, Loops and Controls.	
	Classes: Defining a class, creating instance and class members: creating object of	
	a class; accessing instance variables of a class; creating method; naming method	
	of a class; accessing method of a class; 'this' keyword, constructor Basic	

	Constructor; parameterized constructor; calling another constructor. Finalizer	
	method (only concepts)	
1.4	Arrays: one and two-dimensional array, declaring array variables, creating array	[31
	objects, accessing array elements.	-
Main	Reference:	
•	Java The Complete Reference, 8th Edition, Herbert Schildt, Tata McGraw Hill	
Addit	ional References:	
•	Programming with Java: A Primer 4th Edition by E. Balagurusamy, Tata McGraw H Eric Jendrock, Jennifer Ball, D Carson and others, The Java EE 5 Tutorial, Pearson Education, Third Edition, 2003.	lill.
•	Ivan Bayross, Web Enabled Commercial Applications Development Using Java 2, Publications, Revised Edition, 2006	BPB
•	Joe Wigglesworth and Paula McMillan, Java Programming: Advanced Topics, Tho Course Technology (SPD), Third Edition, 2004.	
•	The Java Tutorials of Sun Microsystems Inc. http://docs.oracle.com/javase/tutori	al
Modu	• •	
	ing Objectives	
	arner should be able to:	
	Introduce Inheritance, its scope and limitations.	
	Implement inheritance for various mathematical concepts.	
	ing outcomes	
	arner will be able to:	
	Write programs involving inheritance	
	Overload methods for various instances	
3.	Override methods for various instances	
2.1	Inheritance: Various types of inheritance, super and subclasses, keywords-	[4L]
	'extends'; 'super', final.	
	overloading methods	[2L]
2.2	5	

Additional References:

- Programming with Java: A Primer 4th Edition by E. Balagurusamy, Tata McGraw Hill.
- Eric Jendrock, Jennifer Ball, D Carson and others, The Java EE 5 Tutorial, Pearson Education, Third Edition, 2003.
- Ivan Bayross, Web Enabled Commercial Applications Development Using Java 2, BPB Publications, Revised Edition, 2006

•	Joe Wigglesworth and Paula McMillan, Java Programming: Advanced Topics, Tho Course Technology (SPD), Third Edition, 2004.	1115011
•	<u>The Java Tutorials of Sun Microsystems Inc</u> . http://docs.oracle.com/javase/tutori	ial
Modu		[12L]
Learn	ing Objectives	
The le	earner should be able to:	
1.	The aim of this module is to introduce concepts of Applet	
2.	Create animation for various effects.	
Learn	ing outcomes	
The le	earner will be able to:	
1.	Draw simple and complex geometric objects	
2.	Create animation using simple geometric structures	
3.1	JAVA Applets: Difference of applet and application, creating applets, applet life	[3L]
	cycle.	
3.2	Graphics, Fonts and Color: The graphics class, painting, repainting and updating	[3L]
	an applet, sizing graphics. Font class, draw graphical figures - lines and	
	rectangle, circle and ellipse, drawing arcs, drawing polygons. Working with	
	Colors: Color methods, setting the paint mode.	
Main	Reference:	
•	Java The Complete Reference, 8th Edition, Herbert Schildt, Tata McGraw Hill	
Addit	ional References:	
•	Programming with Java: A Primer 4th Edition by E. Balagurusamy, Tata McGraw H	Hill.
•	Eric Jendrock, Jennifer Ball, D Carson and others, The Java EE 5 Tutorial, Pearson Education, Third Edition, 2003.	
•	Ivan Bayross, Web Enabled Commercial Applications Development Using Java 2,	RPR
-	Publications, Revised Edition, 2006	
•	Joe Wigglesworth and Paula McMillan, Java Programming: Advanced Topics, Tho	mson
	Course Technology (SPD), Third Edition, 2004.	
•	The Java Tutorials of Sun Microsystems Inc. http://docs.oracle.com/javase/tutori	ial

TYBSC (MATHEMATICS) SEMESTER VI DSE Course- III COURSE TITLE: COMBINATORICS COURSE CODE: 23US6MTDS3CMB

Course Learning Outcomes After the successful completion of the Course, the learner will be able to: Count all possible distribution of objects in boxes either identical or non-CLO 1: identical CLO 2: Apply principle of inclusion and exclusion, pigeon hole to solve problems CLO 3: Solve recurrence relations [12L] Module 1 **Basic Counting Learning Objectives** The learner should be able to: 1. Study basic counting techniques, 2. Appreciate distribution with different criterion 3. Prove results related to the Stirling number and other theories Learning Outcomes After successful completion of the course the learner will be able to: 1. Count all possible distribution when the objects and boxes are identical and non-identical 2. Prove results related to Stirling number and other theories using combinatorial arguments 3. Solve problems based on distribution of objects, Stirling number 1.1 [1L] Four basic counting principles: Addition principle, multiplication principle, subtraction principle, division principle Permutation of a set and Combination of a set 1.2 Counting sets of pairs, two-way counting [2L] Circular Permutation, Permutation of a multi set, combination of a multi set.

1.3	Distribution of objects in boxes each of which are identical or distinct. Stirling number of the second kind.	[6L]
1.4	Proving identities using combinatorial arguments such as i Vandermonde's identity $\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r}$ ii Pascal's identity $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ iii $\sum_{i=0}^{k} \binom{k}{i}^2 = \binom{2k}{k}$	[1L]
1.5	Binomial theorem (with combinatorial proof), multinomial numbers, multinomial theorem (with combinatorial proof)	[2L]
Refer • •	ences Richard A. Brualdi; Introductory Combinatorics; Pearson (4th Edition) Alan Tucker; Applied Combinatorics; John Wiley and sons (6th edition) V. Krishnamurthy: Combinatorics – Theory and Applications, Affiliated E Press.	ast West
Modu	Ile 2 Principle of Inclusion and Exclusion, Pigeon hole principle and applications	[12L]
The le 1.	ing Objectives Parner should be able to Study Principle of inclusion exclusion Apply Pigeon hole principle	
At the 1.	ing Outcomes e end of the module, the learner will be able to Prove results related to inclusion and exclusion and Pigeonhole principle Apply Pigeonhole principle	2
2.1	Principle of Inclusion and exclusion and applications.	[3L]
2.2	Derangements on n symbols, d _n . Arithmetic applications.	[3L]
2.3		

- Richard A. Brualdi; Introductory Combinatorics; Pearson (4th Edition)
- Alan Tucker; Applied Combinatorics; John Wiley and sons (6th edition)
- V. Krishnamurthy: Combinatorics Theory and Applications, Affiliated East West Press.

Module 3	Generating functions and recurrence relation	[12L]
Learning Ob	jectives	
The learner	should be able to	
1. Unde	erstand the purpose of generating functions	
2. Stud	y generating functions	
3. Evalu	uate the coefficients of a generating function	
4. Com	prehend various methods to solve homogeneous and non-homogen	eous
recu	rrence relations	
Learning Ou	tcomes	
At the end c	f the module, the learner will be able to	
1. Calcu	ulate their coefficients of generating functions	
2. Iden	tify the appropriate method to obtain the generating function	
3. Solve	e homogeneous and non-homogeneous recurrence relations	
3.1 Re	view : Arithmetic and Geometric sequence	[3L]
pr	oblems of four mutually overlapping circles, Fibonacci sequence.	
Re	lationship of binomial coefficient along the diagonals of a Pascal's	
tri	angle with Fibonacci sequence	
3.2 Ge	enerating Function Models, Calculating Coefficients of Generating	[5L]
Fu	nctions	
Ра	rtitions, Ferrers diagram	
Ex	ponential Generating Functions	
3.3 Lir	near Homogeneous Recurrence relations.	[4L]
No	on-Homogeneous Recurrence Relations.	
Po	currences and Generating functions.	

References

- Alan Tucker; Applied Combinatorics; John Wiley and sons (6th edition)
- Richard A. Brualdi; Introductory Combinatorics; Pearson (4th Edition)
- V. Krishnamurthy: Combinatorics Theory and Applications, Affiliated East West Press.

T.Y. B. Sc. (Mathematics) SEMESTER VI Discipline Specific Course- IV COURSE TITLE: Game Theory COURSE CODE: 23US6MTDS4GMT CREDITS - 02]

Learning outcome:

After the successful completion of the Course, the learner will be able to:

- CLO 1. Understand strategies to analyze games to solve the problem
- CLO 2. Explore principle of dominance
- CLO 3. Solve zero sum games

Module IAnalysing games[12L]
Objective: Aim of this module is to introduce Game theory, its Characteristics, And zero-sum
game
Learning Outcome: A student after learning this module is expected to solve simple competitive
Games graphically.
Competitive games, Characteristic of competitive games,
zero-sum and non-zero-sum games, Two-persons Zero-sum games, conservative players, saddle
point and value of a game.
Maximin-Minimax criterion, Games without saddle points,
Graphic method for 2xn and mx2 Games.
Combinatorial games
General-sum games, Nash equilibria
Module II Principle of Dominance
Objective : Understand the Principles of solving Zero-sum games.
Learning outcomes: A student after learning this course is expected to understand the principle
behind zero-sum games and how one can solve them.
Symmetric game, Minimax and saddle point theorem,
Fundamental theorem of matrix Game,
Principle of Dominance
Module III Methods to solve Zero-sum games
Objective : Aim of this module is to introduce some of the methods that can be employed to
solve a zero-sum problem.
Learning outcome: After learning this module students are expected to know how to solve some

of the zero-sum problems.

Connection between Game and LP. Algebraic method for m x n Games, Iterative method for approximate solution, Extension of two person games.

References Sultan chand and sons

- 1. Linear Programming and theory of games, P.K. Gupta and Manmohan
- 2. Game Theory, Thomas S. Ferguson.
- 3. Essentials of Game Theory_Kevin Leyton-Brown and Yoav Shoham.
- 4. gametheory.net
- 5. (IGT) Martin Osborne, An Introduction to Game Theory, Oxford University Press, 2003
- 6. (AT) Vijay Krishna, Auction Theory, Academic Press.
- 7. (SG) PrajitDutta, Strategies and Games, MIT Press
- 8. (Website 1) http://www.ece.stevens-tech.edu/~ccomanic/ee800c.html
- 9. (GTWE) Allan MacKenzie, Game Theory for Wireless Engineers, Synthesis lectures on Communications, 2006

10. (IITD Website)

- 11. (HV) Hal Varian, Microeconomic Analysis, Norton
- 12. (Gandhi) Gandhi et.al., Towards Real-Time Dynamic Spectrum Auctions by Gandhi
- 13. *Game Theory, Alive*. Anna R. Karlin and Yuval Peres. (Sep 25, 2016 version)

T.Y. B. Sc. (Mathematics) SEMESTER VI Discipline Specific Course- V COURSE TITLE: Mathematical elements in computer graphics COURSE CODE: 23US6MTDS5ECG CREDITS - 02

Course	Learning Outcome	
After th	ne successful completion of the Course, the learner will be able to:	
CLO 1	Explore two dimensional transformations	
CLO 2	Understand three dimensional transformations	
CLO 3	Understand plane and space curves	
Modul	1 Two dimensional Transformations	[10L]
Learnir	g Objectives:	
The lea	rner should be able to:	
unders	tand two dimensional transformations	
Learnir	g Outcome:	
After th	ne successful completion of the module, the learner will be able to:	
	understand two dimensional transformations	
1.1	Introduction, Representation of Points, Transformations and Matrices,.	[1L]
1.2	Transformation of Points, Transformation of Straight Lines, Midpoint	[2L]
1.3	Transformation, Transformation of Parallel Lines, Transformation of	[3L]
	Intersecting Lines, Rotation, Reflection, Scaling, Combined	
	Transformations	
1.4	Transformation of	[2L]
	the Unit Square, Solid Body Transformation, Translations and	
	Homogeneous	
	Coordinates, Rotation About an Arbitrary Point, Reflection Through an	
	Arbitrary	
	Line.	
1.5	Projection - A Geometric Interpretation of Homogeneous Coordinates,	[2L]
	Overall	
	Scaling, Points at Infinity.	
Refere	nce books	
●	D.F. Rogers, J. Alan Adams, Mathematical Elements of Computer Graphics,	Second
	Edition, McGraw-Hill Publishing Company.	
•	John Vince, Matrix transforms for computer games and animations.	
•	John Vince, Mathematics for Computer Graphics.	

•	Steven J Jenke, Mathematical structures for computer graphics.	
Mod	ale 2 Three Dimensional Transformations	10L]
Learr	ing Objectives	
The l	earner should be able to: Understand three dimensional transformations	
Learr	ing outcomes	
The l	earner will be able to: Understand three dimensional transformations	
2.1	Three Dimensional Scaling and Shearing, Three Dimensional Rotation. Three	[2L]
	Dimensional Reflection. Three Dimensional Translation	
2.2	Multiple Transformations, Rotations about an Axis Parallel to a coordinate	[3L]
	axis, Rotation about an Arbitrary Axis in Space, Reflection Through an	
	Arbitrary Plane	
2.3	Affine and Perspective Geometry, Orthographic Projections, Axonometric	[3L]
	Projections, Oblique Projections, Perspective Transformations	
2.4	Techniques for generating perspective views, Vanishing points.	[2L]
•	 D.F. Rogers, J. Alan Adams, Mathematical Elements of Computer Graphics, S Edition, McGraw-Hill Publishing Company. John Vince, Matrix transforms for computer games and animations. John Vince, Mathematics for Computer Graphics. Steven J Jenke, Mathematical structures for computer graphics. 	Second
Mod	ule 3 Plane and Space Curves, Bezier Curves [16L]	
Learr	ing Objectives	
The l	earner should be able to:	
Unde	rstand plane and space curves	
Learr	ing outcomes	
The l	earner will be able to:	
Unde	rstand plane and space curves	
3.1	Curve representation, non-parametric curves, parametric curves, [7L]	
	parametric representation of a circle, parametric representation of	
	an Ellipse, parametric representation of a parabola, parametric	
	representation of a Hyperbola.	
3.2	Bezier curves: Introduction, definition, properties (without proofs), [9L]	
	curve fitting (up to n = 3), equation of the curve in matrix form (up to n = 3).	
Refe	rence books	

- D.F. Rogers, J. Alan Adams, Mathematical Elements of Computer Graphics, Second Edition, McGraw-Hill Publishing Company.
- John Vince, Matrix transforms for computer games and animations.
- John Vince, Mathematics for Computer Graphics.
- Steven J Jenke, Mathematical structures for computer graphics.

Elective 1	Number Theory and its applications II				
 Learning Objectives: The Practical is intended to 1. Solve problems based on the concepts learnt 2. Apply the concepts in various situation 					
 Learning Outcome: After the successful completion of the practical, the learner will be able to: 1. Solve problems 2. Apply the results proved 3. Generate examples and counterexamples 					
	ontinued fraction, solving linear Diophantine equation using gent (C _k) of a continued fraction.				
1.2 Problems based on Repre fraction, Rational approximation	esentation of an irrational number as an infinite simple continued on of an irrational number.				
1.3 Problems based on Solutions of Pell's equation, Arithmetic functions of number theory: d(n) (or $\tau(n)$), $\sigma(n)$ and their properties. $\mu(n)$ and the Mobius inversion formula.					
Pseudo primes, Carmichael nu	1.4 Problems based on Special numbers: Fermats numbers, Perfect numbers, Amicable numbers, Pseudo primes, Carmichael numbers. Algebraic and transcendental numbers. Algebraic integers, minimal polynomial of algebraic numbers.				
1.5 Problems based on Classic Fair cipher, ADFGX cipher.	al Cryptosystems, Shift cipher, affine cipher, Vigenere cipher, Play				
1.6 Problems based on Block C	ipher, Public Key cryptosystem, RSA algorithm				
Elective 2	Java programming				
Learning Objectives: The Practical is intended to 1. Write programs implementing Mathematical concepts 2. Creating simple animations					
Learning Outcome: After the successful completion of the practical, the learner will be able to: 1. Write simple and complex programs 2. Implementing Mathematical concepts using Java 3. Create applets leading to simple animation					

1.1 one class and two class programs illustrating arrays and use of objects 1.2 two class programs illustrating default constructor, constructors with parameters and the keyword this. 1.3 programs illustrating inheritance 1.4 Programs illustrating overloading and overriding problems 1.5 Working with applets for creating geometrical figures which can lead to simple animation. 1.6 Applets with setting fonts and different background, Strings within Geometrical figures Combinatorics **Elective 3** Learning Objectives: The Practical is intended to 1. Solve problems based on the concepts learnt 2. Apply the concepts in various situation Learning Outcome: After the successful completion of the practical, the learner will be able to: 1. Solve problems 2. Apply the results proved 1.1 Problems based on permutations, combinations, two-way counting 1.2 Proving equalities/inequalities using combinatorial reasoning and problems based on binomial and multinomial theorem. 1.3 Problems based on principles of inclusion and exclusion and derrangements. 1.4 Problems based on pigeon hole principle 1.5 Problems based on generating functions 1.6 Problems to solve homogeneous and non-homogeneous recurrence relations **Elective 4** Game theory

Learning Objectives:

The Practical is intended to

- 1. Solve problems based on the concepts learnt
- 2. Apply the concepts in various situation

Learning Outcome:

After the successful completion of the practical, the learner will be able to:

- 1. Solve problems
- 2. Apply the results proved

1.1 Problems based on Zero-sum problems

1.2 Problems based on Non-Zero-sum problems

1.3 Problems based on Symmetric games, minimax and saddle-point

1.4 Problems based on dominance principle

1.5 Problems based on mxn games

1.6 Problems based on extension of two person games

Elective 5

Mathematical elements in computer graphics

Learning Objectives:

The Practical is intended to

- 1. Solve problems based on the concepts learnt
- 2. Apply the concepts in various situation

Learning Outcome:

After the successful completion of the practical, the learner will be able to:

- 1. Solve problems
- 2. Apply the results proved

1.1 Problems based on translations of points and lines

1.2 Problems based on rotations, reflections and translations of two-dimensional objects

1.3 Problems based on Scaling, shearing, rotations, reflections and translations of 3 dimensional objects

1.4 Orthographic, axonometric projections, perspective transformations

1.5 parametric and non-parametric representations of plane curves and space curves

1.6 Bezier curves

Students are required to select any one courses

Of the following Generic courses, learners can select any one of the courses. The courses having maximum number of votes will be considered for the year and subject to availability of the concerned teacher.

DSE	Title
GE 1	Operation Research -II
GE 2	PL/SQL

T.Y. B. Sc. (Mathematics) SEMESTER VI General Elective - I

COURSE TITLE: Operations Research-II

COURSE CODE: 23US6MTGEOR CREDITS - 02]

This is a practical oriented course

After the successful completion of the Course, the learner will be able to:			
CLO 1	: Solve transportation problem		
CLO 2	: Solve assignment problem		
Modul	e 1 Transportation problem	[20L]	
Learnii	ng Objectives:		
The lea	irner should be able to:		
Find In	itial Feasible initial basic solution by the prescribed methods		
Solve t	ransportations		
Proble	m and allied problems using MODI method		
Learnii	ng Outcome:		
After t	ne successful completion of the module, the learner will be able to:		
	d initial basic feasible solution by North-west corner, Matrix minimum and thod	VOGLEs	
2. Sol	ve transportation problem and its variations with restrictions using MODI m	nethod	
1.1	Transportation problem (TP) and its formulation. Finding initial basic feasible	[10L]	
	solution of TP using North-West Corner Rule, Least Cost and Vogel's		
	Approximation Method, problem.		
1.2	MODI method for finding optimal solution for TP,	[10L]	
Refere	nce books		
•	G. Hadley: Linear Programming. Narosa, Reprint, 2002.		
•	 Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition, 2010. 		
A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles			

and Practice, John Wiley & Sons, 2005.

Assignment Problem

• F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010.

[16L]

Learning Objectives

Module 2

The learner should be able to:

- 4. Understand various concepts used in Linear Programming
- 5. Use Graphical methods to solve Linear Programming problems
- 6. Use Iso cost line in graphical solutions

Learning outcomes

The learner will be able to:

- 3. Formulate the linear programming problems
- 4. Solve the linear programming problems graphically

2.1	Assignment problem and its formulation,	[6L]
2.2	Hungarian method for solving Assignment problem, Transhipment and	[10L]
	Travelling salesmen	
Refer	ence books	
•	G. Hadley: Linear Programming. Narosa, Reprint, 2002.	
•	• Hamdy A. Taha: Operations Research-An Introduction, Prentice Hall, 9th Edition,	
	2010.	

- A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research- Principles and Practice, John Wiley & Sons, 2005.
- F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata Mc-Graw Hill, 2010.

T.Y. B. Sc. (Mathematics) SEMESTER VI General Elective - II COURSE TITLE: PL/SQL

COURSE CODE: 23US6MTGEPLSQL CREDITS - 02]

This is a practical oriented course

After t	he successful completion of the Course, the learner will be able to:	
CLO 1	: Write simple programs	
Modul	e1 PL/SQL	[20L]
Learnii	ng Objectives:	
The lea	arner should be able to:	
Unders	stand command and operators	
Write s	simple programs	
Learnii	ng Outcome:	
After t	he successful completion of the module, the learner will be able to:	
1. Un	derstand how to write simple programs	-
1.1	Features and advantages, Identifiers, Delimiters, commands, Data types	[10L]
	and subtypes, date time, NULL	
1.2	Variables, Literals, arithmetic operators, relational operators, logical	[26L]
	operators, LIKE operators, BETWEEN operators, IN and ISNULL operators,	
	conditional statement, loops, labeling a loop, EXIT WHEN statement	
Refere	nce books	
•	PL/SQL Tutorial	

T.Y.B.Sc. (Mathematics) Semester VI

Skill Enhancement courses

T.Y. B. Sc. (Mathematics) SEMESTER VI Skill Enhancement Course COURSE TITLE: Wx-Maxima COURSE CODE: 23US6MTSE1MAX CREDITS - 02

Course	Learning Outcome			
	he successful completion of the Course, the learner will be able to:			
CLO 1				
	number theory using Wx-maxima			
CLO 2				
CLO 3				
	using Wx-maxima			
Modul	e 1 Linear Algebra, Calculus	[6L]		
Learni	ng Objectives			
The lea	irner should be able to:			
1.	Use the syntax and process to solve mathematical problems			
Learni	ng Outcomes			
After t	he successful completion of the module, the learner will be able to:			
1. Use	Wx-maxima software in solving problems of linear algebra and calculus			
1.1	Matrices, rank, characteristic polynomial, eigen values, eigen vectors	[2L]		
1.2	System of equations, Roots of polynomial	[2L]		
1.3	Derivatives, integration, limit, series	[2L]		
Refere	nce books			
1. Wx-	maxima Manual			
Modul	e 2 Graphs, Ordinary differential equations, number theory	[6L]		
Learni	ng Objectives			
The lea	arner should be able to:			
1. Use	the syntax and process to solve mathematical problems			
Learni	ng outcomes			
The lea	rner will be able to:			

1. Use	1. Use Wx-maxima software in plotting 2D and 3D graphs			
2. Sol	2. Solve first order differential equations using Wx-maxima			
3. Find continued fraction of any real number				
2.1	2D and 3D graphs	[3L]		
2.2	First order differential equations	[2L]		
2.3	Continued Fraction	[1L]		
Reference books				
1. Wx-maxima manual				

Guidelines about conduct of Projects/Case Study.

• Projects/ Case Study/ Book Review:

Conduct and Evaluation: A learner can submit a project/ Case Study/ do a Book review. The project should be 10-page typed pages in an A4 size paper with font size of 12. The topic of project should be selected in consultation of the teacher. Maximum marks allotted for this is 20 and the remaining 20 marks are from tests and other activities.

The topic can be of expository / historical survey / interdisciplinary nature and the material covered in the project / case study should go beyond the scope of the syllabus. The learner must clearly mention the sources (Book / on-line) used for the project/ case study. The use of Mathematical software is encouraged. The project should be done under the supervision of a faculty in a college/ Institution / University.

The following Marking scheme is suggested for evaluation of projects / case study:

30% marks for exposition20% marks for literature20% marks for Scope10% marks for originality20% marks for presentation.

Continuous evaluation:

Internal evaluation (40%):

- 1. There will be 40 marks continuous evaluation.
- 2. A learner can be assigned projects/book review, this will be evaluated out of 20 marks.
- 3. The project / book review will be under the guidance of the mentor allotted to the learners by the head of the department.
- There will be regular tests which can be of the form quiz/ descriptive test/ objective test/ group discussion presentation etc.
- Each test will be marked out of 20 marks.
- The total score obtained in all of the above will finally be averaged to 40 marks.
- A learner should secure at least 40% marks to be eligible to get a passing grade (The learner needs to secure minimum of 16 marks out of 40 to pass the internal for each theory course).
- A learner who has failed to secure a passing grade /absent for any reason in the internal evaluation will have to give test out of 40 marks, consisting of Questions based on the entire syllabus.

Semester end Examination (60%):

At the end of the semester there will be a semester end exam carrying a maximum of 60 marks.

- There will be 4 Questions one from each Module. Each question will carry 15 marks unless otherwise stated in the syllabus (with option, maximum of 25 marks). The question paper will cover the whole syllabus in such a way that a learner will need to have understood each topic well to have secured 80% and above and an average learner can at least secure a passing grade.
- A learner should secure at least 40% marks to be eligible to get a passing grade (The learner needs to secure minimum of 24 marks out of 60 to pass the semester end examination for each theory course).

Practical examination

- 2. Practical Examination out of 100 marks will be conducted based on the theory courses.
- 3. 40% evaluation will be based on continuous evaluation and balance 60% will be Semester end examination.
- 4. Certified Journal will be part of internal evaluation.
- 5. Internal evaluation will be based on experiential learning such as preparing Mathematical model/ Games/quizzes, Applying Concepts learnt in other areas of mathematics or other Sciences, Presentations.
- 6. Contribution during Cooperative/Participative learning will be evaluated during regular practical. No prior intimation will be given.
- 7. Semester end examination of the Practical examination will be descriptive and will be based on the entire syllabus of both theory courses.

distribution of marks for practical examination out of 100. (corresponding modification for exam conducted out of 150 marks)

	Course 1	Course 2	Total
	internal continuous		Generic
	assessment		courses
objective questions	6	6	12

Mathematical subject/Generic courses

journal	5	5	10
viva	5	5	10
Modelling	4	4	8
Total	20	20	40
	Semest	er end	
	descriptive	e problem	
	solving		
Comprehension kind	6	6	12
Application type	8	8	16
Analysis type	8	8	16
evaluation/creating type	8	8	16
Total	30	30	60

For Compute		
	internal continuous assessment	
	20	
making modifications/writing as per constraints gi	15	
	40	
Semester end practical exan	nination	Marks
Writing programme (2 programmes)	applying it to mathematical concepts learnt (creating kind)	15
	understanding type Applying type	10
	compiling and execution	5
	correcting errors and obtaining output	10
	10	
	Total	40

Examination for unsuccessful learners (Termed as ATKT examination)

- Internal examination will be a test conducted out of 40 marks based on the entire syllabus. It will be written test/ online test as per the situation. Details of the pattern etc will be uploaded in the noticeboard section of our website kjssc.somaiya.edu
- Semester Exam will have the same paper pattern as the regular exam. (Subject to change.)
- Internal Component of the Practical Examination (40%) will be objective based examination. This will include journal marks (only Certified Journal will be eligible for marks)
- Notice regarding syllabus will be uploaded in the noticeboard section in our website.