

Learning Outcomes based Curriculum Framework

(LOCF)

For

T.Y.B.Sc. Chemistry

Undergraduate Programme

From

Academic year

2023-24

Board of studies in Chemistry

Undergraduate and Post graduate

	Name	Designation	Institute/Industry
		Head of the Department	
1	Dr. Bright O. Philip	HOD and Chairman	K J Somaiya college of
			science and commerce
	Subject Ex	pert nominated by Vice-	Chancellor
1	Prof. B. M. Bhanage	Professor, Industrial	ICT, Mumbai
	(Inorganic chemistry)	and	
		Engineering chemistry	
		Subject experts	
1	Prof. Suresh Pawar	Professor, Chemistry	University of Mumbai
2	Dr. Brijesh Singh	HOD and Associate	Jai Hind College, Mumbai
		Professor, Chemistry	
3	Dr. Kalpana Jain	HOD and Associate	B.N.N. College, Bhiwandi
		Professor, Chemistry	
4	Dr. P.A. Hassan	Scientist	BARC
	Representative f	rom Industry/corporate se	ector/allied area
1	Dr. Ajit Datar	Advisor	Shimadzu Analytical (I) Pvt.
			Ltd, Mumbai
2	Dr. Ranjan Mogre	MD	Avtos Life Sciences Pvt.
			Ltd, Mumbai
		Meritorious Alumnus	
1	Dr. Druman Utekar	Assistant Professor	K J Somaiya College of
			Engineering, Vidyavihar
2	Dr. Rajesh Rajshrike	Technical Manager	BASF
3	Dr. Rikhil Shah	Lead Analyst-	Avient Corporation
		Intellectual Property	

	F	aculty of the specialisation	n
1	Dr. Pradnya. J. Prabhu	Principal	K J Somaiya college of
			science and commerce
2	Dr. Sugandha Shetye	Associate Professor	K J Somaiya college of
			science and commerce
3	Dr. Chitra Kamath	Associate Professor	K J Somaiya college of
			science and commerce
4	Dr. Veena Khilnani	Associate Professor	K J Somaiya college of
			science and commerce
5	Dr. Nishamol Kanat	Associate Professor	K J Somaiya college of
			science and commerce
6	Dr. Yogesh Ghalsasi	Associate Professor	K J Somaiya college of
			science and commerce
7	Dr. Vanita Kulkarni	Associate Professor	K J Somaiya college of
			science and commerce
8	Dr. Saurabh Shete	Assistant Professor	K J Somaiya college of
			science and commerce
9	Dr. Trupti Tawde	Assistant Professor	K J Somaiya college of
			science and commerce
10	Dr. Rohit S. Chauhan	Assistant Professor	K J Somaiya college of
			science and commerce
11	Dr. Aniket Pawanoji	Assistant Professor	K J Somaiya college of
			science and commerce
12	Dr. Nanabhau	Assistant Professor	K J Somaiya college of
	Karanjule		science and commerce
13	Dr. Dilip Kumar Yadav	Assistant Professor	K J Somaiya college of
			science and commerce

14	Dr. Afsar Ali Siddiki	Assistant Professor	K J Somaiya college of science and commerce
15	Dr. Mithun Mondal	Assistant Professor	K J Somaiya college of science and commerce
16	Mr. Jaidip Wable	Assistant Professor	K J Somaiya college of science and commerce
17	Dr. Amol Pawar	Assistant Professor	K J Somaiya college of science and commerce
18	Mrs. Meenakshi Wagh	Assistant Professor	K J Somaiya college of science and commerce
19	Mr. Sarang Gujar	Assistant Professor	K J Somaiya college of science and commerce

7.3 T. Y. B.Sc. Syllabus [6 Units] with effect from the Academic year 2023–2024

Syllabus - T. Y. B.Sc. Chemistry [6 Units]

Course	Course	Course	Credits	Hour	Periods	Module	Lectures	E	xamination	
No.	Title	code			(50 min)		per			
							module			
							(50			
							minutes)			
								Internal	External	Total
								Marks	Marks	Marks
SEMESTER	R V									
Core co	urses THEO	RY								
1	Physical	23US5	2	30	36	3	12	40	60	100
	Chemistry	CHCCI								
	III	PHC3								
II	Inorganic	23US5	2	30	36	3	12	40	60	100
	Chemistry	CHCC								
	Ш	2INC3								
III	Organic	23US5	2	30	36	3	12	40	60	100
	Chemistry	CHCC								
	III	3ORC3								
IV	Analytical	23US5	2	30	36	3	12	40	60	100
	Chemistry I	CHCC								
		4ANCI								
Core co	urses PRACT	FICAL								
CCP I	Based on	23US	2	4	48			40	60	100
	CC I and	5CHC CP1								
CC P II	Based on	23US5	2	4	48			40	60	100
	CC II and	СНСС								
	CC III	P2								

Disciplin	Discipline Specific Electives THEORY									
1/11	Fundament	23US5	2	30	36	3	12	40	60	100
	s of drug	CHDSI								
	chemistry	FDC								
	OR	Or								
	Essentials of	23US5								
	radiation	CHDS2								
	chemistry	ERC								
III/IV	Research	23US5	2	30	36	3	12	40	60	100
	methodolo	CHDS3								
	gy in	RMC								
	chemistry	Or								
	OR	23US5								
	Environme	CHDS4								
	ntal	ENC								
	chemistry									
Disciplin	e Specific El	ectives	PRACTICA	AL	I	I	1	I	I	
DSE P	Practical	23US5	2	4	48			40	60	100
	Based on	CHDSP								
	DSE									
	Courses									
Skill Enhar	ncement Cours	se	I	1	L		1		L	
1/11	Business	23US5	2					40	60	100
	skills for	CHSE1								
	Chemists	BSC								
	OR	Or								
	Food	23US5								
	Chemistry	CHSE2								
		FOC								

SEMEST	ER VI									
Core co	Core courses THEORY									
I	Physical	23US6	2	30	36	3	12	40	60	100
	Chemistry	CHCCI								
	IV	PHC4								
II	Inorganic	23US6	2	30	36	3	12	40	60	100
	Chemistry	CHCC								
	IV	2INC4								
III	Organic	23US6	2	30	36	3	12	40	60	100
	Chemistry	CHCC								
	IV	3ORC4								
IV	Analytical	23US6	2	30	36	3	12	40	60	100
	Chemistry	CHCC								
	II	4ANC								
		2								
Core co	urses PRACT	FICAL								
CC P I	Based on	23US6	2	4	48			40	60	100
	CC I and	CHCC								
	CC IV	P1								
CC P II	Based on	23US6	2	4	48			40	60	100
	CC II and	CHCC								
	CC III	P2								
Disciplin	e Specific El	ectives	THEORY							
1/11	Introductio	23US6	2	30	36	3	12	40	60	100
	n to	CHDSII								
	dyestuff	DC								
	chemistry	or								
	OR	23US6								
	Pesticide	CHDS2								
	chemistry	PSC								
III/IV	Polymer	23US6	2	30	36	3	12	40	60	100
	OR	CHDS3								
		PLC								

	Industrial	Or							
	Chemistry	23US6							
		CHDS4							
		INC							
Disciplin	e Specific El	ectives	PRACTICA	AL	•				
DSE P	Practical	23US6	2	4	48		40	60	100
	Based on	CHDSP							
	DSE								
	Courses								
Skill Enh	ancement C	Course			·				
1/11	Chemistry	23US6	2				40	60	100
	of	CHSE1							
	Cosmetics	COC							
	OR	Or							
	Dairy	23US6							
	Chemistry	CHSE2							
		DAC							

** Skill enhancement courses may have theory or may have only practical component.

Credit distribution for T.Y.B.Sc. Chemistry

Semester	Course	Course title		Credits	
	number		Theory	Practical	Total
V	CC I	Physical Chemistry III	2	1	3
6 Units	CC II	Inorganic Chemistry III	2	1	3
	CC III	Organic Chemistry III	2	1	3
	CC IV	Analytical Chemistry I	2	1	3
	DSE	Fundaments of drug	2	1	3
	I/II	chemistry or Essentials of			
		radiation chemistry			
	DSE	Research methodology in	2	1	3
	III/IV	chemistry or Environmental			
		chemistry			
	AECC I	Environmental science	2		2
	SEC I/II	Business skills for chemist or	2		2
		Food Chemistry			
		Total Credits			22
VI	CC I	Physical Chemistry IV	2	1	3
6 Units	CC II	Inorganic Chemistry IV	2	1	3
	CC III	Organic Chemistry IV	2	1	3
	CC IV	Analytical Chemistry II	2	1	3
	DSE	Introduction to dyestuff	2	1	3
	1/11	chemistry or Pesticides			
		chemistry			
	DSE	Polymer or Industrial	2	1	3
	III/IV	Chemistry			
	AECC I	Environmental science	2		2

	SEC I/II	Chemistry of cosmetics or	2		2
		Dairy chemistry			
		Total Credits			22
V	CC I	Physical-Analytical Chemistry	2	1	3
3 Units	CC II	Inorganic-Organic Chemistry	2	1	3
	CC III	Biochemistry Courses	2	1	3
	CC IV		2	1	3
	DSE		2	1	3
	1/11				
	DSE		2	1	3
	III/IV				
	AECC I	Environmental science	2		2
	SEC I/II	Business skills for chemist or	2		2
		Food Chemistry			
VI	CC I	Physical-Analytical Chemistry	2	1	3
3 Units	CC II	Inorganic-Organic Chemistry	2	1	3
	CC III	Biochemistry Courses	2	1	3
	CC IV		2	1	3
	DSE		2	1	3
	1/11				
	DSE		2	1	3
	III/IV				
	AECC I	Environmental science	2		2
	SEC I/II	Chemistry of cosmetics or	2		2
		Dairy chemistry			

Somanya

Evaluation pattern

Evaluation pattern: Theory For each core course I, II, III, IV and DSE I and II and SEC I and II External (60 M) + Internal (40 M)

External: End Semester Examination

Paper Pattern: T. Y. B.Sc. Semester V/VI

External : 60 Marks

Duration: 2 hrs

Question No.	Module	Marks	Marks
		(with option)	(Without option)
QI	I	5 M X 6 Q = 30 M	5 M X 4 Q = 20 M
Q2	II	5 M X 6 Q = 30 M	5 M X 4 Q = 20 M
Q3	Ш	5 M X 6 Q = 30 M	5 M X 4 Q = 20 M

- Each question will have sub questions a, b, c, d, e, f out of which any 4 should be answered.
- Internal: 40 Marks:
 - i) 25 marks MCQ type test using ICT technique
 - ii) 15 marks assignment/workshop/Project/industrial visit
- Evaluation pattern: Practical
- Practical Evaluation:
 - i) 30 Marks practical examination at the end of each semester per paper.
 - ii) 20 Marks Continuous internal Evaluation

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Core Course-I

COURSE TITLE: Physical Chemistry III

COURSE CODE: 23US5CHCCIPHC3 [CREDITS - O2]

	Course Learning Outcome					
After	the successful completion of the Course, the learner will be able to:					
1.	Describe the concepts of Thermodynamics and Chemical Kinetics.					
2.	Recognize the different types of Electrochemical cells and their					
	applications.					
3.	Illustrate the concepts of Nuclear chemistry and reactions.					
Moo	dule 1 Chemical Thermodynamics and Chemical Kinetics [12L]					
Learn	ing Objectives:					
The n	nodule is intended to					
1.	Discuss different concepts like Gibb's and Helmholtz's free energy, chemical					
	potential and their significance.					
2.	Describe the basic theories and effect of temperature on rate of chemical					
	reactions.					
3.	Calculate of different and kinetic parameters using numericals.					
4.	Illustrate fundamental principles of radioactivity and Nuclear fission for					
	power generation					
Learn	ing Outcome:					
After	the successful completion of the module, the learner will be able to					
1.	Describe the concepts like free energy and chemical potential in					
2.	I hermodynamics in detail. Explain the kinetic theories through chemical reactions.					
3.	Solve different numerical based on the concepts of thermodynamics and					
	kinetics.					

1.1	Chemical Thermodynamics	8L
1.1.1	Gibbs free energy and Helmholtz free energy, variation	
	of Gibbs free energy with temperature and pressure,	
	Gibbs-Helmholtz equation	
1.1.2	Physical equilibria involving pure substances,	
	Clapeyron equation and variation of vapour pressure	
	with temperature, Clausius- Clapeyron equation and	
	its application. Partial molal properties, partial molal	
	volume and chemical potential, Gibbs- Duhem	
	equation	
1.1.3	Variation of chemical potential with temperature and	
	pressure, fugacity, activity and their relationship with	
	chemical potential, activity and activity coefficient	
1.2	Chemical Kinetics	4L
1.2.1	Effect of temperature on rate of a reaction,	
	temperature coefficient, Arrhenius equation, energy	
	of activation and its experimental determination	
	(Numerical expected)	
1.2.2	Collision theory of reaction rates, application of	
	collision theory to 1) Biomolecular reaction and 2)	
	Unimolecular reaction, Lindemann theory (derivation	
	expected), merits and drawbacks of collision theory.	
1.2.3	Activated complex theory of bimolecular reactions,	
	expression for rate constant of bimolecular reactions	
	(derivation not expected), comparison of collision	
	theory and activated complex theory.	

Autonomous (Affiliated to University of Mumbai)

References:

- Peter Atkins & Julio De Paula, Physical Chemistry 10th Ed., Oxford University Press (2014).
- Chemical Kinetics, Keith J Laidler, Third Edition, Pearson Education.

Module 2	Electrochemical Cells and Their Applications	[12L]
Learning Obje	ectives:	

This module is intended to

- Discuss different types of Electrochemical cells 1.
- 2. Illustrate the applications of EMF Measurements
- 3. Describe the concepts of Decomposition potential and Over voltage

Learning Outcome:

After the successful completion of the module, the learner will be able to

- Compare between Chemical and concentration cells 1.
- 2. Classify different types of Concentration cells.
- 3. Describe the Applications of EMF Measurements.
- 4. Recognize the concepts of Decomposition potential and Over voltage

2.1	Lewis concept of activity and activity coefficient, ionic	
	strength of a solution, Debye- Huckel limiting law	
	(derivation not expected)	
2.2	Classification of cells: Comparison between chemical	
	and concentration cell I) Concentration cells with and	
	without transference (derivation of expression for	
	concentration cell EMF are expected), 2) Chemical	
	cells without transference. Origin of liquid-liquid	
	junction potential and its elimination using a salt	
	bridge.	

2.3	Faradaic and Non-Faradaic processes. Batteries and		
	Superconductors		
2.4	Polarization, concentration polarization and its		
	elimination, Decomposition potential, experimental		
	determination of decomposition potential, factors		
	affecting decomposition potential (nature of		
	electrolyte, nature of electrodes and temperature),		
	overvoltage, experimental determination of		
	overvoltage, Tafel's theory and Tafel's equation for		
	hydrogen overvoltage, simultaneous deposition of		
	metal. Corrosion and its prevention		
References:			
Electro	• Electrochemical Methods: Fundamentals and Applications, Allen J. Bard		
and La	arry R. Faulkner, 2006, wiley Student Edition.		
An Int	roduction to Electrochemistry, Samuel Glasstone, 10th ec	lition, An	
East-W	/est Edition		
Module 3	Nuclear Chemistry	[12L]	
Learning Obj	ectives:		
The module	is intended to		
1. Descri	1. Describe the detection and measurement of nuclear radiation using GM		
counter and scintillation counter			
2. Determine half-life of radioactive elements			
3. Illustrate the working of a nuclear power and breeder reactor			
Learning Out	come:		
After the successful completion of the module, the learner will be able to			
1. Illustra	1. Illustrate the principle and working of detectors used for detection and		
measu	rement of nuclear radiations		

Autonomous (Affiliated to University of Mumbai)

- 2. Solve numerical problems on determination of half-life, decay constants, Q value, threshold energy
- 3. Explain the important terms and factors controlling fission reaction while designing a nuclear reactor

3.1	Types of nuclear radiations and their characteristics,	
	behaviour of ion-pairs in electric field, detection and	
	measurement of nuclear radiations using - G.M	
	counter and scintillation counter.	
3.2	Kinetics of radioactive decay, units of radioactivity	
	(Curie, Becquerel, Rutherford).	
3.3	Radioactive equilibrium (secular and transient),	
	determination of radioactive constants for radio-	
	elements having 1) Moderate half-life 2) Long half-life	
	3) Extremely long or short half-life.	
3.4	Use of radioisotopes as tracers in: 1) Chemical	
	investigations-reaction mechanism 2) Age	
	determination - dating by tritium content and by	
	carbon-14.	
3.5	Nuclear Reactions: nuclear transmutation, artificial	
	radioactivity (suitable examples using different	
	projectiles are expected) O-value of nuclear reaction	
	threshold energy	
26	Eissile and fortile materials nuclear fission chain	
).0	rissile and fertile materials, nuclear fission, chain	
	reactions, factors controlling fission Process	
	(multiplication factor and critical size or mass of	
	fissionable material), nuclear power reactor and	
	breeder reactor	

References:

• Essentials of Nuclear Chemistry, H.J. Arnicker, New Age International

Publishers.

• Source Book on Atomic Energy, S. Glasstone, Macmillon Co Ltd, 2016.

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Core Course-II

COURSE TITLE: Inorganic Chemistry III

COURSE CODE: 23US5CHCC2INC3 [CREDITS - O2]

1.1.2	Symmetry elements and Symmetry operations.	
1.1.3	Concept of a Point Group with illustrations using the	
	following point groups: (i) C_{∞_V} (HCl), (ii) D_{∞_h} (H ₂), (iii) C_{2_V}	
	(H ₂ O), (iv) C_{3v} (NH ₃), (v) C_{2h} (trans dichloroethylene), (vi)	
	D _{3h} (BCl ₃) (vii) C ₂ H ₄ (D ₂ h)	
1.2	Molecular Orbital Theory for polyatomic species	3L
1.2.1	Simple triatomic species H ₃ ⁺ and H ₃ (correlation	
	between bond angle and molecular orbitals)	
1.2.2	Other molecules (considering only σ bonding): (i)	
	BeH ₂ (ii) H ₂ O (with reference to Walsh diagram)	
1.3	Metallic Bond	3L
1.3.1	Band theory	
1.3.2	Explanation of electric properties of conductors,	
	insulators and semiconductors (n- and p- types) on	
	the basis of Band theory.	
References:		
•	Chemical Applications of Group Theory by F A Cotton, 3	ord Edition
•	Chemistry Inorganic - B.R. Puri, L.R. Sharma and K.C. Kalli	a – Vallabh
	Publications (2003).	
Module 2	Bonding in Coordination Compounds	[12L]
Learning Ob	ojectives:	
This module	e is intended to	
1 Discu	ss two theories of bonding in coordination compounds –	Crystal field
theor	v and molecular orbital theory	
2 Describe concepts of electronic states term symbols micro states		
2. Desci	the concepts of electronic states, term symbols, micro sta	103.

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Describe the nature of bond between metal and ligand.
- 2. Discuss thermodynamic, kinetic, spectral and stereo chemical properties of coordination compounds.
- Interpret different electronic states, term symbols and microstates for d¹, d⁴, d⁶, d⁹ electronic configurations.

2.1	Crystal Field Theory (CFT) of co-ordination complexes	6L
2.1.1	Basic tenets of Crystal Field Theory (CFT) and effect of	
	Crystal Field on central metal valence orbitals	
2.1.2	Splitting of d orbitals in octahedral, tetrahedral and	
	square planar complexes; Jahn Teller Effect	
2.1.3	Crystal field splitting energy (1ODq/ Δo) for octahedral	
	complexes and factors affecting the magnitude of Δo	
2.1.4	Crystal field stabilization energy (CFSE), calculation of	
	CFSE for octahedral and tetrahedral complexes with $d^{\rm I}$	
	to d^{IO} metal ion configurations, high spin and low spin	
	complexes.	
2.1.5	Effect of Crystal field splitting on (i) Ionic radius (ii)	
	Lattice energy	
2.1.6	Experimental evidence for co-valence in coordination	
	compounds: (i)ESR spectrum of [IrCl6] -2	
	(ii)Nephelauxetic effect.	
2.1.7	Merits and Demerits of CFT	
2.2	Molecular Orbital Theory (MOT) of co -ordination	3L
	complexes	

2.2.1	Application to octahedral complexes in case of	
	(i)[Ti(H ₂ O) ₆] ⁺³ (ii) Fluoro complexes of Fe(II) and Fe(III)	
	(iii) Cyano complexes of Fe(II) and Fe(III) (iv) Fluoro and	
	amino complexes of Co(III)	
2.2.2	Effect of π - bonding on ligand field splitting parameter	
	in MLπ and LMπ interactions	
2.3	Electronic states and Terms for Polyelectronic Atoms	3L
2.3.1	Introduction, electronic configuration and electronic	
	states, Term symbols, coupling of spin momenta (MS),	
	orbital momenta (ML) and spin orbit coupling or	
	Russell -Saunders coupling.	
2.3.2	Determination of Terms for p ² electronic configuration	
	(as in a carbon atom).	
2.3.3	Terms and micro-stats for transition metal atoms/ions.	
References:		
•	Inorganic Chemistry - J.E. Huheey, Harper and Collins - N	IY IV
	edition (12011).	
•	Chemistry Inorganic - B.R. Puri, L.R. Sharma and K.C. Kalli	a - Vallabh
	Publications (2016).	
Module 3	Chemistry of Lanthanides	[12L]
Learning Obj	ectives:	
The module	is intended to discuss the study of f-block elements	
Learning Outcome:		
After the successful completion of the module, the learner will be able to		
1. Discuss the position of f-block elements in the periodic table.		
2. Relate the electronic configuration of 4f and 5f block elements and their		
comparison.		

3. Describe chemistry of lanthanides with respect to occurrence, extraction,			
separation, physical & chemical properties and applications.			
3.1	Introduction	3L	
211			
3.1.1	The shapes of f-orbitals		
3.1.2	The position of f-block elements in the periodic table		
3.1.3	Electronic configuration of 4f and 5f block		
3.1.4	Comparison between lanthanides and actinides		
3.2	Chemistry of lanthanides with reference to	9L	
3.2.1	(i) lanthanide contraction, (ii) oxidation states, (iii)		
	magnetic properties, (iv) colour and spectra (f-f		
	transition spectra) and (v) complex formation (types		
	and stereochemistry of the complexes).		
3.2.2	Occurrence, extraction and separation of lanthanides		
	by (i) ion- exchange (ii) solvent extraction methods		
3.2.3	Application of lanthanides.		
References:			
•	Selected Topics in Inorganic Chemistry - W.U. Malik, G.D.). Tuli and	
	R.D. Madan - S. Chand Publications (2016).		
•	• Advanced Inorganic Chemistry - Cotton and Wilkinson - V Edition -		
	Wiley and Sons (2011).		

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Core Course- III

COURSE TITLE: Organic Chemistry III

COURSE CODE: 23US5CHCC3ORC3 [CREDITS - O2]

- 1. Predict and account for the most commonly encountered reaction mechanisms in carbonyl compounds.
- 2. Explain the mechanism of rearrangement involving migration to electron deficient Carbon and nitrogen.
- 3. Discuss the concept of thermodynamic and kinetic control of organic reactions
- 4. Name the bicyclic compounds, biphenyls, cummulenes upto 3 double bonds, heterocyclic compounds containing a maximum of two hetero atom among N, O, S.
- 5. Draw the structure of above compounds if IUPAC names are given.

1.1	Mechanism of Organic Reactions	9L
1.1.1	Thermodynamic and Kinetic control of organic	
	reactions: Concept with mechanisms of the following	
	reactions: addition of HX to butadiene; sulfonation of	
	naphthalene. Nucleophilicity / electrophilicity Vs	
	Basicity / acidity.	
1.1.2	Mechanism of reactions of carbonyl compounds with	
	nucleophiles.	
1.1.2.1	Reaction of aldehydes and ketones with primary and	
	secondary amines	
1.1.2.2	Acyl nucleophilic substitution (tetrahedral mechanism):	
	Acid catalysed esterification of carboxylic acids and	
	base promoted hydrolysis of esters.	
1.1.3	Mechanism of rearrangements with examples and	
	stereochemistry wherever applicable.	
1.1.3.1	Migration to electron deficient carbon: Pinacol,	
	Benzilic acid.	

1.1.3.2	Migration to electron deficient nitrogen: Beckmann,		
	Hofmann.		
1.2	IUPAC	3L	
	IUPAC systematic and accepted trivial nomenclature of		
	the following classes of compounds, including		
	substituted ones (up to 2 substituents/functional		
	groups):		
1.2.1	Bicyclic compounds- spiro, fused, and bridged (up to		
	11 carbon atoms)-saturated and unsaturated		
	compound.		
1.2.2	Biphenyls.		
1.2.3	Cummulenes upto 3 double bonds, Monocyclic (5 and		
	6 membered) aromatic and nonaromatic heterocyclic		
	compounds containing a maximum of two hetero		
	atom among N, O, S.		
References:			
•	Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publish	ning	
	Company Limited.		
•	Carey, F. A. & Guiliano, R. M. Organic Chemistry, Eighth	edition,	
	McGraw Hill Education, 2012.		
•	 Loudon, G. M. Organic Chemistry, Fourth edition, Oxford 		
	University Press, 2008.		
•	Nomenclature of organic compounds, S C Pal, Alpha scie	ence, 2nd	
	edition,		
•	Organic Nomenclature, James G Traynham, 6th Edition.		

Module 2	Organic Synthesis, Retrosynthesis and Multistep	[12L]
	synthesis	
Learning Obj	ectives:	
This module	is intended to	
 Discuss Descril compo Illustra Explair 	s the synthesis of some important heterocycles be the different terms and strategies involved in synthesiz bunds using the retrosynthetic approach. te the synthesis of some simple target molecules. In structure determination and multistep synthesis of pole	ing organic lyfunctional
aroma	tic compounds.	
Learning Out	come:	
After the suc	cessful completion of the module, the learner will be able	e to
1. Illustra	te the synthesis of N,O,S containing heterocycles.	
2. Predict	t synthesis of simple organic compounds of different class	es using the
retrosy	nthetic approach	
3. Elucida	ate the structure of simple organic compounds based	on organic
reactio	ons.	
4. Design steps.	the synthesis of bifunctional aromatic compounds using	ng multiple
2.1	Organic Synthesis	4L
2.1.1	Introduction: Criteria for ideal organic synthesis. Yield	
	and selectivity	
2.1.2	Synthesis of furans, pyrroles, and thiophenes by Paal-	
	Knor synthesis.	
2.2	Retrosynthetic analysis and applications	4L

2.2.1	Introduction, Different terms used - Disconnection,		
	Synthon, Synthetic equivalence FGI, TM.		
2.2.2	One group disconnection with examples.		
2.2.3	Retrosynthesis and Synthesis of the following Target		
	Molecules- i) Acetophenone ii) t-butyl alcohol iii)		
	Crotonaldehyde iv) Cyclohexene v) Cyclohexene-3-		
	one vi) Benzoin vii) Cyclopentylmethanol viii) Benzyl		
	Benzoate		
2.3	Structure determination and multistep synthesis	4L	
2.3.1	Structure determination through a series of reactions		
2.3.2	Planning multistep synthesis of polysubstituted		
	benzenes		
References:	11		
• Designing Organic Syntheses, Stuart Warren, John Wiley and			
	Sons,Inc.		
•	Organic Chemistry, 4th Edn, Paula Y. Bruice, WordPress		
•	Finar, I. L. Organic Chemistry (Volume 1 and 2) Pearson Ed	ducation	
Module 3	Stereochemistry	[12L]	
Learning Obj	ectives:		
The module	is intended to		
1. Discuss the elements of symmetry			
2. Illustrate conformations and relative stabilities of cyclohexanes			
3. Explain the stereochemistry of compounds having axial chirality			
4. Discuss the concept of topicity			
Learning Outcome:			
After the suc	cessful completion of the module, the learner will be able	e to	

Sometinger TRUST

- 1. Recognise the elements of symmetry in organic compounds.
- 2. Draw the conformers of cyclohexanes
- 3. Predict the relative stabilities of different conformers and geometrical isomers of cyclohexanes.
- 4. Explain the conditions of optical activity in molecules like cumulenes, spirans and biphenyls
- 5. Relate topicity of ligands and faces.

3.1	Molecular chirality and element of symmetry: Mirror	
	Plane symmetry (inversion centre), rotation-reflection	
	(alternating) axis, Chirality of compounds without	
	stereogenic centre: cumulenes, spirans and biphenyls.	
3.2	Stability of cycloalkanes: Strains in cycloalkanes-angle,	
	eclipsing, transannular (3 to 8 membered).	
	Conformations of cyclohexane, mono- and di- alkyl	
	cyclohexanes and their relative stabilities.	
3.3	Stereoselectivity and Stereospecificity: Idea of	
	enantioselectivity (ee) and diastereoselectivity	
	(de). Topicity-enantiotopic and diastereotopic atoms,	
	groups and faces.	
References:	· · ·	
•	Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compou	unds,
	Wiley: London, 1994.	

- Nasipuri, D. Stereochemistry of Organic Compounds, Wiley Eastern Limited.
- Robinson, M. J. T., Stereochemistry, Oxford Chemistry Primer, Oxford University Press, 2005

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Core Course- IV

COURSE TITLE: Analytical Chemistry I

COURSE CODE: 23US5CHCC4ANCI [CREDITS - O2]

Somanya

- 2. Use the simple statistical parameters like mean, mode, standard deviation etc. for interpretation of data
- 3. Apply statistics for rejection of results, concept of errors, types and quantitative measurement of errors.

1.1	Introduction to Quality in Analytical Chemistry	4L
1.1.1	Concept of Quality, definition and requirement	
1.1.2	Quality control and quality assurance. Similarities and	
	difference between QC and QA	
1.1.3	Introduction to different quality systems: ISO, ICH	
	guide lines and other quality systems and their use.	
1.2	Statistical treatment of data	8L
1.2.1	Types of errors, determinate and indeterminate	
	errors, minimization of errors, constant and	
	proportionate errors	
1.2.2	Accuracy and precision, measure of dispersion and	
	central tendency: mean, median, mode, average	
	deviation, relative average deviation, variance,	
	coefficient of variation. (Numerical problems	
	expected)	
1.2.3	Determinate and Indeterminate errors, constant and	
	proportionate errors, distribution of random errors,	
	Histogram, Frequency polygon, Gaussian curve,	
	students t, confidence limits and confidence intervals,	
	criteria for rejection of result 2.5 d rule,4.0 d rule, Q-	
	test, F-test, Test of significance method of averages	
	method of least squares. [Numerical problems	
	expected]	
1		

 Fundamentals of Analytical Chemistry by Skoog, Holler etc. IX th edition Analytical Chemistry by Gary Christian, sixth edition Inorganic Quantitative analysis by Vogel, sixth edition Module 2 Titrimetric analysis and Introduction to [12L] Chromatography Learning Objectives: This module is intended to Explain two important titrimetric methods viz. Redox titrations and non-aqueous titrations Discuss chromatography as a major separation technique. Describe basic principles, usage and applications of planar chromatographic 	References:		
 Analytical Chemistry by Gary Christian, sixth edition Inorganic Quantitative analysis by Vogel, sixth edition Module 2 Titrimetric analysis and Introduction to [12L] Chromatography Learning Objectives: This module is intended to Explain two important titrimetric methods viz. Redox titrations and non-aqueous titrations Discuss chromatography as a major separation technique. Describe basic principles, usage and applications of planar chromatographic 	•	Fundamentals of Analytical Chemistry by Skoog, Holler e edition	tc. IX th
 Inorganic Quantitative analysis by Vogel, sixth edition Module 2 Titrimetric analysis and Introduction to [12L] Chromatography Learning Objectives: This module is intended to 1. Explain two important titrimetric methods viz. Redox titrations and non- aqueous titrations 2. Discuss chromatography as a major separation technique. 3. Describe basic principles, usage and applications of planar chromatographic 	•	Analytical Chemistry by Gary Christian, sixth edition	
Module 2 Titrimetric analysis and Introduction to Chromatography [12L] Learning Objectives: Image: Chromatography Image: Chromatography This module is intended to Image: Chromatography Image: Chromatography 1. Explain two important titrimetric methods viz. Redox titrations and non-aqueous titrations 2. Discuss chromatography as a major separation technique. 3. Describe basic principles, usage and applications of planar chromatographic	•	Inorganic Quantitative analysis by Vogel, sixth edition	
Chromatography Learning Objectives: This module is intended to 1. Explain two important titrimetric methods viz. Redox titrations and non-aqueous titrations 2. Discuss chromatography as a major separation technique. 3. Describe basic principles, usage and applications of planar chromatographic	Module 2	Titrimetric analysis and Introduction to	[12L]
 Learning Objectives: This module is intended to 1. Explain two important titrimetric methods viz. Redox titrations and non-aqueous titrations 2. Discuss chromatography as a major separation technique. 3. Describe basic principles, usage and applications of planar chromatographic 		Chromatography	
 This module is intended to Explain two important titrimetric methods viz. Redox titrations and non-aqueous titrations Discuss chromatography as a major separation technique. Describe basic principles, usage and applications of planar chromatographic 	Learning Obj	ectives:	
 Explain two important titrimetric methods viz. Redox titrations and non- aqueous titrations Discuss chromatography as a major separation technique. Describe basic principles, usage and applications of planar chromatographic 	This module i	is intended to	
 Discuss chromatography as a major separation technique. Describe basic principles, usage and applications of planar chromatographic 	1. Explair	n two important titrimetric methods viz. Redox titration	ns and non-
 Discuss chromatography as a major separation technique. Describe basic principles, usage and applications of planar chromatographic 	aqueous titrations		
3. Describe basic principles, usage and applications of planar chromatographic	2. Discuss		
	3. Descrit	be basic principles, usage and applications of planar chron	natographic
techniques.	technie	ques.	
Learning Outcome:	Learning Out	come:	
After the successful completion of the module, the learner will be able to	After the suce	cessful completion of the module, the learner will be able	e to
1. Discuss the basic theory of redox and non-aqueous titrations. Selection of appropriate indicators and applications of both	1. Discuss	s the basic theory of redox and non-aqueous titrations. S	Selection of
2 Define and use of chromatography as a separation technique. Different			
chromatographic techniques and their classification			
3 Describe basic theory and use of planar chromatographic techniques like			
Dependence basic theory and use of planar chromatographic techniques like	J. Deschi	chromatography TLC and UPTLC Their types and applie	ations
raper chromatography, it cand mrite. Their types and applications.			
2.1Titrimetric analysis7L	2.1	Titrimetric analysis	7L
2.1.1 Redox titrations: Introduction and basic principles	2.1.1	Redox titrations: Introduction and basic principles	
2.1.2 Titration curves for redox titration: Titration of $Fe^{+2} v/s$	2.1.2	Titration curves for redox titration: Titration of $Fe^{+2} v/s$	
Ce ⁺⁴ , Fe ⁺² v/s dichromate (Cr ₂ O ₇ ²⁻), Fe ⁺² v/s MnO ⁻ ₄ ions.		Ce ⁺⁴ , Fe ⁺² v/s dichromate (Cr ₂ O ₇ ²⁻), Fe ⁺² v/s MnO ⁻ ₄ ions.	

2.1.3	Detection of end point of redox titration using		
	indicators and potentiometrically. Some useful redox		
	indicators.		
2.1.4	Non aqueous titrations: Definition and basic principles.		
	Different types of non-aqueous solvents.	Different types of non-aqueous solvents.	
2.1.5	Requirements for non-aqueous solvents. Properties of		
	non-aqueous solvents. Leveling effect.		
2.1.6	End point detection in non-aqueous titrations.		
	Advantages and limitations of non-aqueous titrations.		
	Applications.		
2.2	Introduction to chromatography	5L	
2.2.1	Introduction to chromatographic techniques,		
	classification of chromatographic techniques.		
2.2.2	Planar Chromatography: Principle, techniques and		
	applications of Paper chromatography Thin layer		
	chromatography and HPTLC		
References:			
•	Inorganic Quantitative analysis by Vogel, sixth edition		
Quantitative Analysis by Day and Underwood, Prentice hall of India			
third edition -			
Module 3	Ontical methods	[12]]	
Learning Obi	ectives.	[]	
The module is intended to			
1 Discuss atomic spactroscopy different atomic spactroscopic methods like			
flame photometry and atomic absorption spectroscopy			
2 Explain Adalacular fluorescopes and phaspharescopes methods			
2. Explain Molecular fluorescence and phosphorescence methods.			

Somanya

3. Describe basic principles, usage and applications of light scattering techniques like Turbidimetry and Nephelometry

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Apply principles of Flame photometry and Atomic spectroscopy for elemental analysis
- 2. Describe use of Fluorescence and Phosphorescence methods for quantitative analysis
- 3. Carry out analysis of turbid solutions using Turbidimetry and Nephelometry.

3.1	Atomic Spectroscopy	6L
3.1.1	Absorption and emission spectra, energy level diagrams process involved in atomization	
212		
3.1.2	Flame photometry, flame atomizer, types of burners,	
	monochromators and detectors	
3.1.3	Atomic absorption spectroscopy; flame and electro	
	thermal atomizer, sources, instrumentation,	
	quantitative applications of atomic absorption and	
	flame photometry, calibration curve method and	
	standard addition method.	
3.2	Molecular Fluorescence and Phosphorescence	3L
	Spectroscopy	
3.2.1	Basic Theory	
3.2.2	Instrumentation and applications	
3.3	Turbidimetry and Nephelometry	3L
3.3.1	Scattering of light, effect of concentration, particle size	
	and wavelength on light scattering	
3.3.2	Instrumentation and applications	

Reference

- Instrumental Analysis by Skoog Nieman and Holler, sixth edition, Saunders/Nicole publications
- Fundamentals of Analytical Chemistry by Skoog, Holler etc. ninth edition
- S. M. Khopkar, Basic Concepts of Analytical Chemistry, 3rd ed, New Age International Publishers, 2008
- G.D.Christian, Analytical Chemistry, 6th ed. John Wiley & Sons, Singapore, 2004

T. Y. B. Sc. (CHEMISTRY) SEMESTER V - Practical Based on CC I and CC IV COURSE CODE: 23US5CHCCPI Credit- O2

Learning Objectives:

The practical is intended to

- 1. Discuss rate constants, effect of temperature on rate constants, energy of activation for the acid catalysed reactions like hydrolysis of methyl acetate
- 2. Determine of radius of a molecule by viscosity measurements
- 3. Determine formal redox potential and to determine the amount of metal in the given solution potentiometrically.
- 4. Determine of acidic and basic dissociation constants of amino acid and to calculate isoelectric point.

Learning Outcomes:

After the successful completion of the practical, the learner will be able to

- 1. Discuss the effect of temperature on rate constants and determination of energy of activation.
- 2. Describe the method of determination of radius of a molecule by viscosity measurements.
- 3. Illustrate experimental determination of standard reduction potential and to determine the amount of metal in the given solution potentiometrically.
- 4. Explain the concept of isoelectric point, acidic and basic dissociation constants through pH metric determination.

Core Course I	Physical Chemistry III
---------------	------------------------

1. Chemical Kinetics - To determine the energy of activation for the acid catalysed hydrolysis of methyl acetate.

Autonomous (Affiliated to University of Mumbai)

- 2. Viscosity To determine the radius of a glycerol molecule by viscosity measurements.
- 3. Potentiometry To determine the amount of Fe (II) in the given solution by titration with a standard $K_2Cr_2O_7$ solution and hence to find the formal redox potential of Fe³⁺/Fe²⁺
- 4. pH –Metry
 - a. To determine acidic and basic dissociation constants of amino acid and to calculate isoelectric point
 - b. Verification of Henderson's Equation
- 5. Conductometric Titration To determine the strength of a given dibasic acid by Conductometric Titration

References:

- Experimental Physical Chemistry, V. D. Athawale, 2007, New Age International Publishers.
- Physical Chemistry Experiments, R. Rajalakshmi, 2020, Notion press Publishers.
- Senior Practical Physical Chemistry, Khosla B. D.; Garg V. C. & Gulati A., R. Chand & Co.: New Delhi (2011).
- Experiments in Physical Chemistry, Garland C. W., Nibler J. W. & Shoemaker D. P., 8th Ed.; McGraw-Hill: New York (2003).
- Experimental Physical Chemistry, Halpern A. M. & McBane G. C., 3rd Ed.,
 W.H. Freeman & Co.: New York (2003).

Learning Objectives:

The practical is intended to

- 1. Explain redox titrations for estimation of real samples like Honey
- 2. Describe the complexo metric titrations and estimations using complexometry.

Sometinger TRUST

- 3. Discuss non-aqueous titrations and Assay of pharmaceutical formulation
- 4. Describe instrumental methods for analysis of real samples like toothpaste

Learning Outcomes:

After the successful completion of the practical, the learner will be able to

- 1. Correlate between theoretical principles of different types of titration methods and estimation of commercial samples.
- 2. Importance of non-aqueous titrations and their relevance for analysis of organic weak acids and bases.

Core Course IV

Analytical Chemistry I

- 1. Estimation of $K_2S_2O_8$ in the given solution.
- 2. Determination of glucose in honey by Willstatter's method.
- 3. To estimate the amount of aluminium in the given solution by backtitration method
- 4. Determination of percentage assay of Mebendazole drug tablet by nonaqueous titration.
- 5. Detection of fluoride content in a tooth paste by colorimetry
- 6. Detection of Vitamin C in a tablet by pH metry.

References:

• Inorganic Quantitative Analysis -By Vogel, Sixth edition

T. Y. B. Sc. (CHEMISTRY)

SEMESTER V - Practical Based on CC II and CC III

COURSE CODE: 23US5CHCCP2 Credit- O2

Learning Objectives:

The practical is intended to

- 1. Discuss the preparation of inorganic complexes.
- 2. Impart the analytical chemistry aspects of complexometric titration.
- 3. Describe the concept of the experiment and the different steps involved in the experiment in the real lab more accurately and precisely.

Learning Outcomes:

After the successful completion of the practical, the learner will be able to

- 1. Acquire the skills to prepare Mohr's salt, nickel and cobalt amine complexes.
- 2. Identify the chemicals and apparatus required for the preparation of Mohr's salt, nickel and cobalt amine complexes.
- 3. Illustrate the basic laboratory technique of titration.
- 4. Calculate normality gm/L based on titrations.

Core Course II

Inorganic Chemistry III

- 1. Inorganic Preparation
- i. Preparation of Ferric Alum and estimation of Iron by complexometry.
- ii. Preparation of Chloropentaaminecobalt (III) chloride and estimation of cobalt by complexometry.
- iii. Preparation of tris(ethylene diamine) nickel (II) sulphate and estimation of nickel by complexometry.

2. Titrimetric Analysis

- i. To estimate the amount of Calcium present in the whole of the given solution being supplied with ZnS of AR quality and approx. O.25 molar EDTA solution.
- ii. Estimation of Nickel complexometrically using mureoxide indicator.

Somanya

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

iii. Estimation of Copper complexometrically using Fast sulphone Black F indicator.

References:

 Practical Inorganic Chemistry by S. Gulati, J. L.Sharma and S. Manocha, (2018) CBS Publication LtD.

Learning Objectives:

The practical is intended to

- 1. Explain separation of a Binary mixture by chemical method.
- 2. Identify the Separated component
- 3. Discuss the purification techniques

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Find the chemical type of mixture in the given solid binary mixture.
- 2. Separate the components using different chemical reagents.
- 3. Purify the separated organic compound by recrystallisation technique.

Core Course III

Organic Chemistry III

Binary Mixture Separation & identification (Solid + Solid)

References:

- Vogel, A. I. Elementary Practical Organic Chemistry.
- Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Discipline Specific Elective - I

COURSE TITLE: Fundaments of drug chemistry

COUDSE CODE. 321 (SCUDSIEDC COEDITS \mathbf{O}

COURSE CODE: 23033CHD3IFDC [CREDITS - 02]			
	Course Learning Outcome		
After the suc	cessful completion of the Course, the learner will be able	to:	
1. Explair	n the various concepts used in drug chemistry,	routes of	
admin	istration and metabolism of drugs.		
2. Discus	s the various pharmacodynamic agents.		
3. Illustra	te and classify the various chemotherapeutic agents.		
Module 1	Introduction to Drug	[12L]	
Learning Obj	ectives:		
The module i	s intended to discuss the basic terminologies involved in c	chemistry of	
drugs, routes	drugs, routes of drug administration and the metabolism of drugs		
Learning Out	Learning Outcome:		
After the suc	After the successful completion of the module, the learner will be able to		
I. Discus	I. Discuss the basic terminologies and concepts involved in drug chemistry,		
2. Outlin	e the routes of drugs administration.		
3. Explair	n the drug metabolism steps.		
1.1	General Introduction to Drug	6L	
1.1.1	Definition of a drug, Requirements of an ideal drug,		
	Classification of drugs (Based on therapeutic action)		
1.1.2	Nomenclature of drugs: Generic name, Brand name,		
	Systematic name		

1.1.3	Definition of the following medicinal terms:	
	Pharmacon, Pharmacophore, Prodrug, Half Life	
	efficiency, LD5O, ED5O, Therapeutic Index	
1.1.4	Brief idea of the following terms: Receptors, Drug-	
	receptor interaction, Drug Potency, Bioavailability,	
	Drug toxicity, Drug addiction, Spurious Drugs,	
	Misbranded Drugs, Adulterated Drugs,	
	Pharmacopoeia	
1.2	Routes of Drug Administration and Dosage Forms	3L
1.2.1	Oral and Parenteral routes with advantages and	
	disadvantages	
1.2.2	Formulations, Different dosage forms (emphasis on	
	sustained release formulations.)	
1.3	Drug Metabolism	3L
	Introduction, Absorption, Distribution, Bio-	
	transformation, Excretion Different types of chemical	
	transformation of drugs with specific examples.	
References:		
•	Synthetic Drugs, G.R. Chatwal, Himalaya Publishing House	e, 2nd
	Edition	
•	Synthetic Drugs, M. S. Yadav, Campus Books Internationa	al, 2nd
	Edition	
Module 2	Pharmacodynamic agents	[12L]
Learning Obj	iectives:	
This module is intended to discuss chemistry of pharmacodynamic agents used for		
various systemic disorders.		
Learning Outcome:		
After the successful completion of the module, the learner will be able to		

1. Classify	/ the pharmacodynamic agents according to their chemi	cal class
2. Discuss	the uses of different pharmacodynamic agents	
3. Explair	n the synthesis of specific pharmacodynamic agents	
	A brief introduction of the following	
	pharmacodynamic agents and the study with respect	
	to their chemical structure, chemical class, therapeutic	
	uses, and side effects	
2.1	CNS Drugs	2L
	Classification based on pharmacological actions	
	Concept of sedation and hypnosis, anaesthesia.	
	Phenobarbitone (Barbiturates), Phenytoin(Hydantoins),	
	Trimethadione (Oxazolidinediones), Piracetam	
	(Pyranones), Midazolam, Alprazolam (Benzodiazepines)	
	Methylphenidate (Piperidines) Chlorpromazine	
	(Phenothiazines) Fluoxetine (Phenyl propyl amines)	
	Synthesis of Trimethadione	
2.2	Analgesics and Antipyretics	1L
	Morphine (Phenanthrene alkaloids), Tramadol	
	(Cyclohexanols), Aspirin (Salicylates), Paracetamol (p-	
	Aminophenols), Synthesis of Paracetamol	
2.3	Anti-inflammatory Drugs	2L
	Mechanism of inflammation and various inflammatory	
	conditions. Prednisolone, Betamethasone (Steroids),	
	AceclofenacandMefenamic Acid (N-Aryl anthranilic	
	acids). Synthesis of Aceclofenac	
2.4	Antihistaminic Drugs	2L
	Mechanism of histamine release & its action	
	Diphenhydramine (ethanolamines), Cetirizine	

	(piperazine), Chlorpheniramine maleate (ethyl	
	amines), Omeprazol, Pantoprazole (Benzimidazoles)	
	Synthesis of Cetrizine	
2.5	Cardiovascular drugs	2L
	Classification based on pharmacological action	
	Enalapril (α -amino acids), Isosorbide dinitrate	
	(Nitrates), Atenolol (Aryloxy propanol amines),	
	Nifedipine (Pyridines), Chlorthiazide (Thiazides),	
	Frusemide /Furosemide (Sulfamyl benzoic acid),	
	Spironolactone (Steroidal- 17- δ -lactones).	
2.6	Antidiabetic Agents	1L
	General idea and types of diabetes; Insulin therapy	
	Glibenclamide (sulphonylureas), Metformin	
	(Biguanides)	
2.7	Antiparkinsonism Drugs	1L
	Idea of Parkinson's disease. Procyclidine hydrochloride	
	(Pyrrolidines), Ethopropazine hydrochloride	
	(Phenothiazines) Levodopa (α-amino acids)	
2.8	Drugs for Respiratory System	1L
	General idea of Expectorants; Mucolytes;	
	Bronchodilators Decongestants and Antitussives,	
	Bromhexine (Phenyl methyl amines), Salbutamol,	
	Pseudo- ephedrine (Phenyl ethyl amines)	
	Oxymetazoline (Imidazolines) Codeine Phosphate	
	(Opiates)	
References:		
•	Synthetic Drugs, G.R. Chatwal, Himalaya Publishing House	e, 2nd
	Edition	

	Synthetic Drugs M. S. Yaday, Campus Books Internationa	al 2nd
•	Edition	ii, 2nd
	Edition	
Module 3	Chemotherapeutic Agents	[12L]
Learning Obje	ectives:	
The module is	s intended to discuss chemistry of chemotherapeutic age	nts used for
various infect	ious diseases.	
Learning Out	come:	
After the succ	cessful completion of the module, the learner will be able	e to
1. Classify	the chemotherapeutic agents according to their chemi	cal class
2. Descrit	be the different types of diseases caused by specific orga	nisms.
3. Discuss	the synthesis of specific chemotherapeutic agents	
	Study of the following chemotherapeutic agents with	
	respect to their chemical structure, chemical class,	
	therapeutic uses, and side effects.	
3.1	Antibiotics	2L
	Definition, Amoxicillin; Cloxacillin (β-lactum	
	antibiotics) Cephalexin (Cephalosporins) Doxycycline	
	(Tetracyclines) Gentamycin (Aminoglycosides)	
	Ciprofloxacin (Quinolones) Synthesis of Ciprofloxacin	
3.2	Antimalarials	2L
	Types of malaria: Symptoms; pathological detection	
	during window period (Life cycle of the parasites not o	
	be discussed) Chloroquine (3-Amino quinolines)	
	Paludrine (Biguanides) Pyrimethamine (Diamino	
	pyrimidines) Artemether (Benzodioxepins) Following	
	combination to be discussed (i) Sulfadoxine-	
	Pyrimethamine (ii) Artemether Lumefantrine (no	
	structure) Synthesis of Paludrine.	

3.3	Anthelmintics	2L
	Drugs effective in the treatment of Nematodes and	
	Cestodes intestations. Diethyl carbamazine	
	(Piperazines) Mebandazole; Albendazole	
	(Benzimidazoles) Niclosamide (Amides) Synthesis of	
	Albendazole	
3.4	Antiamoebic Drugs	1L
	Types of Amoebiasis Metronidazole; Diloxamide	
	furoate (Furans) Following combination therapy to be	
	discussed: Ciprofloxacin-Tinidazole Synthesis of	
	Metronidazole	
3.5	Antitubercular and Antileprotic Drugs	2L
	Types of Tuberculosis; Symptoms and diagnosis of	
	Tuberculosis. Types of Leprosy. General idea of	
	Antibiotics used in their treatment. PAS	
	(Aminosalicylates) Isoniazid (Hydrazides) Pyrazinamide	
	(Pyrazines) (+) Ethambutol (Aliphatic diamines)	
	Ethionamide (Thioamides) Dapsone (Sulfonamides)	
	Clofazimine (Phenazines) Following combination	
	therapy to be discussed: (i) Rifampin + Ethambutol +	
	Pyrazinamide (ii) Rifampin + Isoniazid + Pyrazinamide	
	(iii) Rifampin + Clofazimine + Ethionamide. Synthesis:	
	(+) Ethambutol.	
3.6	Anti-Neoplastic Drugs	2L
	Idea of malignancy; Causes of cancer, brief idea of	
	Immuno Stimulants, Immuno depressants. (1) Lomustine	
	(Nitrosoureas) (2) Fluorouracil (Pyrimidines) (3)	
	Estrogen (Steroidal hormones) (3) Mitomycin C	

	(Antibiotics) (5) Vincristine; vinblastine; vindesine (Vinca	
	alkaloids-no structures)	
3.7	Anti HIV Drugs	1L
	Idea of HIV pathogenicity, Symptoms of AIDS, AZT,	
	Lamivudine, Stavudine (Pyrimidines), DDI (Purines)	
References:		
•	Synthetic Drugs, G.R. Chatwal, Himalaya Publishing House	e, 2nd
	Edition	
•	Synthetic Drugs, M. S. Yadav, Campus Books Internationa	al, 2nd
	Edition	

T. Y. B. Sc. (CHEMISTRY)

SEMESTER V - Practical Based on DSE Courses

COURSE CODE: 23US5CHDSP Credit- O2

Learning Objectives:

The practical is intended to

- 1. Describe preparation of drugs and Drug intermediates by using organic reactions.
- 2. Explain the estimation Drugs by titrimetry method.

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Acquire the skills to synthesize drugs and drug intermediates
- 2. Analyse the tincture of lodine, lbuprofen using basic laboratory techniques by titrimetry.

Discipline Specific Elective - I

Fundaments of drug chemistry

1. Preparation

- i. Preparation of p-Nitroacetanilide from Acetanilide
- ii. Synthesis of 3, 4-dihydropyrimidin-2(1H)-one from ethyl acetoacetate, benzaldehyde and urea.
- iii. Synthesis of 2-phenylIndole from acetophenone and Phenyl hydrazine

2. Estimation

- i. Estimation of Tincture of Iodine
- ii. Estimation of Ibuprofen
 - 3. **Project-** Representation of monogram of any one drug from syllabus by I.P. method

Note: During Practical Examination, only preparation will be evaluated.

References:

- Pharmacology and pharmaceutics Vol.I and II, Satoskar.
- Textbook of organic, medicinal, and pharmaceutical chemistry, Wilson and Gisvold.
- Textbook of medicinal chemistry, William O. Foye and David A. William.
- Medicinal chemistry, G. R. Chatwal

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Discipline Specific Elective - II

COURSE TITLE: Essentials of Radiation Chemistry

(optional for DSE 1: Fundaments of drug chemistry)

COURSE CODE: 23US5CHDS2ERC [CREDITS - O2]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Explain the concept of nuclear energy
- 2. Recognise the applications of radiation chemistry in healthcare.
- 3. Discuss the radiation hazards and radioactive waste management.

Module 1	Nuclear Energy	[12L]
Learning Obj	ectives:	
The module i	s intended to	
1. Focus	on constructive and peaceful uses of nuclear radiations	
2. Make	the students aware of energy generation using nuclear e	nergy
3. Explair	the nuclear reactions	
Learning Out	come:	
After the successful completion of the module, the learner will be able to		
1. Descrit	be the fusion and fission reactions.	
2. Classify and name different types of nuclear reactors.		
1.1	Radioactivity, Nuclear radiations and it's importance,	4L
	Nuclear reactions, Nuclear fission and Nuclear fusion	
1.2	Introduction to Nuclear Reactors	2L
1.3	Energy production in nuclear reactor	3L
1.4	Indian Nuclear energy program.	3L

Autonomous (Affiliated to University of Mumbai)

Module 2	Radiation Chemistry	[12L]
Learning Obj	ectives:	
This module i	s intended to	
1. Make	the students aware of applications of radioisotopes.	
2. Illustra	te the radiation units and radiological protection	
Learning Out	come:	
After the suc	cessful completion of the module, the learner will be able	e to
1. Explair	the applications of radioisotopes.	
2. Descrit	be the effects of radiations and methods of protection.	
21	Applications of radioisotopes in healthcare an effect of	21
2.1	Applications of radioisotopes in nearthcare an effect of	۲L
	radiations	
2.2	Diagnostic applications, Radiopharmaceuticals,	3L
	Therapeutic Applications	
2.3	Radiation Units, Measurement of Exposure and dose,	3L
	Biological effects of Ionizing Radiations	
2.4	Radiological protection	2L
2.5	Handling of radioisotopes	2L
Module 3	Radioactive Waste Management	[12L]

Learning Objectives:

The module is intended to

- 1. Make the students aware of radiation protection.
- 2. Classify the radioactive waste

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Create awareness about nuclear radiations
- 2. Know about the types of radioactive waste and the disposal methods.

3.1	Protection of Human Health, Protection of	2L
	Environment, Protection of Future Generations	
3.2	Classification of radioactive waste, Waste classification	2L
	by IAEA, Exempt Waste, Short lived Waste, Low level	
	Waste, Intermidiate level waste, High level waste,	
	Waste Categorization in India	
3.3	Treatment of radioactive waste Gaseous effluents,	2L
	Treatment of organic Liquid Effluent, Treatment of	
	Wet Solids, Treatment of solid Wastes	
3.4	Radioactive waste disposal	2L
3.5	Disposal of Low and Intermediate Level Waste, Storage	2L
	of High-Level Waste	
3.6	Disposal of High-Level Waste, Treatment of Liquid	2L
	Waste	

T. Y. B. Sc. (CHEMISTRY)

SEMESTER V - Practical Based on DSE Courses

COURSE CODE: 23US5CHDSP Credit- O2

Learning Objectives:

The practical is intended to

- 1. Determine Plateau of GM counter.
- 2. Determine Dead Time of GM counter
- 3. Carry out Statistical Analysis of Radioactivity Measurements
- 4. Determine Range of alpha particles for the given source

Learning Outcome:

After the successful completion of the practical, the learner will be able to

Sometinger TRUST

- 1. Determine Plateau of GM counter.
- 2. Determine Dead Time of GM counter
- 3. Carry out Statistical Analysis of Radioactivity Measurements
- 4. Find Range of alpha particles for the given source

Discipline Specific Elective – II Essentials of Radiation Chemistry

- 1. Determination of Plateau of GM counter
- 2. Determination of Dead Time of GM counter
- 3. Statistical Analysis of Radioactivity Measurements
- 4. Determination of Range of alpha particles for the given source

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Discipline Specific Elective - III

COURSE TITLE: Research methodology in Chemistry

COURSE CODE: 23US5CHDS3RMC [CREDITS - O2]

	Methods versus Methodology, Research and Scientific	
	Method Research Design	
	Importance of Knowing How Research is Done,	
	Research Process, Criteria of Good Research Ethical	
	issues: Plagiarism, Restriction to Plagiarism, concept of	
	patents and trademarks	
References:		
•	Research Methodology: Methods And Techniques (Mult	i Colour
Editior	n) by C.R. Kothari and Gaurav Garg, 2nd Edition	
Module 2	Data Analysis The Investigative Approach	[12L]
Learning Obj	ectives:	
The Module	is intended to	
1. Discuss	s the importance and use of statistical treatment of resea	rch data.
2. Descri	be use of various statistical tools for analysis of research c	lata
3. Apply	statistical and empirical rules for generating conclusion	of research
proble	m.	
Learning Out	come:	
After the suc	cessful completion of the module, the learner will be able	e to
Analys	e the data using various hypotheses and test.	
Apply	statistical methods to draw conclusions of research probl	ems.
	Testing of hypothesis: Basic definition (Null hypothesis,	3
	alternate hypothesis, critical region, acceptance	
	region, Probability of type I and Type II errors, Level of	
	significance P value	
	Type of Test: parametric, non-parametric, comparison	6
	between sample mean and population mean,	
	comparison between two sample means, Chi square	
	test	

	Analysis of variance (ANOVA) for one way, Correlation	3
	and regression, Curve fitting, fitting of linear equations	
References:		
•	Research Methodology: Methods And Techniques (Mult	i Colour
Edition) by C.R. Kothari and Gaurav Garg, 2nd Edition	
Module 3	Chemical Safety and Ethical Handling of Chemicals	[12L]
Learning Obje	ectives:	
The module i	s intended to	
1. Discuss	the principles of chemical safety	
2. Enable	students to apply these concepts when working in a labor	oratory.
3. Encour	rage the scientific community to keep safety a high prior	ity
Learning Out	come:	
After the suce	cessful completion of the module, the learner will be able	e to
1. Recognize the source of hazards in the chemical laboratory and industry.		
2. Discuss the precautions to minimize/prevent these hazards.		
3. Describe the emergency precautions to be taken in case of a laboratory/		
industr	ry accident.	
	Safe working procedure and protective environment,	
	protective apparel, emergency procedure and first aid,	
	laboratory ventilation.	
	Material Safety Data Sheet (MSDS), Safe storage and	
	use of hazardous chemicals, procedure for working	
	with substances that pose hazards, flammable or	
	explosive hazards, procedures for working with gases	
	at pressures above or below atmospheric – safe	
	storage.	

Somanya

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

	Safe disposal of waste chemicals, recovery, recycling	
	and reuse of laboratory chemicals, procedure for	
	laboratory disposal of explosives, identification,	
	verification and segregation of laboratory waste,	
	disposal of chemicals in the sanitary sewer system,	
	incineration and transportation of hazardous	
	chemicals.	
References:		

- Laboratory Safety for Chemistry Students, Robert H. Hill Jr. David C Finster, Wiley Publications, 1st Edition
- CRC Handbook of Laboratory Safety, A. Keith Furr, CRC Press,5th Edition

T. Y. B. Sc. (CHEMISTRY)

SEMESTER V - Practical Based on DSE Courses

COURSE CODE: 23US5CHDSP Credit- O2

Learning Objectives:

The practical is intended to

- 1. Review research article from different sources
- 2. Carry out research project
- 3. write scientific reports
- 4. Presentation of research outcomes by using powerpoint presentations

Learning Outcome:

After the successful completion of the practical, the learner will be able to

Sometinger TRUST

- 1. Write scientific reports for their projects.
- 2. Communicate their project report in power point presentations.
- 3. Apply research method and perform short term research project

Discipline Specific Elective - III

Research methodology in Chemistry

Reading of the three research articles.

- 1. Power point presentation based on any Chemistry related research article.
- 2. Write a T.Y. B.Sc. project report in a scientific method
- 3. Submit the progress report for the project.
- 4. Power point presentation of the project finding

References:

- Thesis and assignement writing- J. Anderson, B. H. Dursten and M. Poole, Wiley Eastern 1977.
- A Handbook of methodology of Research- P. Rajammal and P. Devadoss, R. M. M. Vidya Press1976
- The craft of scientific writing-Michael Alley (Springer).
- Dean, J. R., Jones, A. M., Holmes, D., Reed, R., Weyers, J. & Jones, A. (2011) Practical skills in chemistry. 2nd Ed. Prentice-Hall, Harlow.
- Hibbert, D. B. & Gooding, J. J. (2006) Data analysis for chemistry. Oxford University Press.
- Topping, J. (1984) Errors of observation and their treatment. Fourth Ed., Chapman Hall, London.
- Harris, D. C. Quantitative chemical analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- Levie, R. de, How to use Excel in analytical chemistry and in general scientific data analysis. Cambridge Univ. Press (2001) 487 pages.
- Chemical safety matters IUPAC IPCS, Cambridge University Press, 1992.
- OSU safety manual 1.01.

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Discipline Specific Elective - IV

COURSE TITLE: Environmental Chemistry

(Optional for DSE III: Research methodology in chemistry)

COURSE CODE: 23US5CHDS4ENC [CREDITS - O2]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Explain the basic concepts of Environmental Toxicology
- 2. Recognize the different Sources and control technologies of Air and Water pollution
- 3. Discuss Soil fertility and methods of Soil analysis.

Module 1

Environmental Toxicology

[12L]

Learning Objectives:

The module is intended to explain the types of organic and inorganic toxic substances and their effects on individuals and environment

Learning Outcome:

After the successful completion of the module, the learner will be able to explain the basic concepts of toxicology, different types of toxicants in our daily life and risk analysis.

1.1	Introduction too toxic substances and toxicity	3L
	Meaning of some important terms used in toxicology,	
	types of toxic substances common environmental	
	toxicants, hazardous waste, Teratogenesis, mutagenesis	
	and carcinogenesis and Neurotoxins.	
1.2	Effects of Metal ion toxicity and Risk analysis	3L

control technologies			
This module is intended to explain the different types of air and water pollution			
Learning Objectives:			
Module 2	Environmental Pollution control technologies	[12L]	
Boca Raton: CRC Press LLC,2001			
•	Manahan, Stanley E. 'Fundamentals of Environmental Che	mistry '	
References:			
	or bnopal gas tragedy), organophosphates and		
	Isocyanate and methyl Isocyanate (Case study		
	acetaldehyde, Phenols, Nitrosamines,		
	iii. Organic – Benzene, Formaldehyde and		
	ii. Non-metals – SOx, NOx, CO		
	episode) Pb, Cd		
	i. Heavy metals-As, Hg (case study of Minamata		
1.3	Toxicity of various chemicals	6L	
	Chemical speciation, Biomethylation		
	generation of toxicity due to heavy metal ions,		
	Mechanism of metal ion toxicity: Possible ways of		
	Effective and Lethal dose, NOAEL and LOAEL		
	Risk analysis: Toxicity tests, Dose response curve,		
	toxic effects		
	Effects after exposure: Acute, subacute and chronic		
	Irreversible effects, Effect on immune system,		
	effects, Observable physiological effects, Reversible and		
	Effects of Toxic substances on Individuals: Biochemical		

Sometinger TRUST

Learning Outcome:

After the successful completion of the module, the learner will be able to discuss the different sources of air and water pollution and different chemical technologies for their treatment.

2.1	Air Pollution Control Techniques	6L
	Contaminants and pathways into atmosphere: Carbon	
	Monoxide; Oxides of nitrogen; Sulphur Dioxide;	
	Volatile Organic Compounds	
	Instrumental techniques to monitor pollution: Carbon	
	Monoxide; Oxides of nitrogen; Sulphur Dioxide;	
	Volatile Organic Compounds;	
2.2	Major Sources of Water Pollution	2L
	Possible reasons for groundwater and subsurface water	
	contamination,	
	Major sources: Coal Mine Drains, Pesticides and	
	Fertilizers, Dying and Tanning industries	
	Eutrophication: Sources and effects, Biomagnification	
2.3	Water Pollution Treatment	5L
	i. Introduction to Sewage treatment Plant and	
	Effluent treatment Plant	
	ii. Technological Approach: Chemical Degradation	
	of wastes and Chemicals; Coagulation and	
	flocculation; Photocatalytic degradation of	
	pollutants; Supercritical water oxidation Ref:	
	https://nptel.ac.in/courses/104103020/33	

Autonomous (Affiliated to University of Mumbai)

References:

- Sonja Krause, Herbert M. Clark, James P. Ferris, Robert L. 'Strong • Chemistry of the Environment ', Elsevier Science & Technology Books 2002
- Eugene R. Weiner Applications of Environmental Chemistry 2000 **CRC Press, LLC**

Module 3

Soil Fertility and soil Analysis

[12L]

Learning Objectives:

The module is intended to discuss the Plant nutrients, soil fertility parameters and soil analysis

Learning Outcome:

After the successful completion of the module, the learner will be able to describe the significance of the soil health, plant nutrients and different methods of soil analysis

3.1	Introduction to soil profile, major soil types in India,	4L
	classification of soils and their agricultural importance,	
	problem soils, soil composition, soil fertility, Soil health	
	and reasons for deterioration of soil health	
3.2	Plant nutrients and their functions-primary, secondary	4L
	and micro nutrients and their forms in soil, fate of	
	nutrient elements in soil -Crop removal, Erosion,	
	Leaching, Volatilization, De-nitrification and Fixation.	
	Deficiency symptoms of nutrients in plants , soil fertility	
	rating, Nutrient index, Balanced fertilization	
3.3	Soil analysis: Soil sampling techniques, preparation of	4L
	soil samples, Soil pH, Soil Organic carbon, Soil Organic	
	matter, Soil Organic carbon and climate change,	
	Extraction and analysis of available nutrients(N,P,K) and	
1		

	micronutrients by instrumental analysis AAS, ICP-AES	
	etc. Interpretation of soil analysis data-soil Health card	
	scheme of govt of India.	
References:		
•	By Clair N. Sawyer, Perry L. McCarty, Gene Parkin 'Chemi	istry for
	environmental engineering and science' (5th edition) McGraw-Hill	
	Professional	

T. Y. B. Sc. (CHEMISTRY)

SEMESTER V - Practical Based on DSE Courses

COURSE CODE: 23US5CHDSP Credit- O2

Learning Objectives:

The practical is intended to develop Skills for analytical techniques of environmental monitoring

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Perform the soil and water analysis
- 2. Recommend the plants suitable for improvement of air quality Experiments

Discipline Specific Elective - IV

Environmental Chemistry

- 1. To determine Air Pollution Tolerance Index (APTI) for a given plant species for its use in pollution control as well as pollution indicator
- 2. Evaluation of low-cost adsorbent from non-toxic agricultural waste and study of adsorption capacity for removal of methylene blue dye from the waste water sample for tertiary treatment processes.
- 3. Estimation of chloride in water sample by Mohr's method.
- 4. Estimation of Soil organic carbon, soil pH and Bulk density

- 5. Estimation of Phosphorous from a soil sample
- 6. Estimation of potassium from a soil sample

References:

MOOCs -Online Courses

- Ref: https://nptel.ac.in/courses/126105016/36 accessed on 18th May 2019
- Ref: <u>https://nptel.ac.in/syllabus/syllabus_pdf/104103020.pdfaccessed on</u> <u>18th May 2019</u>
- Ref: <u>https://nptel.ac.in/courses/104103020/33accessed on 18th May 2019</u>

Books

- Manahan, Stanley E. 'Fundamentals of Environmental Chemistry ' Boca Raton: CRC Press LLC,2001
- Sonja Krause, Herbert M. Clark, James P. Ferris, Robert L. 'Strong Chemistry of the Environment ', Elsevier Science & Technology Books 2002
- Eugene R. Weiner Applications of Environmental Chemistry 2000 CRC Press, LLC
- By Clair N. Sawyer, Perry L. McCarty, Gene Parkin 'Chemistry for environmental engineering and science' (5th edition) McGraw-Hill Professional
- Soil testing in India

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Skill Enhancement course - I

COURSE TITLE: Business skills for Chemists

COURSE CODE: 23US5CHSEIBSC [CREDITS - O2]

Course Learning Outcome After the successful completion of the Course, the learner will be able to: 1. Recognise the economic position, challenges and impact of the chemical industries globally. 2. Discuss the different features of IPR and enforcement process for patent. 3. Illustrate financial aspects of business. Module 1 Chemistry in Industry and Intellectual property [12L] Learning Objectives: The module is intended to Explain how chemistry impacts our everyday life 1. 2. Discuss the economic position of the chemistry-using industries in India and within the global economy 3. Describe the current and future challenges which face the chemistry-using industries 4. Show where chemistry research is making a difference to solve some of the global challenges which face this industry, contributing to the "green economy" 5. Describe different features of IPR 6. Explain how to get a patent 7. Describe how patent is enforced

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Enlist at least 10 chemistry industry careers
- 2. Name at least ten chemistry using industries in India and their economic position in global economy
- 3. Discuss major challenges faced by the chemistry using industries.
- 4. Demonstrate the use of chemistry in reduced carbon emissions and pollution, enhanced energy and resource efficiency
- 5. Differentiate between different types of IPRs
- 6. Demonstrate the patenting procedure with few examples
- 7. Write some ideas for commercialization of patented technology

1.1	Chemistry in Industry	5 Hrs
1.1.1	Importance of chemistry in our life, introduction to	
	global chemical economy, Current Challenges faced by	
	the Chemistry Using Industries,	
1.1.2	Drivers for innovation, introduction to the concepts	
	of Green economy and circular economy	
1.2	Intellectual property	5 Hrs
1.2.1	Intellectual property issues from a business	
	perspective, important features of IPR, Patenting an	
	invention, how to get a patent.	
1.2.2	Patenting abroad, commercializing patented	
	technology, Enforcing patent	
References:		
•	The online course developed by University of M	Nottingham
	http://www.rsc.org/learn-chemistry/resources/business-s	kills-

forchemists/OnlineCourse/

Autonomous (Affiliated to University of Mumbai)

Module 2	Business Basics	[12L]
Learning Obj	ectives:	
This module	is intended to	
I. Analys	se the nitty-gritties of some of the chemical industries	
2. Explai	n how a business plan is prepared	
3. Gener	rate swot analysis of a business	
Learning Out	tcome:	
After the suc	ccessful completion of the module, the learner will be able	e to
I. Perior	in detail analysis of challenges basic business, opportun	ities the at
least c	one of the chemical industries	
2. Prepai	re a business plan for one of the product /services	
3. Perfor	m SWOT analysis	
2.1	Basic rules of business	
2.2	Components of a business plan- executive summary	
2.3	Background	
2.4	Key personnel	
2.5	Operations	
2.6	Marketing	
2.7	Financial plan	
2.8	Swot analysis	
References:		
•	Resource developed by University of Warwick and Unive	rsity of
	York <u>http://www.rsc.org/learn-chemistry/resources/busin</u>	ness-skills-

and-commercial-awareness-for-chemists/

 Inventing the Future: An Introduction to Patents for Small and Medium-sized Enterprises. WIPO publication No. 917

Module 3	Making money-Introduction to Financial aspects of	[12L]
	business	
Learning Obj	ectives:	
The module i	s intended to	
1. Illustra	te key terms and concepts of finance and cost	
2. Differe	entiate between the different types of cost	
3. Catego	orise different expenses	
Learning Out	come:	
After the suce	cessful completion of the module, the learner will be able	e to
I. Write	different examples of cost, price and value of a given pro	oduct.
2. Derive	cost equations for a process and Prepare a profit and los	ss account
3. Compi	rehend the balance sheet of a company	
3.1	key terms and concepts of finance, Cost, price and	
	value, rules for debit and credit, classification of	
	expenses-capital expenditure, revenue expenditure,	
	Profit and loss account and balance sheet	
3.2	Costing – different types of costs i.e. Variable cost, fixed	
	cost, semi-variable cost, opportunity cost, marginal	
	cost and preparation of cost sheet	
References:	1	
• "Secret	ts of Intellectual Property: A Guide for Small and Me	edium-sized

 "Secrets of Intellectual Property: A Guide for Small and Medium-sized Enterprises", ITC/WIPO publication on with questions and answers on intellectual property of relevance to SME exporters.

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Skill Enhancement course - II

COURSE TITLE: Food Chemistry

(Optional for SEC I: Business Skills for Chemist)

COURSE CODE: 23US5CHSE2FOC [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

- 4. Explain the types of food and its various macronutrients.
- 5. Illustrate chemical and instrumental methods for analysis of different food and food products.
- 6. Demonstrate the food adulterants with suitable examples.
- 7. Explain basic concepts and tools for food quality control and food laws/regulations

Module 1

Introduction to Food Chemistry

[15L]

Learning Objectives:

The module is intended to

- 8. Discuss water and water activity with respect to food.
- 9. Explain nutritional and biological importance of macromolecules (carbohydrates, proteins and lipids) present in the food.
- 10. Explore basic information with respect to food for Milk, Honey, Tea and Coffee.
- 11. Discuss food quality control and food laws.

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 8. Explain the concepts of nutrition, water and water activity in foods.
- 9. Describe the role of macromolecules such as carbohydrates, proteins and fats in the food

[12L]

10. Use classical and instrumental methods for analysis of food products suc	h
as honey, milk, tea and coffee.	

11. Apply the rules and regulations regarding food products and its productions.

1.1	Food Chemistry, Water and water activity in food.	2L
1.2	Physical, Chemical, Nutritional and biological importance of macromolecules - carbohydrates, lipids and proteins	5L
1.3	Definition, properties, compositions, types of - Milk,	6L
	Honey, Tea and Coffee.	
1.4	Tools for food Quality Controls, Risk Assessment in	2L
	food industry – HACCP	

References:

- Food Safety and Standards Act, 2006 by Universal Law Publishing
- Food Analysis by Pearson
- Chemical food analysis and a practical analysis; a practical manual; Bruce R.
 D'Arcy Geoff Hawes, A University of Queensland Publication

Module 2	Food Analysis (Practical/ Pr	roject/ Industrial Visit)
----------	------------------------------	---------------------------

Learning Objectives:

This module is intended to

- 4. Perform various analytical methods for estimation of desired constituents of food samples.
- 5. Compare statistical data for various food samples under the same analytical methods.
- 6. Design and execute a novel procedure for food sample analysis.

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 4. Explain the concept of analysis to food and food products.
- 5. Identify different constituents present in the given food sample via known practical procedures.
- 6. Apply the experimental knowledge to perform or create novel type of qualitative and quantitative analysis for given food and food products

2.1	Milk sample - Lactose by Cole's Ferricyanide method	6L
	and or Iron by Spectrophotometric method and or	
	Calcium by Complexometric method	
2.2	Honey sample: Total reducing sugars by Lane-Eynon	6L
	method (before and after inversion)	
2.3	Tea sample – Tannin analysis (Qualitative and	3L
	Quantitative)	
	OR	
	Coffee sample - Caffeine analysis by Bailey Andrew	
	Method	
2.4	Moisture content from a given food sample by lab	3L
	oven method (min 2 samples).	
2.5	Detection of adulterants in different food products	3L
	(Demonstration)	
	1. Milk – Starch	
	2. Paneer – Starch	
	3. Ghee – Vanaspati/ Margarine/Potato	
	4. Butter – Vanaspati/Potato	
	5. Oils – Argemone/Mineral/Caster oil	
	6. Honey – Sugar solution	
	7. Ice cream – Metanil yellow/Saccharin/Al foil	
		1

	Turmeric powder - Metanil yellow/ Chalk powder			
2.6	Industrial Visit/Project	9L		
References:				
A Laboratory Manual of Food Analysis, Shalini Sehgal, I K International				
Publish	ing			
• Food analysis, 4th edition, S. Suzanne Nielsen; Springer				
• <u>https://fssai.gov.in/cms/manuals-of-methods-of-analysis-for-various-food-</u>				
produc	<u>cts.php</u>			

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Core Course-I

COURSE TITLE: Physical Chemistry IV

COURSE CODE: 23US6CHCCIPHC4 [CREDITS - O2]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Discuss the basic principles of Molecular Spectroscopy.
- 2. Illustrate the colligative properties of dilute solutions and examine one and two component systems with the help of Phase Rule.
- 3. Describe the basic concepts of quantum Chemistry and NMR.

Module 1

Molecular Spectroscopy

[12L]

Learning Objectives:

The module is intended to discuss the principles of three key spectroscopic methods- Rotational, Infra-Red and Raman spectroscopies.

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Relate dipole moments of molecules with their activity towards different molecular spectroscopic methods.
- 2. Examine Rotational and Vibrational spectra of diatomic molecules.
- 3. Determine whether the molecular rotations and vibrations of a molecule are Raman active.

1.1	Dipole moment: Dipole moment, polarization of a	
	bond, bond moment, dipole moment and molecular	
	structure.	
1.2	Rotational Spectrum: Rotational spectrum of a	
	diatomic molecule, rigid rotor, moment of inertia,	

	energy levels, conditions for obtaining pure rotational			
	spectrum, selection rule, nature of spectrum,			
	determination of inter nuclear distance and isotopic			
	shift			
1.3	Vibrational (IR) spectrum: Vibrational motion, degrees			
,	of freedom modes of vibration vibrational spectrum			
	of a diatomic molecule, simple harmonic escillator			
	or a diatomic molecule, simple narmonic oscillator,			
	energy levels, zero point energy, conditions for			
	obtaining vibrational spectrum, selection rule, nature			
	of spectrum			
1.4	Vibration-Rotation spectrum of diatomic molecules,			
	vibrating rotor, energy levels, selection rule, nature of			
	spectrum, R and P branches, anharmonic oscillator:			
	energy levels, selection rule, fundamental band,			
	overtones. Introduction to infrared spectra of simple			
	molecules like H_2O and CO_2 .			
1.5	Raman Spectroscopy: scattering of electromagnetic			
	radiation, Rayleigh scattering, Raman scattering,			
	nature of Raman spectrum, Stoke's lines, anti-Stoke's			
	lines, Raman shift, quantum theory of Raman			
	spectrum, comparative study of IR and Raman			
	spectra, rule of mutual exclusion (example of CO ₂			
	molecule).			
References:	I I			
• Fundamentals of Molecular Spectroscopy, Colin N Banwell and E. M,				

- McCash, 4th Edition, Tata McGraw-Hill Publishing Company Ltd.
- Molecular Structure and Spectroscopy, G. Aruldhas, Second edition, Eastern Economy Edition.

• Kakkar, R. Atomic & Molecular Spectroscopy: Concepts & Applications,			
Cambridge University Press (2015).			
Module 2	Colligative Properties of Dilute Solutions and phase	[12L]	
	Rule		
Learning Obj	ectives:		
This module i	s intended to		
1. Explair pressur osmoti	1. Explain the concepts of colligative properties such as lowering of vapour pressure, elevation of boiling point, depression in freezing point and osmotic pressure		
2. Illustra differe	te the relation between the colligative property and cal nt parameters.	culations of	
3. Descril system	 Describe Phase rule and it's applications to one and two component systems. 		
After the suce	cessful completion of the module, the learner will be able	e to	
1. Descrit non-ve	1. Describe the relation between colligative property and molar mass of the non-volatile solute.		
2. Solve volatile	2. Solve numerical problems on determination of molar mass of the non-volatile solutes.		
3. Illustrate phase rule for one and two component systems.			
2.1	Colligative Properties of Dilute Solutions	7L	
2.1.1	Dilute solutions, colligative properties, Raoult's law,		
	relative lowering of vapour pressure.		
2.1.2	Elevation in boiling point of a solution, thermodynamic		
	derivation relating elevation in boiling point of a		
	solution and the molar mass of a non-volatile solute.		

2.1.3	Depression in freezing point of a solution,	
	thermodynamic derivation relating the depression in	
	the freezing point of a solution and the molar mass of	
	a non-volatile solute.	
2.1.4	Osmotic pressure, van't Hoff's equation for osmotic	
	pressure (derivation is expected) and determination of	
	molar mass of the solute. Abnormal molar masses of	
	solutes and van't Hoff factor (calculation of Degree of	
	Association and Degree of Dissociation.)	
2.2	Phase Rule	5L
2.2 2.2.1	Phase RuleGibb's phase rule and terms involved in the equation	5L
2.2 2.2.1 2.2.2	Phase RuleGibb's phase rule and terms involved in the equationApplication of phase rule to ONE component systems:	5L
2.2 2.2.1 2.2.2	Phase RuleGibb's phase rule and terms involved in the equationApplication of phase rule to ONE component systems:Water system	5L
2.2 2.2.1 2.2.2 2.2.3	Phase RuleGibb's phase rule and terms involved in the equationApplication of phase rule to ONE component systems:Water systemApplication of phase rule to TWO component systems,	5L
2.2 2.2.1 2.2.2 2.2.3	Phase RuleGibb's phase rule and terms involved in the equationApplication of phase rule to ONE component systems:Water systemApplication of phase rule to TWO component systems,condensed systems, condensed phase rule, eutectic	5L
2.2 2.2.1 2.2.2 2.2.3	Phase RuleGibb's phase rule and terms involved in the equationApplication of phase rule to ONE component systems:Water systemApplication of phase rule to TWO component systems,condensed systems, condensed phase rule, eutecticsystems (Lead – Silver system), desilverisation of lead.	5L
2.2 2.2.1 2.2.2 2.2.3 2.2.4	Phase RuleGibb's phase rule and terms involved in the equationApplication of phase rule to ONE component systems:Water systemApplication of phase rule to TWO component systems,condensed systems, condensed phase rule, eutecticsystems (Lead – Silver system), desilverisation of lead.Introduction to THREE component systems, triangular	5L

- Principles of Physical Chemistry, Puri, Sharma, Pathania, 41st Millennium Edition, Vishal Publishers.
- Peter Atkins & Julio De Paula, Physical Chemistry 10th Ed., Oxford University Press (2014).
- The Phase Rule And Its Applications, Alexander Findlay, Longmans, Green, and Co., 1911

Autonomous (Affiliated to University of Mumbai)

Module 3	Quantum Chemistry and Nuclear Magnetic	[12L]
	Resonance Spectroscopy	
Learning Obj	ectives:	
The module i	s intended to	
1. Discuss	s basic concepts of quantum mechanics, operators, eig	en function
and eig	gen value.	
2. Explair	n the principles of Nuclear Magnetic Resonance Spectros	сору.
Learning Out	come:	
After the suc	cessful completion of the module, the learner will be able	e to
	are between classical mechanics and quantum mechanics	
2 Explain	a different operators	•
3. Examir	ne eigen function and eigen value.	
4. Explain	the basic principles of NMR spectroscopy	
5. Illustra	te the principle and working of NMR Spectrometer	
3.1	Ouantum Chemistry	81
311	Why quantum mechanics? Comparison between	
)	classical mechanics and quantum mechanics	
312	Progressive and standing waves boundary conditions	
)2	Schrodinger's time independent wave equation	
	interpretation and properties of wave function	
313	Postulates of quantum mechanics Concept of	
	operators definition addition subtraction	
	multiplication of operators. Commutative and non-	
	commutative operators Linear operators Hamiltonian	
	operator	
314	Figen function and eigen value eigen value equation	
20	Nuclear Magnetic Posenance Spectroscopy	A I
).2	пистеат таупенс кезопансе зреснозсору	4L

3.2.1	Nuclear spin, magnetic moment, nuclear 'g' factor,
	energy levels, Larmor precession. Relaxation processes
	in NMR (Spin-spin relaxation and spin-lattice
	relaxation)
3.2.2	NMR Spectrometer, chemical shift, shielding and de-
	shielding of protons, low resolution NMR spectrum of
	methanol and ethanol, fine structure of NMR- nuclear
	spin-spin interaction with reference to methanol and
	ethanol.
References:	

• Introductory Quantum Chemistry, A. K. Chandra, 4th Edition, McGraw-Hill India.

• NMR Spectroscopy, Harald Gunther, Third edition, Wiley-VCH Publication.

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Core Course- II

COURSE TITLE: Inorganic Chemistry IV

COURSE CODE: 23US6CHCC2INC4 [CREDITS - O2]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Discuss the structure of solids and the concepts of superconductivity.
- 2. Analyse and understand the electronic spectra of complexes, stability and substitution reactions in octahedral complexes.
- 3. Discuss the Chemistry of aqueous and non-aqueous solvents.

Module 1

Solid state chemistry

[12L]

Learning Objectives:

The module is intended to discuss a very important branch of chemistry which is solid state Chemistry as most of the inorganic compounds are solids under ordinary conditions and greater part of structural inorganic chemistry is concerned with structure of solids.

Learning Outcome:

After the successful completion of the module, the learner will be able to discuss the structure of solids through learning different lattice parameters, closest packing of spheres, atomic packing factor of crystal systems, voids in crystal structure etc.

1.1	Structures of Solids	8L
1.1.1	Importance of Solid State Chemistry	
1.1.2	Crystals: size and shape of crystals, interfacial angles in crystals, Symmetry and elements of symmetry in crystals.	

1.1.3	Classification of solids on the basis of bonding.	
1.1.4	Explanation of terms viz. crystal lattice, lattice points,	
	unit cells, and lattice constants	
1.1.5	Closest packing of rigid spheres (hcp, ccp), packing	
	density in simple cubic, bcc, fcc and hcp Lattices	
	(numerical problems expected).	
1.1.6	Tetrahedral and octahedral interstitial voids in ccp	
	lattice, tetrahedral holes, limiting radius ratios for	
	different coordination numbers and their significance,	
	calculation of ionic radii and limiting radius ratio for	
	coordination number 4.	
1.1.7	Structure of sodium chloride, cesium chloride and	
	fluorite. Structure of zinc chloride and failure of radius	
	ratio rule (directional bonding), structure of wurtzite.	
1.2	Superconductivity	4L
1.2.1	Superconductivity, Meissner effect.	
1.2.2	Different superconducting materials viz., conventional	
	superconductors, organic superconductors, alkali	
	metal fullerides (A_3C_{6O}) and high temperature	
	superconductors.	
1.2.3	Applications of superconducting materials.	
References:		

• Coordination Chemistry - S.F.A. Kettle - ELBS (2013).

• Solid State Chemistry: An Introduction *By Elaine A. Moore, Lesley E. Smart* (2021)

Sometinger TRUST

Module 2	Coordination Chemistry	[12L]
Learning Obj	ectives:	
This module is intended to		
1. Discuss	s the electronic spectra of complexes.	
2. Illustra	te the stability of complexes.	
3. Explair	n the substitution reactions in complexes.	
Learning Out	come:	
After the suc	cessful completion of the module, the learner will be able	e to
1. Analyz	e the electronic spectra of complexes and can recogn	nize various
types o	of electronic transitions, geometry of complexes.	
2. Elabor	ate the complex chemistry of transition metal co	oordination
compounds by studying kinetics, mechanisms of various reactions and		
stability of complexes		
2.1	Electronic Spectra of Complexes	5L
2.1.1	Type of electronic transitions like intra-ligand	
	transitions, charge transfer transitions and intra-metal	
	transitions (d-d or ligand field transitions for transition	
	metals)	
2.1.2	Rule for electronic transitions: Spin and Orbital or	
	Laporte selection rules	
2.1.3	Splitting of Terms in weak crystal field, the Hole	
	formalism	
2.1.4	Orgel Diagrams for D Terms i.e. d ¹ , d ⁴ and d ⁶ , d ⁹	
	electronic configurations	

2.1.5	Applications of electronic spectra in brief, with special	
	reference to (i) cis-trans isomerism in complexes and	
	(ii) Geometry of complexes	
2.2	Stability of octahedral complexes	3L
2.2.1	Thermodynamic stability and kinetic stability of	
	complexes with examples	
2.2.2	Stability constants: stepwise and overall constants and	
	their inter relationship	
2.2.3	Factors affecting thermodynamic stability	
2.3	Substitution reactions in octahedral complexes	4L
2.3.1	Introduction, types of reactions in complexes	
2.3.2	Ligand substitution reactions: basic mechanisms	
2.3.3	Inert and labile complexes and electronic	
	configurations and lability	
2.3.4	Acid hydrolysis, base hydrolysis and anation reactions.	

References:

- Selected Topics in Inorganic Chemistry W.U. Malik, G.D. Tuli and R.D.
 Madan S. Chand Publications (2019).
- Inorganic Chemistry by GARY L. MIESSLER DONALD A. TARR, Third Edition, PPH publication.

Module 3

Solution Chemistry

[12L]

Learning Objectives:

The module is intended to

- 1. Discuss the study of aqueous chemistry.
- 2. Explain the concept of Non aqueous solvents.

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Discuss various theories of acids and bases, appreciate how these theories provide a common platform to stand.
- 2. Recognize the behaviour of cations and anions in aqueous solution, changes brought about due to their presence and importance of maintenance of pH in aqueous solution.
- 3. Illustrate the importance of non-aqueous solvents and study some important and widely used non-aqueous solvents.

3.1	Concept of acids and Bases	4L
3.1.1	Arrhenius, Bronsted Lowry, Lewis concept of Acids and	
	Bases.	
3.1.2	Solvent System Concept.	
3.1.3	Levelling and differentiating solvents	
3.1.4	Pearson principal and HSBC Concept	
3.1.5	Usanovich Concept	
3.2	Acid Base Chemistry in Aqueous Medium	4L
3.2.1	Acidity of mono- and polyatomic cations.	
3.2.2	Basicity of mono- and polyatomic anions (Latimer	
	equation and predominance diagrams).	
3.3	Chemistry of Non-aqueous solvents	
3.3.1	Classification of solvents and importance of non-	
	aqueous solvents	
3.3.2	Characteristics of study of liquid ammonia,	
	dinitrogentetraoxide and acetic acid as non- aqueous	
	solvents with respect to (i) acid base reactions (ii) redox	
	reactions	

- Concise Inorganic Chemistry J.D. Lee III edition Von Nostrand.
- Chemistry Inorganic B.R. Puri, L.R. Sharma and K.C. Kallia Vallabh Publications (2019).

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Core Course-III

COURSE TITLE: Organic Chemistry IV

COURSE CODE: 23US6CHCC3ORC4 [CREDITS - O2]

Somaiya TRUS

K J Somaiya College of Science & Commerce
Autonomous (Affiliated to University of Mumbai)

5. Write the Strecker's synthesis of amino acids and Merrifield solid phase		
synthesis of peptides.		
1.1	Natural products	6L
1.1.1	Terpenoids. Introduction, isoprene rule, special	
	isoprene rule, and gem dialkyl rule. Citral: Structure	
	determination of citral, synthesis of citral from methyl	
	heptenone	
1.1.2	Alkaloids: Introduction, Hofmann's exhaustive	
	methylation and degradation Nicotine: Structure	
	determination of nicotine, synthesis of nicotine from	
	nicotinic acid	
1.2	Chemistry of some Important Biomolecules	6L
1.2.1	α-Amino acids: Structure, configuration, Essential	
	amino acids and their classification, Methods of	
	preparations: Strecker synthesis of amino acids	
1.2.2	Polypeptides and Proteins: Polypeptides: Peptide	
	bond. Nomenclature and representation of	
	polypeptides. Merrifield's solid phase peptide	
	synthesis (example of di- and tri- peptides for	
	nomenclature and synthesis). Proteins: General idea of	
	primary, secondary, tertiary and quaternary structures	

- Organic Chemistry, 4th Edn, Paula Y. Bruice, WordPress
- Natural Products, Volume I and II, O.P. Agarwal, Goyal Publishing House, 38th edition.
- Chemistry of Natural Products, R.S. Thomson, 2nd edition, Springer Publication

Autonomous (Affiliated to University of Mumbai)

• Finar, I. L. Organic Chemistry (Volume 2) Pearson Education		
Module 2 Organometallic Chemistry and Reagents and [12L]		
	Catalysts	
Learning Obj	ectives:	
This module i	s intended to	
1. Discuss	the syntheses of simple organolithium, organomagr	nesium and
organozinc c	ompounds.	
2. Illustra	te the reactions of organolithium and organozinc compo	ounds.
3. Explair	the mechanism of Reformatsky reaction.	
4. Explair	the application of some catalysts used for hydroge	nation and
reduction rea	actions.	
5. Descrit	be the various functional group interconversions in organ	nic synthesis
involving spec	cific reagents.	
Learning Out	come:	
After the suc	cessful completion of the module, the learner will be able	e to
I. Design	the synthesis of simple organolithium, organomagn	iesium and
organo	ozinc compounds.	
2. Predict	t the products in reactions of organolithium and	organozinc
compo	ounds.	
3. Write	the mechanism of Reformatsky reaction.	
4. Identify the catalysts required for hydrogenation and reduction of different		
compounds.		
5. Interconvert the various functional groups in organic synthesis involving		
specific reagents.		
2.1	Organometallic Chemistry	4L
2.1.1	Organolithium Compounds: Preparation using	
	alkyl/aryl halides. Reactions with compounds	
	containing acidic hydrogen, alkyl halides, carbonyl	

	compounds, cyanides and CO ₂ . Lithium dialkyl	
	cuprates: Preparation and reactions with aliphatic	
	/aromatic/vinylic halides	
2.1.2	Organozinc compounds: Preparation of dialkyl zinc.	
	Reaction with water, acid chlorides and alkyl halides.	
	Reformatsky reaction (with mechanism).	
2.2	Reagents and Catalysts	8L
2.2.1	Study of the following catalysts and reagents with	
	respect to functional group transformations and	
	selectivity (no mechanism).	
2.2.2	Catalysts: Catalysts for hydrogenation: Raney Ni, Pt and	
	PtO ₂ : C=C, CN, NO ₂ , aromatic ring; Pd/C: C=C, COCl \rightarrow	
	CHO (Rosenmund's); Lindlar catalyst: alkynes;	
	Wilkinson's catalyst for stereo selective reduction of	
	olefins.	
2.2.3	Reagents: (1) LiAlH ₄ and Red-Al: reduction of CO,	
	COOR, CN, NO ₂ . (2) NaBH ₄ : reduction of CO (3) SeO ₂ :	
	hydroxylation of allylic and benzylic positions,	
	oxidation of CH ₂ , alpha to CO to CO. (5) m-CPBA and	
	R-OOH/H ₂ O ₂ for epoxidation of C=C. (6) NBS: allylic	
	and benzylic bromination of position alpha to CO.	
References:		
Textbook	of Organic Chemistry, 2012, by V K Ahluwalia, Rakesh K	Parashar,

Viva Books Private Limited.

• Organic Chemistry: Second Edition, 2014, Jonathan Clayden, Nick Greeves, Stuart Warren.

 Modern Synthetic Reactions H. O. House, Massachusetts Institute of Technology. W. A. Benjamin, Inc., New York, 1965.

Spectroscopy

[12L]

Learning Objectives:

Module 3

The module is intended to

- 1. Discuss the basic theory of UV spectroscopy.
- 2. Explain various functional groups based on IR spectroscopy.
- 3. Discuss the different terms involved in NMR spectroscopy.
- 4. Define chemical shift and the factors affecting it.

5. Illustrate structure elucidation of simple organic compounds using individual or combined uses of the UV, IR and NMR spectroscopic techniques.

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Identify various functional groups on the basis of the U.V and IR spectra.
- 2. Predict the electronic environment around different types hydrogen present in the organic compound based on the IH NMR spectrum.
- 3. Elucidate the structure of simple organic compounds using U.V, IR and IH NMR spectrum in synchronization and vice versa.

3.1	Introduction: Electromagnetic spectrum, units of
	wavelength and frequency
3.2	UV- Visible Spectroscopy: Basic theory, solvents, nature
	of UV-VIS spectrum
3.3	IR Spectroscopy: Basic theory, nature of IR spectrum,
	selection rule, fingerprint region.
3.4	PMR Spectroscopy: Basic theory of NMR, nature of
	PMR spectrum, chemical shift (∂ unit), standard for
	PMR, solvents used. Factors affecting chemical shift: (I)
	inductive effect (2) anisotropic effect (with reference
	to C=C, C=C, C=O and benzene ring). Spin spin

	coupling and coupling constant. Proton exchange-	
	application of deuterium exchange. Application of	
	PMR in structure determination.	
3.5	Spectral characteristics of following classes of organic	
	compounds, including benzene and monosubstituted	
	benzenes, with respect to UV-VIS, IR, PMR: (1) alkenes	
	(2) alkenes and polyenes (3) alkynes (4) haloalkanes (5)	
	alcohols (6) carbonyl compounds (7) ethers (8)	
	carboxylic acids (9) esters (10) amines (11) amides	
	(broad regions characteristic of different groups are	
	expected).	
3.6	Problems of structure elucidation of simple organic	
	compounds using individual or combined uses of the	
	above spectroscopic technique are expected. (index of	
	hydrogen deficiency should be the first step in solving	
	the problems).	
References:		
• P.S. Kal	lsi, Spectroscopy of Organic compounds, New Age Intern	ational

- Ltd., 1995.
- Jagmohan, Organic Spectroscopy- Principles and Applications, 2 nd Edition, Narosa Publication, 2008.
- W. Kemp, Organic Spectroscopy, 3rd Edition, Palgrave, Indian Edition, 2005.
- Williams and Fleming, Spectroscopic methods in Organic Chemistry, 5 th Edition, McGraw Hill, 1995.

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Core Course- IV

COURSE TITLE: Analytical Chemistry II

COURSE CODE: 23US6CHCC4ANC2 [CREDITS - O2]

Course Learning Outcome			
After the successful completion of the Course, the learner will be able to:			
1.	Explain the importance of solvent extraction and other extraction		
	techniques in chemistry.		
2.	2. Describe various chromatographic techniques as a major separation tool in		
	Chemistry		
3.	Illustrate Polarography and related techniques as a analytical method for		
	sample analysis.		
Mo	dule 1 Solvent extraction and Solid phase extraction [12L]		
Learn	ing Objectives:		
The n	nodule is intended to		
1.	Discuss the solvent extraction as a major method of separation in analytical chemistry		
2.	Describe basic extraction methods using different extraction mechanism		
	and different extraction methodologies		
3.	Illustrate solid phase extraction as a new versatile method of separation.		
Learn	ing Outcome:		
After	the successful completion of the module, the learner will be able to		
1.	1. Explain the basic concept solvent extraction. Different extraction systems		
	and mechanisms		

Somanya

K J Somarya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

- 2. Describe experimental extraction techniques, role of pH and selecting appropriate method for desired separation
- 3. Apply solvent extraction technique in chemistry
- 4. Illustrate solid phase extraction as new method of separation.

1.1	Solvent Extraction	8L
1.1.1	Partition coefficient and distribution ratio	
1.1.2	Extraction efficiency, separation factor	
1.1.3	Role of complexing agents in solvent extraction, chelation, ion pair formation, solvation	
1.1.4	Types of solvent extraction: batch, continuous. [Numerical problems expected]	
1.2	Introduction to Solid phase extraction	4L
1.2.1	Limitations of solvent extraction	
1.2.2	Basic Principles, Equipments used	
1.2.3	Applications of Solid phase extraction	

References:

- S. M. Khopkar, Basic Concepts of Analytical Chemistry, 3rd ed, New Age International Publishers, 2008
- R.A.Dey & D.L.Underwood, Quantitative Analysis, 6th ed. Prentice Hall Of India Pvt. Ltd. New Delhi, 1993.

Module 2

Chromatographic methods

[12L]

Learning Objectives:

This module is intended to

- 1. Explain the basic principles and importance of chromatographic methods
- 2. Discuss gas Chromatography as a major method of separation in analytical chemistry.

- 3. Describe the use of High-Performance Liquid Chromatography as an Analysis tool for complex separations and estimations
- 4. Illustrate ion exchange chromatography as a versatile separation method

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Explain the basic principles of chromatography. Different terms and concepts related to chromatographic separations
- 2. Describe gas chromatography, its instrumental and operational details and applications.
- 3. Apply HPLC as versatile method for separations, qualitative and quantitative analysis
- 4. Discuss ion exchange chromatography and its wide applications in analytical chemistry

2.1	Gas chromatography	5L
2.1.1	Gas liquid chromatography, basic principles, retention	
	time, retention volume, resolution, peak width	
	theoretical plates. HETP	
2.1.2	Instrumentation, columns, detectors, applications	
2.2	High Performance Liquid Chromatography	3L
2.2.1	Instrumentation, types of elution, U.V. and I.R. detector	
	and applications	
2.3	Ion Exchange Chromatography	4L
2.3.1	Types of ion exchangers	
2.3.2	Mechanism of ion exchange, selectivity coefficients	
	and separation factors, capacity and its determination,	
	factors affecting the separation of ions	
References:		

3.1.4	Oxygen interference and its removal, maxima and maxima suppressors, polarographic cell	
3.1.5	Qualitative and quantitative analysis, calibration curve and standard addition method, applications. [Numerical problems expected]	
3.2	Amperometric Titrations	3L
3.2.1	Basic principles, rotating platinum electrode and nature of the titration curves	
3.2.2	Applications, advantages and limitations	

- D. A. Skoog, D.M.West, F.J.Holler, Fundamentals of Analytical Chemistry, 8th ed. Philadelphia, Saunders college Publishing, 1996
- A J Bard, R M Faulkner. Fundamentals of ElectroS. M. Khopkar, Basic Concepts of Analytical Chemistry, 3rd ed,New Age International Publishers, 2008ana, Wiley, 2000
- G.D.Christian, Analytical Chemistry, 6th ed. John Wiley & Sons, Singapore, 2004.
- S. M. Khopkar, Basic Concepts of Analytical Chemistry, 3rd ed, New Age International Publishers, 2008

T. Y. B. Sc. (CHEMISTRY) SEMESTER VI - Practical Based on CC I and CC IV COURSE CODE: 23US6CHCCPI Credit- OI

Learning Objectives:

The practical is intended to

- 1. Discuss the effect of an added electrolyte on the kinetics of the reaction.
- 2. Describe the partition coefficient method to determine equilibrium constant of a reaction
- 3. Explain the potentiometric titration method to determine the strength of the given strong acid.
- 4. Illustrate the conductometric titration method of mixture of acids and salt to determine the percentage composition.

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Discuss the effect of addition of electrolyte on the kinetics of the reaction.
- 2. Practice the partition coefficient method to determine equilibrium constant of a reaction.
- 3. Demonstrate potentiometric titration method.
- 4. Illustrate the conductometric titration method.

Core Course I

Physical Chemistry IV

1. Chemical Kinetics – To study the effect of an added electrolyte (KCl) on the kinetics of the reaction between potassium persulphate and potassium iodide.

Somanyar TRUST

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

- Partition coefficient To determine the equilibrium constant for the reaction KI + I₂→KI₃ by partition coefficient method. (Partition coefficient of I₂ between CCI₄ and water is to be given)
- 3. Potentiometry
 - a. To determine the strength of the given strong acid (HCl) by potentiometric titration using quinhydrone electrode (Calculation of pH from Ecell and the plot of (i) against V (ii) pH against V graphs are expected).
 - b. To determine the solubility and solubility Product of Silver Chloride by using a Concentration cell.
- 4. Conductometry To estimate the concentration of sulphuric acid, acetic acid and copper sulphate in the given solution by conductometric titration method.
- 5. Colourimetry To determine the amount of Fe(II) present in the given solution by Using Salicylic acid by Colourimetric Titration.

- Experimental Physical Chemistry, V. D. Athawale, 2007, New Age International Publishers.
- Physical Chemistry Experiments, R. Rajalakshmi, 2020, Notion press Publishers.
 - Senior Practical Physical Chemistry, Khosla B. D.; Garg V. C. & Gulati A., R. Chand & Co.: New Delhi (2011).
 - Experiments in Physical Chemistry, Garland C. W. Nibler J. W. & Shoemaker D. P., 8th Ed.; McGraw-Hill: New York (2003).
 - Experimental Physical Chemistry, Halpern A. M. & McBane G. C., 3rd Ed., W.H. Freeman & Co.: New York (2003).

Sometinger TRUST

Learning Objectives:

The practical is intended to

- 1. Explain solvent extraction as a major tool of separation
- 2. Use ion exchange chromatography for estimation of cations.
- 3. Describe GC and HPLC for real sample analysis.
- 4. Use instrumental methods for analysis of real samples like Vinegar

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Use Solvent extraction with different separation mechanisms for separation of desired analyte.
- 2. Implement use of ion exchange techniques as a separation tool for separation of cations.
- 3. Use Instrumental methods of analysis for commercial samples like vinegar.
- 4. Demonstrate use of GC and HPLC as a major separation and estimation techniques in Analytical Chemistry

Core Course IV

Analytical Chemistry II

- 1. Separation and estimation of Fe(III) and Mg(II) using solvent extraction .
- 2. Detection of Na⁺ ions in a given solution by using cation ion exchanger.
- 3. Estimation of chloride in the given sample using Mohr's method. (3U)
- 4. Estimation of acetic acid in vinegar by potentiometry.
- 5. Water analysis:
 - a) Determination of alkalinity of potable water by acid base titration

b) Estimation of total hardness of water sample by complexometric titrations.

- 6. Estimation of phenolphthalein in the given sample colorimetrically.
- 7. Demonstration experiments (3U)

Autonomous (Affiliated to University of Mumbai)

- a. To study the separation of alcohols/ esters on gas chromatograph and detection of retention time
- b. To study the separation of alcohol on HPLC, to calculate HETP from the chromatograph.

- Practical HPLC analysis- By Veronica Meyer, Wiley publications •
- Inorganic quantitative analysis by A I Vogel, sixth edition •

T. Y. B. Sc. (CHEMISTRY) SEMESTER VI - Practical Based on CC II and CC III COURSE CODE: 23US6CHCCP2 Credit- O1

Learning Objectives:

The practical is intended to:

- 1. Explain the preparation of inorganic complexes.
- 2. Describe the analytical chemistry aspects of complexometric titration.
- 3. Discuss the concept of the experiment and the different steps involved in the experiment in the real lab more accurately and precisely.

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Prepare Inorganic complexes.
- 2. Analyze commercial samples using complexometric titration

Core Course II

Inorganic Chemistry IV

- 1. Commercial Analysis
- i. Analysis of talcum powder for its magnesium content complexometrically.
- ii. Analysis of calcium tablets for its calcium content complexometrically.
- iii. Analysis of Boric acid for its percentage purity.

2. Inorganic Preparations

- i. Nickel Hexaammine and Estimation of Nickel
- ii. Aluminium potassium sulphate KAI(SO₄)₂.12H₂O and estimation of AI.
- iii. Bis(acetylacetonato)copper (II) and Estimation of Copper

References:

• PRACTICAL INORGANIC CHEMISTRY LAB MANUAL (2019) by Dr.A.Padmanabha Rao & Dr.M.Akiful Haque.

Sometinger TRUST

Learning Objectives:

The practical is intended to

- 1. Discuss separation of a Binary mixture by Physical method.
- 2. Purify compounds by distillation method.
- 3. Prepare different Organic Compounds

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Find the chemical type of mixture in the given Binary mixture.
- 2. Separate the components using distillation technique
- 3. Purify the separated organic compound using distillation.

Core Course III

Organic Chemistry IV

1. Binary Mixture Separation

Separation of mixture containing (VL + NVL) & (S + VL) components.

2. Organic Preparations

- i. Aniline/p-toluidine \rightarrow N-Acetyl derivative
- ii. Salicylic acid/nitrobenzene/ Acetanilide \rightarrow Nitro derivative
- iii. β -naphthol \rightarrow Methyl Ether derivative (Using dimethyl sulphate)
- iv. Acetanilide \rightarrow p-bromoacetanilide derivative
- v. Aniline/ p-toluidine \rightarrow Schiff base with benzaldehyde
- vi. Hydroquinone/beta naphthol \rightarrow Acetyl derivative

Note: During Practical Examination, only preparation will be evaluated.

References:

• Vogel, A. I. Elementary Practical Organic Chemistry, Part 1: Small scale Preparations, CBS Publishers and Distributors.

- Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).
- Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Discipline Specific Elective - I

COURSE TITLE: Introduction to dyestuff chemistry

COURSE CODE: 23US6CHDSIIDC [CREDITS - O2]

Course Learning Outcome After the successful completion of the Course, the learner will be able to: Explain the fundamental concepts of dyestuff chemistry. 1. 2. Discuss different colour theories to relate the colour with structure of dyes and recognize the toxic effects of dyes. 3. Describe the dyeing techniques, fibre structure and methodologies involved in the manufacture of dyes. Module 1 Introduction to Dyestuff [12L] Learning Objectives: The module is intended to discuss the basic aspects of dyestuff chemistry Learning Outcome: After the successful completion of the module, the learner will be able to Describe the important properties of dyes 1. 2. Relate the names of dyes with its properties and application 3. Discuss the procedure for application of dyes to the substrate. 6L 1.1 Introduction to Dyestuff Chemistry 1.1.1 Important landmark in the history of dyes 1.1.1.1 Natural colouring matter and their limitations: e.g.; Heena, Turmeric, kesar, Chlorolphyll, Indigo, Alizarine

from roots of madder plants, Logwood. Tyrian purple. 1.1.1.2 Synthetic Dyes: Important milestones, i.e. Mauve, Diazotization, aniline Yellow, Congo Red, Synthesis

	and structure of Indigo, disperse Dye, fluorescent	
	Brighteners, procion reactive Dyes, Remazole Dyes.	
	(Emphasis on Name of the Scientist and dyes and the	
	year of the discovery is required and structure is not	
	expected)	
1.1.2	Definition of dyes, Properties i.e. colour, chromophore	
	and auxochrome, Solubility, Linearity, Coplanarity,	
	fastness properties, substantivity, and Economic	
	viability	
1.1.3	Explanation of nomenclature of commercial dyes with	
	atleast one example. Suffixes-G, O, R, B, 6B, GK, 3GK,	
	6GK, L, S Explanation: naming of dyes by colour	
	index(two examples)	
1.2	Classification Based on Application	6L
	••	
	Definition, fastness properties & applicability on	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes-	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B (c) Direct cotton Dyes- Benzofast Yellow 5GL (d)	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B (c) Direct cotton Dyes- Benzofast Yellow 5GL (d) Azoic Dyes-Diazo components; Fast yellow G,Fast	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B (c) Direct cotton Dyes- Benzofast Yellow 5GL (d) Azoic Dyes-Diazo components; Fast yellow G,Fast orange R. Coupling components. Naphtol AS,	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B (c) Direct cotton Dyes- Benzofast Yellow 5GL (d) Azoic Dyes-Diazo components; Fast yellow G,Fast orange R. Coupling components. Naphtol AS, Naphthol ASG (e) Mordant Dyes-Erichrome Black A,	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B (c) Direct cotton Dyes- Benzofast Yellow 5GL (d) Azoic Dyes-Diazo components; Fast yellow G,Fast orange R. Coupling components. Naphtol AS, Naphthol ASG (e) Mordant Dyes-Erichrome Black A, Alizarin. (f) Vat Dyes- Indanthrene brown RRD,	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B (c) Direct cotton Dyes- Benzofast Yellow 5GL (d) Azoic Dyes-Diazo components; Fast yellow G,Fast orange R. Coupling components. Naphtol AS, Naphthol ASG (e) Mordant Dyes-Erichrome Black A, Alizarin. (f) Vat Dyes- Indanthrene brown RRD, Indanthrene Red 5GK. (g) Sulphur Dyes- Sulphur Black	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B (c) Direct cotton Dyes- Benzofast Yellow 5GL (d) Azoic Dyes-Diazo components; Fast yellow G,Fast orange R. Coupling components. Naphtol AS, Naphthol ASG (e) Mordant Dyes-Erichrome Black A, Alizarin. (f) Vat Dyes- Indanthrene brown RRD, Indanthrene Red 5GK. (g) Sulphur Dyes- Sulphur Black T (no structure) (h) Disperse Dyes-Celliton Fast brown	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B (c) Direct cotton Dyes- Benzofast Yellow 5GL (d) Azoic Dyes-Diazo components; Fast yellow G,Fast orange R. Coupling components. Naphtol AS, Naphthol ASG (e) Mordant Dyes-Erichrome Black A, Alizarin. (f) Vat Dyes- Indanthrene brown RRD, Indanthrene Red 5GK. (g) Sulphur Dyes- Sulphur Black T (no structure) (h) Disperse Dyes-Celliton Fast brown 3R, perlon fast blue FFR (i) Reactive Dyes- cibacron	
	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B (c) Direct cotton Dyes- Benzofast Yellow 5GL (d) Azoic Dyes-Diazo components; Fast yellow G,Fast orange R. Coupling components. Naphtol AS, Naphthol ASG (e) Mordant Dyes-Erichrome Black A, Alizarin. (f) Vat Dyes- Indanthrene brown RRD, Indanthrene Red 5GK. (g) Sulphur Dyes- Sulphur Black T (no structure) (h) Disperse Dyes-Celliton Fast brown 3R, perlon fast blue FFR (i) Reactive Dyes- cibacron Brillant Red B, procion briilant Blue HB.	
References:	Definition, fastness properties & applicability on substrates examples with structures (a) Acid Dyes- Orange II, (b) Basic Dyes-methyl violet, Victoria Blue B (c) Direct cotton Dyes- Benzofast Yellow 5GL (d) Azoic Dyes-Diazo components; Fast yellow G,Fast orange R. Coupling components. Naphtol AS, Naphthol ASG (e) Mordant Dyes-Erichrome Black A, Alizarin. (f) Vat Dyes- Indanthrene brown RRD, Indanthrene Red 5GK. (g) Sulphur Dyes- Sulphur Black T (no structure) (h) Disperse Dyes-Celliton Fast brown 3R, perlon fast blue FFR (i) Reactive Dyes- cibacron Brillant Red B, procion briilant Blue HB.	

Somanyan TRUST

• Synth	etic Dyes, G.R. Chatwal, Himalaya Publishing House	
A Textbo	ook of Synthetic Dyes, O.D Tyagi and M. Yadav, Anmol Put	olications
Pvt Ltd, 1st E	dition	
Module 2	Properties of dye	[12L]
Learning Ob	ojectives:	
This module	is intended to relate the colour property of dye with its s	tructure
Learning Ou	itcome:	
-		
After the suc	ccessful completion of the module, the learner will be able	e to
1. Identi	ify the principles of color theory as it relates to structure,	
2. Reco	gnize the use of dyes as optical brighteners and pigments	
3. Revie	w the toxic effects caused by dyes and dye intermediates	
2.1	Colour and chemical constitution of dyes	5L
2.1.1	Absorption of visible light, colour of wavelength	
	absorbed, complementary colour	
2.1.2	Relation between colour and chemical constitution. (i)	
	Witt's Chromophore theory (ii) Armstrong theory	
	(quinonoid theory) and its limitations (iii) Valence Bond	
	theory; Comparative study and relation of colour in	
	the following classes of compounds/dyes: Benzene,	
	Nitrobenzene, Nitroanilines, Nitrophenols,	
	Benzoquinones, Azo, Triphenyl methane,	
	Anthraquinones. (iv) Molecular Orbital Theory.	
2.2	Optical Brighteners	2L
	General idea and important characteristics of optical	
	brighteners, one example each with structure of the	
	following classes: Stilbene, Coumarin, Heterocyclic	

Somanya

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

	vinylene derivatives, Diaryl pyrazolines, Naphthalimide	
	derivatives.	
2.3	Organic Pigments	2L
	General idea, distinguish between dyes and pigments,	
	important characteristics of organic pigments, Toners,	
	Lakes, Classification of organic pigments with suitable	
	examples, i.e. lonic pigments-Lake of acid and basic	
	dyes. Non-ionic pigments-Azo, Indigoid,	
	Anthraquinone, Quinacridone, Phthalocyanine	
	(Copper phthalocyanine).	
2.4	Ecology and Toxicity of Dyes	3L
	With reference to the textile dyes, food colours,	
	cosmetic dyes, benzidine, phenylene diamines.	
References:		
• Synthe	etic Dyes, M. S. Yadav, Campus Books International, 2nd E	dition
• Synthe	etic Dyes, G.R. Chatwal, Himalaya Publishing House	
A Textbo	ok of Synthetic Dyes, O.D Tyagi and M. Yadav, Anmol Pul	olications
Pvt Ltd, 1st Ec	lition	
Module 3	Syntheses of dyes	[12L]
Learning Obj	ectives:	
The module	is intended to illustrate the characteristic properties and s	syntheses of
specific non-	textile dyes and explain the various dyeing techniques	
Learning Out	tcome:	
After the successful completion of the module, the learner will be able to		
1. Discuss the synthesis of specific dyes and different classes of non textile dye		
2. Justify	characteristic properties of dyes according to their appli	cation.
L		

3. Identify the various unit processes involved in organic chemistry for the		
synthesis of dyes having non textile applications		
3.1	Non-textile Uses of Dyes	5L
	Structural features of the substrate, fastness and other	
	property requirements and main classes of dyes used	
	to be mentioned as applicable (One example of each	
	Class with structure expected).	
	I. Leather -Bismark Brown	
	II. Paper- Auramine O	
	III. Foodstuff - Tartazine	
	iv. Cosmetics-4 ⁻ -Amino Diphenylamine-4-	
	sulphonic acid	
	v. Medicinal - Crystal Violet	
	vi. Biological Stains - Methylene Blue	
	vii. Indicator & Analytical Reagents- Eriochrome	
	Black T	
	viii. Coloured Smokes & Camouflage colours-	
	Purpurin	
	ix. Laser Dyes –Rhodamine G	
3.2	Synthesis and Uses of Specific Dyes	3L
	Brief Idea of Unit Process, Unit Operations and	
	Intermediates.	
	i. Bismark Brown from Benzene via m-	
	phenylene diamine	
	ii. Auramine O from Benzene via Aniline	
	iii. Tartazine from aniline via phenyl hydrazine-	
	4-sulphonic acid	
	iv. Crystal Violet from Aniline.	

	v. Methylene Blue from Aniline and 4-Amino-	
	N,N-Dimethyl aniline	
	vi. Eriochrome Black T from Napthalene.	
3.3	Types of Fibres and Classes of Dyes Applicable to them	1L
	Introduction to the following types of fibres with	
	structures and classes of dyes applicable to it. Cotton,	
	Wool, Silk, Polyester	
3.4	Dyeing Method and Dye Fibre Forces	3L
3.4.1	(i) Direct dyeing (ii) Vat dyeing (iii) Mordant dyeing (iv)	
	Disperse dyeing	
3.4.2	Forces binding of dyes to the fibres: lonic forces,	
	Hydrogen bonds, Vander-Wall's forces, Covalent	
	linkages.	
References:		
• Synthetic Dyes, M. S. Yadav, Campus Books International, 2nd Edition		
• Synthetic Dyes, G.R. Chatwal, Himalaya Publishing House		
A Textbook of Synthetic Dyes, O.D Tyagi and M. Yadav, Anmol Publications		

Pvt Ltd, 1st Edition

T. Y. B. Sc. (CHEMISTRY)

SEMESTER VI - Practical Based on DSE Courses

COURSE CODE: 23US6CHDSP Credit- OI

Learning Objectives:

The practical is intended to

1. Discuss the preparation of Dye and Dye intermediates using different organic reactions.

Somanya

2.	Describe quantitative estimation of Dyes by colorimetry and diazotization.		
Learning Outcome:			
After	After the successful completion of the practical, the learner will be able to		
1.	Apply concept of diazotization and coupling reaction to synthesize		
	different azo dyes		
2.	Estimate the dyes quantitatively using the technique of diazotization and		
	colorimetry.		
3.	Acquire the skill to dye the cotton fibre using specific dyes.		
	Discipline Specific Elective - I Introduction to dyestuff chemistry		
1.	Preparation		
i.	Preparation of Orange-II from sulphanilic acid and 2-Napthol		
ii.	Preparation of Para Red from p-nitroaniline and 2-Napthol.		
iii.	Preparation of m-nitroaniline from m-dinitrobenzene		
iv.	Preparation of Indigo from o-nitrobenzaldehyde		
V.	Preparation of Martius Yellow from I-Napthol		
2.	Estimation		
i.	Estimation of Primary amino group by diazotisation		
ii.	Estimation of Methyl Orange/ Eriochrome Black T/Eosin/Congo Red by		
	colorimetry.		
3.	Project		
i.	Dyeing of fabric (cotton) by Direct Dyeing or by Vat Dyeing		
ii.	Industrial Visit		
Note: During Practical Examination, only preparation will be evaluated			

- College Practical Organic Chemistry by V K Ahluwalia, Sunita Dhingra and Adarsh Gulati, Universities Press, 1st Edition
- Comprehensive Practical Organic Chemistry, Preparation and Quantitative Analysis by V.K. Ahluwalia and Renu Aggarwal, Universities Press, 1st Edition

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Discipline Specific Elective - II

COURSE TITLE: Pesticides Chemistry

(Optional for DSE I: Introduction to dyestuff chemistry)

COURSE CODE: 23US6CHDS2PSC [CREDITS - O2]

Course Learning Outcome After the successful completion of the Course, the learner will be able to: 1. Recognize the importance of pesticide chemicals. 2. Discuss the synthesis and technical manufacture of some fungicides and insecticides 3. Illustrate the synthesis and technical manufacture some of herbicides and fertilisers Introduction to pesticides Module 1 [12L] Learning Objectives: The module is intended to explain classification, effects and activity of pesticides Learning Outcome: After the successful completion of the module, the learner will be able to Classify the pesticides according to their origin and the chemical classes. 1. 2. Illustrate the adverse and beneficial effects of pesticides. 3. Relate activity with the structure General introduction to pesticides (natural and 1.1 41 synthetic), different types of pesticides- fungicides, insecticides. herbicides 1.2 Benefits and adverse effects, changing concepts of 5L pesticides, pesticides classified as potential carcinogen

by US-EPA

Autonomous (Affiliated to University of Mumbai)

1.3	3L								
References:									
R. Cremlyn: Pesticides, John Wiley									
Module 2 Fungicides and insecticides [12L]									
Learning Obj	ectives:								
This module	is intended to explain synthesis and technical man	ufacture of							
Fungicides an	nd insecticides								
Learning Out	come:								
After the suc	cessful completion of the module, the learner will be able	e to							
describe vario	ous aspects of synthesis and technical manufacture of Fur	igicides and							
insecticides									
2.1	2.1 Introduction								
2.2	Properties								
2.3	Applications								
2.4	Formulations of some currently used fungicides and								
	insecticides								
References:									
• R. Crei	mlyn: Pesticides, John Wiley								
Module 3	Herbicides and fertilizers	[12L]							
Learning Obj	ectives:								
The module is intended to discuss synthesis and technical manufacture of									
Herbicides and fertilizers.									
Learning Outcome:									
After the successful completion of the module, the learner will be able to									
explain various aspects of synthesis and technical manufacture of Herbicides and									
fortilizers									

3.1	3.1 Introduction							
3.2	3.2 Properties							
3.3	3.3 Applications							
3.4	3.4 Formulations of some currently used Herbicides and							
	fertilize							
References:								
R. Cremlyn: Pesticides, John Wiley								

T. Y. B. Sc. (CHEMISTRY)

SEMESTER VI - Practical Based on DSE Courses

COURSE CODE: 23US6CHDSP Credit- OI

Learning Objectives:

The practical is intended to

- 1. Discuss the preparation of pesticides
- 2. Illustrate the estimation of pesticides

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Use simple reactions to synthesize simple pesticides
- 2. Estimate the acidity/ basicity of pesticides quantitatively by titrimetry.

Discipline Specific Elective - II

Pesticides Chemistry

1. Estimation

- i. To calculate acidity in given sample of pesticide formulations as per BIS specifications.
- ii. To calculate alkalinity in given sample of pesticide formulations as per BIS specifications.

Autonomous (Affiliated to University of Mumbai)

2. Preparation

- i. Preparation of simple organophosphates.
- ii. Preparation of simple phosphonates.
- iii. Preparation of simple thiophosphates

References:

• R. Cremlyn: Pesticides, John Wiley

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Discipline Specific Elective - III

COURSE TITLE: Polymer

COURSE CODE: 23US6CHDS3PLC [CREDITS - O2]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Describe the polymer classification, nomenclature and molecular structure.
- 2. Recognise the structure, stereochemistry and factors affecting the shape and size of polymers.
- 3. Discuss the environment impact assessment, circular economy, sustainability tenets and different plastic recycling technologies.

Module 1

Concepts and Methods in Polymer Science

[12L]

Learning Objectives:

After the successful completion of the module, the learner will be able to

- 1. Discuss today's marketplace of polymers.
- 2. Illustrate the Polymer nomenclature and classification.
- 3. Describe the polymer molecular structure and polymerizability of monomers.

Learning Outcome:

After learning this module, the student will be able to

- 1. Relate the history of polymers and its market value.
- 2. Classify and name different polymers based on different factors such as sources, thermal properties
- 3. Explain polymer molecular structure

1.1	Development of polymer science as a discipline. Why polymers? Today's market place of polymers. History of polymers. Fundamental terms.	
1.2	Macromolecular hypothesis. Polymer nomenclature and classification based on factors - sources, thermal properties, chain type, polymerization processes, applications, Copolymers, Blend IPN Dendrite, Ladder polymers.	
1.3	Molecular structure and polymerizabilty of monomers. Monomer raw materials. Polymer molecular weight. Number-Average and weight- average molecular weight. Molecular weight distribution Polydispersity index.	

References:

Module 2

- P. Bahadur and N. V. Sastry, Principles of Polymer Science, second edition, Narosa Publishing House, 2005.
- Joel R. Fried, Polymer Science and Technology, Prentice-Hall of India Pvt. Ltd., 2000.
 - Polymer Structure and Properties

[12L]

Learning Objectives:

This module is intended to

- 1. Describe the structure and factors affecting the shape and size of polymers.
- 2. Explain the stereochemistry of polymers.
- 3. Discuss physical and chemical methods for the determination of microstructures

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Compare primary, secondary, tertiary and quaternary structures of polymers.
- 2. Explain configurations and conformations of polymers.
- 3. Discuss different methods to find out the microstructures of polymers.
- 4. Recognise the design tailored functional polymers for specific applications.

2.1	Structural studies of polymers. Factors influencing the	
	shape and size. Primary, secondary, tertiary and the	
	quaternary structures.	
2.2	Stereochemistry of polymers. Molecular interactions.	
	Configurations and strength conformations.	
	Stereochemistry of repeating units. Chiral centres.	
	Tacticity. Repeat unit isomerism. Optical, geometric	
	and substitutional isomerism	
2.3	Physical and chemical methods for the determination	
	of microstructures. Polymer crystals	
	Structure-Property-Performance relations. Cross-	
	linking. Structure-property relations in cross linked	
	functional copolymers. Design of tailored functional	
	polymers for specific applications.	

References:

- V. R. Gowarikar, H. V. Viswanathan and J. Sreedhar, Polymer Science, New Age International Pvt. Ltd., New Delhi, 1990.
- F. W. Billmeyer Jr., Text Book of Polymer Science, 3rd edition, John Wiley and Sons, 1984.

Autonomous (Affiliated to University of Mumbai)

Module 3	Polymer-Plastic Industry and Sustainability	[12L]					
Learning Obj	ectives:						
The module is intended to							
1. Explair	1. Explain the environmental impact assessment.						
2. Describe the concept of circular economy, Life Cycle Analysis ar							
sustain	ability tenets.						
3. Recog	nise different recycling technologies.						
Learning Out	come:						
After the suc	cessful completion of the module, the learner will be able	e to					
1 Explair	the environmental impact assessment						
	rular economy Life Cycle Analysis and sustainability tene	ate					
2. Ose en 3. Evamir	a different methods of recycling technologies						
<i>)</i> . LAUTIII	Marketplace of polymers and plastics: Environmental						
).1	Impact Assessment, Ecological featurint						
	impact Assessment; Ecological tootprint.						
3.2	Concept of circular economy; sustainability tenets; Life						
	Cycle Analysis Methodology.						
3.3	Recycling Technologies: Feed preparation, recycling						
	and application. Additives, processing aids and						
	compatibilizers. Waste segregation technology for						
	industrial plastics.						
	properties of recycled plastics. Polymeric green						
	materials. Self-destructing plastics and sustainable						
	polymers.						

References:

- The Principles of Sustainability, Simon Dresner, Second Edition, earthscan from Routledge.
- Sustainability Principles and Practice, Margaret Robertson, Second Edition,

2017, earthscan from Routledge

- Life Cycle Analysis of Plastic in Packaging, A.K. Ghosh, 2005, Thomson Press (India) Ltd
- Plastic for Environment and Sustainable Development, Ministry of Chemicals and Fertilizers, Govt. of India, 2003, ICPE, Thomson Press (India) Ltd

T. Y. B. Sc. (CHEMISTRY)

SEMESTER VI - Practical Based on DSE Courses

COURSE CODE: 23US6CHDSP Credit- O1

Learning Objectives:

The practical is intended to

- 1. Discuss viscosity measurements for the molecular weight determination of polymers.
- 2. Describe experiments to identify different types of polymers.
- 3. Illustrate experiments to determine saponification value o, iodine value and acid number of resins.

Learning Outcome:

After the successful completion of the practical, the learner will be able to

1. Relate concentration and coefficient of viscosity and how to determine molecular weight from viscosity measurements.

Autonomous (Affiliated to University of Mumbai)

- 2. Discuss different types of polymers and their identification methods.
- 3. Determine saponification value and its determination for polymers.
- 4. Find iodine value and its determination for resins
- 5. Determine acid number and its determination for resins.

Discipline Specific Elective - III

Polymer

- 1. Determination of molecular weight of PVA by viscosity measurement.
- 2. Identification of polymers
- 3. Determination of saponification value of Polyester
- 4. Determination Acid number of resin

References:

• Experiments In Polymer Science, Hundiwale D. G., Athawale V.D., Kapadi U.R. and Gite V.V., 2009, New Age International Publishers.

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI Discipline Specific Elective – IV COURSE TITLE: Industrial Chemistry (Optional for DSE III: Polymers) COURSE CODE: 23US6CHDS4INC [CREDITS - O2]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Explain the physico-chemical principles and manufacturing processes of ammonia, sulphuric acid and nitric acid.
- 2. Discuss classification and characteristics of fuel
- 3. Illustrate the manufacturing and fermentation processes in the sugar industry

Module 1	Manufacture of Ammonia, Sulphuric acid & Nitric	[12L]

Acid

Learning Objectives:

The module is intended to discuss Physico-Chemical principles involved in manufacture of ammonia; sulphuric acid & nitric acid make aware of today's market place of polymers

Learning Outcome:

- 1. Describe the process involved in Haber & Bosch process for the manufacture of ammonia, contact process for sulphuric acid & Ostwald's process for nitric acid.
- 2. Discuss applications of ammonia, sulphuric acid and nitric acid.

3.1	Physico-Chemical principles involved in manufacture of	3L
	ammonia, sulphuric acid & nitric acid.	

3.2	3L								
	process with flow-sheet. Uses of ammonia								
3.3	3 Manufacture of sulphuric acid by contact process								
	with flow sheet. Uses of Sulphuric acid								
3.4	Manufacture of nitric acid by Ostwald's process with								
	flow sheet. Uses of nitric acid								
Module 2	[12L]								
Learning Obj	ectives:								
This module i	is intended to								
1									
	the students familiar with fuels.								
2. Discuss	s the importance of depletion in the abundance of natura	al resources							
of this	country for the benefit of the society								
Learning Out	Learning Outcome:								
After the suc	cessful completion of the module, the learner will be able	e to							
1. Classify	/ fuels in to different types.								
2. Discuss	the different physical and chemical properties of fuels								
2.1	Introduction, definition, classification of fuels, criterion	2L							
of selection of fuel									
2.2 calorific value, determination of calorific value by									
Bomb calorimeter and problems based on it. Other									
properties of fuel – ignition temperature, flash point,									
	fire point, coke number, viscosity.								
2.3	4L								
	chemicals from coal. By products of coal, coking of								
	coal, distillation of coal tar, uses of tar products. Liquid								

	fuels - distillation of crude oil, petrol gasoline and					
	diesel oil. Gaseous fuels – Biogas or gobar gas, LPG.					
2.4	Fuel cells – methanol fuel cell, hydrogen fuel cell.	2L				
Module 3	Sugar and Fermentation	[12L]				
Learning Obj	ectives:					
The module is intended to						
1. Make	the students familiar with organic industries like sugar.					
2. Explair	n the importance of sugar industry and fermentation pro-	cess				
Learning Out	come:					
After the suce	cessful completion of the module, the learner will be able	e to				
1. Explair	n the manufacturing process involved in sugar industry.					
2. Discuss the utilization of byproducts of sugar industry.						
3. Describe the fermentation process and operations.						
3.1	3.1 Sugar					
	Importance of Sugar industry, Manufacture of raw					
	sugar from sugar cane with flow sheet, extraction of					
	juice, compound imbibition process, concentration by					
	multiple compound imbibition process, concentration					
	of multiple evaporators, crystallisation (single vacuum					
	Brix hydrometer & refractomer					

3.2	Fermentation	6L
	Definition, conditions favourable for fermentation,	
	fementation operation, requirements for fermentation	
	processes.	
	Manufacture of alcohol from molasses, coffey still,	
	proof spirit, rectified spirit, absolute alcohol. Other	
	useful fermentation products with respect to medium	
	organism etc., Acetic acid, vinegar, citric acid etc.	

T. Y. B. Sc. (CHEMISTRY)

SEMESTER VI - Practical Based on DSE Courses

COURSE CODE: 23US6CHDSP Credit- OI

Learning Objectives:

The practical is intended to

- 1. Analyze different commercial samples
- 2. Discuss the working of chemical industry

Learning Outcome:

After learning this practical, the student will be able to

- 1. Measure Moisture content for the fuel.
- 2. Determine strength of given commercial sample of acid.
- 3. Determine glucose content in the given sample

Discipline Specific Elective - IV

Industrial Chemistry

- 1. To determine the moisture content in the given sample of fuel.
- 2. To determine strength of given commercial sample of acid.
- 3. To determine glucose content in the given sample by Folin-Wu method.
- 4. Visit to industry

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Skill Enhancement course - I

COURSE TITLE: Chemistry of Cosmetics

COURSE CODE: 23US6CHSEICOC [CREDITS - O2]

Course Learning Outcome After the successful completion of the Course, the learner will be able to: Explain the role of cosmetics for protecting our skin and hair. 1. 2. Prepare formulation of different cosmetic products. 3. Demonstrate the various chemical and instrumental methods for cosmetic analysis. 4. Recognize Career Opportunities in Cosmeticology. Module 1 Introduction to Cosmetics [15L] Learning Objectives: This module is intended to 1. Discuss the role of cosmetics in maintaining healthy hair and skin. 2. Explain preparation of formulations 3. Explore Career Opportunities in Cosmeticology. Learning Outcome: After the successful completion of the module, the learner will be able to 1. Describe the concepts of hair, skin and its role in cosmetics. 2. Illustrate the preparation of formulations of various cosmetics. 3. Use classical and instrumental methods for analysis of cosmetics. The skin and skin products - Introduction, different 6L 1.1 parts of skins, nutrition and hormonal influences, impact of cosmetics on skin.

									
Skin products – Skin cream, face powder, Manicure									
	products, Sanitizers, Antiperspirants & Deodorants,								
	Sunscreen.								
1.2	The hair and hair products - Introduction, different								
	parts of hair, nutrition and hormonal influences,								
	impact of cosmetics. Hair products – Hair oil and hair								
	tonics, Shampoo, Hair colorants, Hair setting								
	lotions/Sprays, Hair Straighteners.								
1.3	Cosmetic Rules & Regulations, Manufacturing and	3L							
	Career Opportunities in cosmetics.								
References:									
• Harry	s Cosmeticology 7th edition								
• <u>https:/</u>	<u>https://ncert.nic.in/vocational/pdf/kvbk1O1.pdf</u>								
Cosme	Cosmetic Chemistry: An Instant Approach by Ayaz Mahmood Dar								
Cosme	etics: science and technology, Volume 1 edited by M. S. Ba	alsam,							
Edwar	rd Sagarin								
Module 2	Cosmetic Analysis (Practical/Project/Industrial Visit)	[30L]							
Learning Obj	ectives:								
This module	is intended to								
1. Perfor	m various analytical methods for estimation of desired o	constituents							
of cos	metics samples.								
2. Desigr	2. Design and execute a novel procedure for cosmetic analysis.								
Learning Outcome:									
After the suc	ccessful completion of the module, the learner will be able	e to							
 Identify different constituents present in the given cosmetic via known practical procedures. 									

2.	Apply the	exper	rimental know	vledge to	o pe	rform	or create	nove	l types of
	qualitative	and	quantitative	analysis	for	given	cosmetic	and	cosmetic
	products.								

2.1	Formulation (any two) - Hand sanitizers, Skin cream,	12L
	Shampoo, Hair tonics, Nail polish	
2.2	Analysis (any two) - Hair Oil (Acid/lodine value, Sap	12L
	value), Skin cream for their Zn content, Lipstick (for	
	heavy metal – Lead), Shampoo (for CMC)	
2.3	Industrial Visit/Project	6L

References:

- Handbook on Cosmetics (Processes, Formulae with Testing Methods) by S.K. Singh
- Analysis of Cosmetic Products edited by Amparo Salvador, Alberto Chisvert
- Handbook of Cosmetic Science and Technology edited by André O. Barel, Marc Paye, Howard I. Maibach

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Skill Enhancement course - II

COURSE TITLE: Dairy Chemistry

(Optional for SEC II: Chemistry of Cosmetics)

COURSE CODE: 23US6CHSE2DAC [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

- 8. Explain the basic constituents of Milk and Milk products
- 9. Describe the instrumental techniques for milk analysis
- 10. Inculcate the knowledge regarding quality management & quality assurance related to dairy products

Module Chemistry of functional Dairy ingredients and Nutraceuticals

[12L]

Learning Objectives:

1

The module is intended to

- 12. Disucss the chemistry of major and minor milk constituents.
- 13. Explain the chemistry of milk and its products, composition, role of each component and their interactions

Learning Outcome:

- 12. Distinguish the major and minor milk constituents
- 13. Describe the biological significance of micronutrients present in dairy products
- 14. Demonstrate the estimation of lactose, calcium and magnesium in the diary products

1.	Milk - Composition, factor influencing the composition and	4 L		
	physico Chemical properties, Milk lipids, Proteins,			
	carbohydrates: classes, physico-chemical and properties and			
	biological significance, Minerals, Vitamins and Enzymes in Milk			
2	Dairy nutraceuticals: Bio-functional milk proteins and their	4 L		
	therapeutic potential, Technological and nutritional aspects of			
	milk lipids, Mineral and vitamins fortification in milk and milk			
	products, health promoting aspects of milk oligosaccharides,			
	Artificial sweeteners			
	Thermal stability of Milk, Freezing Point depression of Milk,			
	Chemistry involved in high pressure processing of milk			
3	Estimation of lactose in milk by volumetric and colorimetric	4L		
	methods & Estimation of calcium and magnesium in milk by			
	EDTA method			
Reference	ÈS:			
• D	airy Science: Petersen (W.E.) Publisher – Lippincott & amp; Compa	any		
• C	Outlines of Dairy Technology – Sukumar (De) – Oxford University	press		
• T	he technology of milk Processing – Ananthakrishnan, C.P., Khan, A	A.Q. and		
P	admanabhan, P.N. – Shri Lakshmi Publications.			
Handbook on Analysis of Milk Chamical & Microbiological Analysis of				
	andbook on Analysis of Milk Chemical & Microbiological Ana	alvsis of		
● ⊢ Li	landbook on Analysis of Milk Chemical & Microbiological Ana quid Milk. Dr. M.K. Srivastava	alysis of		
● ⊢ Li	landbook on Analysis of Milk Chemical & Microbiological Ana quid Milk, Dr. M.K. Srivastava	alysis of		
• F	landbook on Analysis of Milk Chemical & Microbiological Ana iquid Milk, Dr. M.K. Srivastava Chemical Quality Assurance in Dairy Industry	alysis of [12L]		
 Module 2 	landbook on Analysis of Milk Chemical & Microbiological Ana iquid Milk, Dr. M.K. Srivastava Chemical Quality Assurance in Dairy Industry	alysis of [12L]		
 Module 2 Learning 	landbook on Analysis of Milk Chemical & Microbiological Ana iquid Milk, Dr. M.K. Srivastava Chemical Quality Assurance in Dairy Industry Objectives:	alysis of [12L]		
 Module 2 Learning This mod 	landbook on Analysis of Milk Chemical & Microbiological Analiquid Milk, Dr. M.K. Srivastava Chemical Quality Assurance in Dairy Industry Objectives: ule is intended to	alysis of [12L]		
 Module 2 Learning This mode 7. Inc. 	landbook on Analysis of Milk Chemical & Microbiological Analiquid Milk, Dr. M.K. Srivastava Chemical Quality Assurance in Dairy Industry Objectives: ule is intended to ulcate the knowledge regarding recent trends in quality managed	alysis of [12L] gement		

Autonomous (Affiliated to University of Mumbai)

8.	Discuss the	statutory	regulations.
		1	9

Learning Outcome:

- 7. Illustrate the food safety act and regulations.
- 8. Apply the experimental techniques to evaluate Specific gravity, fat, SNF, TS, Acidity, pH, etc.
- 9. Demonstrate safety and Quality assurance strategies in diary chemistry
- 10. Design packaging material for milk and milk related products

1	Definition of Milk and Milk Products under the PFA Rules,	3 L
	1955/Food Safety Act 2006 and Classes of Milk.	
	Sensory analysis of Milk, Determination of Specific gravity, fat,	
	SNF, TS, Acidity & pH in milk and their significance and	
	interpretation, Determination and significance of MBR Test,	
	SPC (Statistical Process Control), Phosphatase activity in milk.	
2	Food safety and Quality assurance strategies - Implementation	2 L
	of HACCP/ISO and certification, BIS, PFA standards, Legal /	
	Statutory standards of milk and milk products, Bacteriological	
	standards for milk and milk products	
3.	Maximum Permissible limits of Aflatoxin, Pesticides, Antibiotic	1 L
	residues and Heavy metals in Milk and Milk Products	
4	Packaging of Market Milk and Milk products and	3 L
	advancements in Liquid Milk and Milk Products Packaging,	
	Storage of Milk and Milk Products and Labelling of Milk and	
	Milk Products	
5	Qualitative colour tests to distinguish between azo dyes and	3 L
	natural dyes in butter & Detection of common adulterants in	
	milk and foreign fat/oil in ghee	

References:

- Indian Dairy Products Rangappa (K.S.) & amp; Acharya (KT) Asia Publishing House.
- Dairy Processing and Quality Assurance, Wiley Blackwell
- The technology of milk Processing Ananthakrishnan, C.P., Khan, A.Q. and Padmanabhan, P.N. Shri Lakshmi Publications.
- The Chemistry of Dairy Products A Chemical Analysis of Milk, Cream and Butter (English, Paperback, Various)

[12L]

Learning Objectives:

Module

3

The module is intended to

- 4. Impart the knowledge regarding importance of quality of milk.
- 5. Discuss the principle and technical aspects of quality control for various dairy equipment.
- 6. Describe the various test procedures related to maintenance of quality of milk.

Learning Outcome:

- 4. Apply the skills to develop a new method for qualitative or quantitative analysis
- 5. Perform complex separation and determination of real samples.
- 6. Develop advanced analytical skills to make optimum use of latest technologies in the field of dairy chemistry.

Somanya

1	Electrophoresis: principle and types, isoelectric focusing.	2 L					
	Separation of bio-molecules using membranes;						
	ultracentrifugation.						
2	Immunobased analytical techniques such as ELISA & amp;	2 L					
	Lateral flow assay						
3	Column Chromatography, TLC, GLC, HPLC, gel-permeation,	2 L					
	ion-exchange, affinity chromatography						
4	Spectrophotometry: UV, visible, IR and flame photometry;	3 L					
	Potentiometry: principle, various electrodes; buffers.						
5	Determination of sodium and potassium by flame photometry	3 L					
	& Demonstration of Beer's law using standard protein						
Reference	es:						
Dairy Science: Petersen (W.E.) Publisher – Lippincott & amp; Company							
 Dairy India 2007, Sixth edition 							

- Economics of Milk Production Bharati Pratima Acharya Publishers
- Instrumentation in Analysis of Food & Dairy Products, M. K. Srivastava

7.4 T. Y. B.Sc. Syllabus [3 Units] with effect from the Academic year 2023–2024

Syllabus - T. Y. B.Sc. Chemistry [3 Units]

Course	Course	Course	Credits	Hour	Periods	Module	Lectures	E	xamination	
No.	Title	code			(50 min)		per			
							module			
							(50			
							minutes)			
								Internal	External	Total
								Marks	Marks	Marks
SEMESTER	t V									
Core co	urses THEOI	RY								
I	Physical-	23US5	2	30	36	3	12	40	60	100
	Analytical	BCHC								
	Chemistry I	CIPACI								
II	Inorganic-	23US5	2	30	36	3	12	40	60	100
	Organic	BCHC								
	Chemistry I	C2IOC								
		1								
Core co	urses PRACT	TICAL			1		1	I	1	1
ССР	Based on	23US5	2	4	48			40	60	100
	CCI and CC	BCHC								
	II	СР								
Skill Enhar	ncement Cours	ses			I		I	I		
1/11	Business	23US5	2					40	60	100
	skills for	CHSE1								
	chemist	BSC								
	OR	Or								
	Food	23US5								
	Chemistry	CHSE2								
		FOC								
SEMESTI	ER VI									
Core co	urses THEOI	RY								

1	Physical-	23US6	2	30	36	3	12	40	60	100
	Analytical	BCHC								
	Chemistry	CIPAC								
	П	2								
Ш	Inorganic-	23US6	2	30	36	3	12	40	60	100
	Organic	BCHC								
	Chemistry	C2IOC								
	П	2								
Core co	urses PRACT	FICAL	·		·					
CC P	Based on	23US6	1	4	48			20	30	50
	CCI and CC	BCHC								
	II	СР								
Skill Enh	ancement C	Courses								
1/11	Chemistry	23US6	2					40	60	100
	of	CHSEI								
	Cosmetics	COC								
	OR	or								
	Dairy	23US6								
	chemistry	CHSE2								
		DAC								

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Core Course-I

COURSE TITLE: Physical-Analytical Chemistry I

COURSE CODE: 23US5BCHCCIPACI [CREDITS - O2]

Course Learning Outcome							
After the successful completion of the Course, the learner will be able to:							
1. Recognize the different types of electrochemical cells and their							
applications.							
2. Understand the importance of statistics and its application in chemical							
analysis							
3. Learn the basics of separation science and classical chromatography							
Module 1 Electrochemical Cells and Their Applications [12L]							
Learning Objectives:							
The module is intended to							
1 Discuss different types of Electrochemical Concentration cells							
 Discuss different types of Electrochemical concentration cens Illustrate the applications of EME Measurements 							
 Buscribe the concepts of Decomposition potential and Over voltage 							
). Describe the concepts of Decomposition potential and Over voltage							
Learning Outcome:							
After the successful completion of the module, the learner will be able to							
After the successful completion of the module, the learner will be able to							
1. Differentiate between Chemical and concentration cells							
2. Classify different types of Concentration cells.							
3. Describe the Applications of EMF Measurements.							
4. Recognize the concepts of Decomposition potential and Over voltage							

1.1	Lewis concept of activity and activity coefficient, ionic	
	strength of a solution, Debye- Huckel limiting law	
	(derivation not expected)	
1.2	Classification of cells: Comparison between chemical	
	and concentration cell I) Concentration cells with and	
	without transference (derivation of expression for	
	concentration cell EMF are expected), 2) Chemical	
	cells without transference. Origin of liquid-liquid	
	junction potential and its elimination using a salt	
	bridge.	
1.3	Faradaic and Non-Faradaic processes. Batteries and	
	Superconductors	
1.4	Polarization, concentration polarization and its	
	elimination, Decomposition potential, experimental	
	determination of decomposition potential, factors	
	affecting decomposition potential (nature of	
	electrolyte, nature of electrodes and temperature),	
	overvoltage, experimental determination of	
	overvoltage, Tafel's theory and Tafel's equation for	
	hydrogen overvoltage, simultaneous deposition of	
	metal. Corrosion and its prevention	

References:

- Electrochemical Methods: Fundamentals and Applications, Allen J. Bard and Larry R. Faulkner, 2006, wiley Student Edition.
- An Introduction to Electrochemistry, Samuel Glasstone, 10th edition, An East-West Edition

Autonomous (Affiliated to University of Mumbai)

Module 2	Quality in Analytical Chemistry and Statistical	[12L]
	treatment of Data	
Learning Obj	ectives:	
This module i	s intended to	
1. Explair	the concept of Quality in Analytical chemistry. Quality	systems for
chemie	cal analysis.	
2. Discuss	s the basic statistics and use of it for establishing quality	in chemical
analysi	S.	
3. Use sta	atistics for data analysis and interpretation of results	
Learning Out	come:	
After the suc	cessful completion of the module, the learner will be able	e to
1. Explair	n the basic concept Quality, role of quality in chemi	cal analysis.
Quality	y control and quality assurance. Quality management s	systems like
ISO, IC	H etc.	
2. Use th	e simple statistical parameters like mean, mode, standar	d deviation
etc. fo	r interpretation of data.	
3. Implen	nent statistics for rejection of results, concept of errors	s, types and
quanti	tative measurement of errors.	
2.1	Introduction to Quality in Analytical Chemistry	4L
2.1.1	Concept of Quality, definition and requirement	
2.1.2	Quality control and quality assurance. Similarities and	
	difference between QC and QA	
2.1.3	Introduction to different quality systems: ISO, ICH	
	guide lines and other quality systems and their use.	
2.2	Statistical treatment of data	8L

2.2.1	Types of errors, determinate and indeterminate errors,				
	minimization of errors, constant and proportionate				
	errors				
2.2.2	Accuracy and precision, measure of dispersion and				
	central tendency: mean, median, mode, average				
	deviation relative average deviation variance				
	coefficient of variation (Numerical problems				
	expected)				
222	Determinate and Indeterminate errors constant and				
2.2.3	Determinate and indeterminate errors, constant and				
	proportionate errors, distribution of random errors,				
	Histogram, Frequency polygon, Gaussian curve,				
	students t, confidence limits and confidence intervals,				
	criteria for rejection of result 2.5 d rule, 4.0 d rule, Q-				
	test, F-test, Test of significance method of averages				
	method of least squares. [Numerical problems				
	expected]				
References:					
•	Fundamentals of Analytical Chemistry by Skoog, Holler etc. IX t	th			
	edition				
•	Analytical Chemistry by Gary Christian, sixth edition				
•	Inorganic Quantitative analysis by Vogel, sixth edition				
Module 3	Titrimetric analysis and Introduction to [12	2L]			
	Chromatography				
Learning Obj	jectives:				
The module is intended to					
1					
I. Explair	n two important titrimetric methods viz. Redox titrations and	non-			
aqueous titrations					

- 2. Discuss chromatography as a major separation technique.
- 3. Describe basic principles, usage and applications of planar chromatographic techniques.

Learning Outcome:

- 1. Discuss the basic theory of redox and non-aqueous titrations. Selection of appropriate indicators and applications of both.
- 2. Define and use of chromatography as a separation technique. Different chromatographic techniques and their classification.
- 3. Describe basic theory and use of planar chromatographic techniques like Paper chromatography, TLC and HPTLC. Their types and applications.

3.1	Titrimetric analysis	7L
3.1.1	Redox titrations: Introduction and basic principles	
3.1.2	Titration curves for redox titration: Titration of $Fe^{+2} v/s$	
	Ce ⁺⁴ , Fe ⁺² v/s dichromate (Cr ₂ O ₇ ²⁻), Fe ⁺² v/s MnO ⁻ ₄ ions.	
3.1.3	Detection of end point of redox titration using	
	indicators and potentiometrically. Some useful redox	
	indicators.	
3.1.4	Non aqueous titrations: Definition and basic principles.	
	Different types of non-aqueous solvents.	
3.1.5	Requirements for non-aqueous solvents. Properties of	
	non-aqueous solvents. Leveling effect.	
3.1.6	End point detection in non-aqueous titrations.	
	Advantages and limitations of non-aqueous titrations.	
	Applications.	
3.2	Introduction to chromatography	5L
3.2.1	Introduction to chromatographic techniques,	
	classification of chromatographic techniques.	

3.2.2	Planar Chromatography: Principle, techniques and		
	applications of Paper chromatography Thin layer		
	chromatography and HPTLC		
References:	· · · · ·		
•	Inorganic Quantitative analysis by Vogel, sixth edition		
•	Quantitative Analysis by Day and Underwood, Prentice hall of India		
	third edition.		

T.Y. B. Sc. (CHEMISTRY) SEMESTER V

Core Course-II

COURSE TITLE: Inorganic-Organic Chemistry I

COURSE CODE: 23US5BCHCC2IOCI [CREDITS - O2]

3.1	Mechanism of Organic Reactions	9L
3.1.1	Thermodynamic and Kinetic control of organic	
	reactions: Concept with mechanisms of the following	
	reactions: addition of HX to butadiene; sulfonation of	
	naphthalene. Nucleophilicity / electrophilicity Vs	
	Basicity / acidity.	
3.1.2	Mechanism of reactions of carbonyl compounds with	
	nucleophiles.	
3.1.2.1	Reaction of aldehydes and ketones with primary and	
	secondary amines	
3.1.2.2	Acyl nucleophilic substitution (tetrahedral mechanism):	
	Acid catalysed esterification of carboxylic acids and	
	base promoted hydrolysis of esters.	
3.1.3	Mechanism of rearrangements with examples and	
	stereochemistry wherever applicable.	
3.1.3.1	Migration to electron deficient carbon: Pinacol,	
	Benzilic acid.	
3.1.3.2	Migration to electron deficient nitrogen: Beckmann,	
	Hofmann.	
3.2	IUPAC	3L
	IUPAC systematic and accepted trivial nomenclature of	
	the following classes of compounds, including	
	substituted ones (up to 2 substituents/functional	
	groups):	
3.2.1	Bicyclic compounds- spiro, fused, and bridged (upto	
	llcarbon atoms)-saturated and unsaturated	
	compound.	
3.2.2	Biphenyls.	

3.2.3	Cummulenes upto 3 double bonds, Monocyclic (5 and		
	6 membered) aromatic and nonaromatic heterocyclic		
	compounds containing a maximum of two hetero		
	atom among N, O, S.		
References:			
•	Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing		
	Company Limited.		
•	Carey, F. A. & Guiliano, R. M. Organic Chemistry, Eighth edition,		
	McGraw Hill Education, 2012.		
•	Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008.		
•	Nomenclature of organic compounds, S C Pal, Alpha science, 2nd edition,		
•	Organic Nomenclature, James G Traynham, 6th Edition.		
Module 2	Molecular Symmetry and Chemical bonding [12L]		
Learning Ob	jectives:		
The module	is intended to		
 Discuss different symmetry elements, symmetry operations, concept of point group in molecule. 			
2. Explain molecular orbital theory in simple polyatomic molecules.			
3. Descr	ibe band theory of metallic bonding.		
Learning Outcome:			
After the successful completion of the module, the learner will be able to			
	completion of the module, the learner will be able to		
1. Descr	ibe the basic concept of symmetry like symmetry elements, symmetry		

- 2. Illustrate molecular orbital approach for bonding in simple polyatomic molecules and draw MOT diagrams for these molecules.
- 3. Use molecular orbital approach / band theory to explain bonding in metals and properties of conductors, insulators and semiconductors.

2.1	Molecular Symmetry	6L
2.1.1	Introduction and Importance.	
2.1.2	Symmetry elements and Symmetry operations	
2.1.3	Concept of a Point Group with illustrations using the	
	following point groups:	
	(i) $C \propto v$ (HCl), (ii) $D \propto h$ (H ₂), (iii) $C_2 v$ (H ₂ O), (iv) $C_3 v$ (NH ₃),	
	(v) C ₂ h (trans-dichloroethylene), (vi) D ₃ h (BCl ₃)	
2.2	Molecular Orbital Theory for polyatomic species	3L
2.2.1	Simple triatomic species H ₃ ⁺ and H ₃ (correlation	
	between bond angle and molecular orbitals)	
2.2.2	Other molecules (considering only σ bonding): (i)	
	BeH_2 (ii) H_2O (with reference to Walsh diagram)	
2.3	Metallic Bond	3L
2.3.1	Band theory	
2.3.2	Explanation of electric properties of conductors,	
	insulators and semiconductors (n- and p- types) on	
	the basis of Band theory.	

References:

- Chemical Applications of Group Theory by F A Cotton, 3rd Edition
- Chemistry Inorganic B.R. Puri, L.R. Sharma and K.C. Kallia Vallabh Publications (2003).

Somanyar TRUST

Module 3	Bonding in Coordination Compounds	[12L]	
Learning Objectives:			
This module is intended to			
	two theories of bonding in coordination compounds - (Crystal field	
theory	and molecular orbital theory	ci ystai neiu	
2 Describ	and molecular orbital theory.		
2. Describ	e concept of electronic states, term symbols, micro states.		
	come:	. . .	
After the succ	cessful completion of the module, the learner will be able	e to	
4. Descrit	be the nature of bond between metal and ligand.		
5. Discuss	thermodynamic, kinetic, spectral and stereo chemical p	roperties of	
coordi	nation compounds.		
1. Interpr	retate different electronic states, term symbols and micr	o states for	
d ¹ , d ⁴ , d	d ⁶ , d ⁹ electronic configurations.		
21			
3.1	Crystal Field Theory (CFT) of co-ordination complexes	6L	
3.1.1	Basic tenets of Crystal Field Theory (CFT) and effect of		
	Crystal Field on central metal valence orbitals		
3.1.2	Splitting of d orbitals in octahedral, tetrahedral and		
	square planar complexes; Jahn Teller Effect		
3.1.3	Crystal field splitting energy (10Dq/ Δo) for		
	octahedral complexes and factors affecting the		
	magnitude of ∆o		
3.1.4	Crystal field stabilization energy (CFSE), calculation of		
	CFSE for octahedral and tetrahedral complexes with		
	$d^{\rm I}$ to $d^{\rm IO}$ metal ion configurations, high spin and low		
	spin complexes.		
3.1.5	Effect of Crystal field splitting on (i) Ionic radius (ii)		
	Lattice energy		

316	Experimental evidence for co-valence in co-ordination		
)	compounds.		
	(i)ESR spectrum of [IrCl6] -2		
	(ii)Nephelauxetic effect.		
3.1.7	Merits and Demerits of CFT		
3.2	Molecular Orbital Theory (MOT) of co -ordination	3L	
	complexes		
3.2.1	Application to octahedral complexes in case of		
	(i)[Ti(H ₂ O) ₆] ⁺³ (ii) Fluoro complexes of Fe(II) and Fe(III)		
	(iii) Cyano complexes of Fe(II) and Fe(III) (iv) Fluoro and		
	amino complexes of Co(III)		
3.2.2	Effect of π - bonding on ligand field splitting parameter		
	in ML π and LM π interactions		
3.3	Electronic states and Terms for Polyelectronic Atoms	3L	
3.3.1	Introduction, electronic configuration and electronic		
	states, Term symbols, coupling of spin momenta (MS),		
	orbital momenta (ML) and spin orbit coupling or		
	Russell -Saunders coupling.		
3.3.2	Determination of Terms for p2 electronic		
	configuration (as in a carbon atom).		
3.3.3	Terms and micro-stats for transition metal atoms/ions.		
References:			
•	Inorganic Chemistry - J.E. Huheey, Harper and Collins - N	IY IV	
	edition (12011).		
		- Mallah h	
•	Chemistry Inorganic - B.K. Puri, L.K. Sharma and K.C. Kalli	a - Valladh	
	Publications (2016).		

T. Y. B. Sc. (CHEMISTRY) SEMESTER V – Practical Based on CCI COURSE CODE: 23US5BCHCCP Credit- O1

Learning Objectives:

The practical is intended to

- 1. Discuss rate constants, effect of temperature on rate constants, energy of activation for the acid catalysed reactions like hydrolysis of methyl acetate
- 2. Determine acidic and basic dissociation constants of amino acid and to calculate isoelectric point.
- 3. Explain colorimetric determination of fluoride content in toothpaste.

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Explain the effect of temperature on rate constants and determination of energy of activation.
- 2. Discuss the concept of isoelectric point, acidic and basic dissociation constants through pH-metric determination.
- 3. Evaluate colorimetric determination of fluoride content.

Core Course I

Physical-Analytical Chemistry I

1. Chemical Kinetics (Non-Instrumental)

To determine the energy of activation for the acid catalysed hydrolysis of methyl acetate.

2. pH –Metry

To determine acidic and basic dissociation constants of amino acid and to calculate isoelectric point.

3. Colorimetry

Somanya

Detection of fluoride content in a tooth paste

4. Non-Instrumental

Estimation of $K_2S_2O_8$ in the given solution.

References:

- Experimental Physical Chemistry, V. D. Athawale, 2007, New Age International Publishers.
- Physical Chemistry Experiments, R. Rajalakshmi, 2020, Notion press Publishers.
- Vogel's Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.B.

Barnes, M. Thomas, B. Sivsankar, 2009, Pearson Publication.

T. Y. B. Sc. (CHEMISTRY)

SEMESTER V - Practical Based on CC II

COURSE CODE: 23US5BCHCCP Credit- O1

Learning Objectives:

The practical is intended to

- 1. Separate binary mixture of compounds by physical separation
- 2. Prepare of inorganic complexes.
- 3. Discuss the analytical chemistry aspects of complexometric titration.
- 4. Describe the concept of the experiment and the different steps involved in the experiment in the real lab more accurately and precisely.

Learning Outcome:

After the successful completion of the practical, the learner will be able to

1. Separate mixtures containing various organic compounds based on their physical properties.

Autonomous (Affiliated to University of Mumbai)

- 2. Acquire the skills to prepare nickel and cobalt amine complexes.
- 3. Demonstrate the basic laboratory technique of titration.

Core Course II

Inorganic-Organic Chemistry I

1. Separation of binary mixture of compounds by chemical separation

2. Inorganic Preparation

- i. Preparation of Chloropentaaminecobalt (III) chloride and estimation of cobalt by complexometry.
- ii. Preparation of tris(ethylene diamine) nickel (II)sulphate and estimation of nickel by complexometry

3. Titrimetric Analysis

- i. Estimation of Nickel complexometrically using mureoxideindicator.
- ii. Estimation of Copper complexometrically using Fast sulphone Black Findicator.

References:

- Vogel, A. I. Elementary Practical Organic Chemistry.
- Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Core Course-I

COURSE TITLE: Physical-Analytical Chemistry II

COURSE CODE: 23US6BCHCCIPAC2 [CREDITS - O2]

Course Learning Outcome After the successful completion of the Course, the learner will be able to: Discuss the basic principles of Molecular Spectroscopy. 1. 2. Illustrate the colligative properties of dilute solutions and examine one and two component systems with the help of Phase Rule. 3. Explain importance of solvent extraction and other extraction techniques in chemistry. 4. Describe chromatography as a major separation tool in Chemistry. Molecular Spectroscopy Module 1 [12L] Learning Objectives: The module is intended to discuss the principles of three key spectroscopic methods- Rotational, Infra-Red and Raman spectroscopies Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Relate dipole moments of molecules with their activity towards different molecular spectroscopic methods.
- 2. Examine Rotational and Vibrational spectra of diatomic molecules.
- 3. Determine whether the molecular rotations and vibrations of a molecule are Raman active.

1.1	Dipole moment: Dipole moment, polarization of a
	bond, bond moment, dipole moment and molecular
	structure.

1.2	Rotational Spectrum: Rotational spectrum of a	
	diatomic molecule, rigid rotor, moment of inertia,	
	energy levels, conditions for obtaining pure rotational	
	spectrum, selection rule, nature of spectrum,	
	determination of internuclear distance and isotopic	
	shift	
1.3	Vibrational (IR) spectrum: Vibrational motion, degrees	
	of freedom, modes of vibration, vibrational spectrum	
	of a diatomic molecule, simple harmonic oscillator,	
	energy levels, zero point energy, conditions for	
	obtaining vibrational spectrum, selection rule, nature	
	of spectrum	
1.4	Vibration-Rotation spectrum of diatomic molecules,	
	vibrating rotor, energy levels, selection rule, nature of	
	spectrum, R and P branches, anharmonic oscillator:	
	energy levels, selection rule, fundamental band,	
	overtones. Introduction to infrared spectra of simple	
	molecules like H_2O and CO_2 .	
1.5	Raman Spectroscopy: scattering of electromagnetic	
	radiation, Rayleigh scattering, Raman scattering,	
	nature of Raman spectrum, Stoke's lines, anti-Stoke's	
	lines, Raman shift, quantum theory of Raman	
	spectrum, comparative study of IR and Raman	
	spectra, rule of mutual exclusion (example of CO ₂	
	molecule).	

References:

• Fundamentals of Molecular Spectroscopy, Colin N Banwell and E. M, McCash, 4th Edition, Tata McGraw-Hill Publishing Company Ltd.

Molecular Structure and Spectroscopy, G. Aruldhas, Second edition, Eastern			
Economy Edition.			
Module 2	Colligative Properties of Dilute Solutions and phase	[12L]	
	Rule		
Learning Obje	ectives:		
This module i	s intended to		
1. Explain elevati	1. Explain the concepts of colligative properties lowering of vapour pressure, elevation of boiling point, depression in freezing point and osmotic		
2. Illustra differe	re. te the relation between the colligative property and cal nt parameters	culations of	
3. Descrit system	be Phase rule and it's applications to one and two s.	component	
Learning Out	come:		
After the suce	cessful completion of the module, the learner will be able	e to	
1. Descrit non-vo	be the relation between colligative property and molar platile solute.	mass of the	
2. Solve r	2. Solve numerical problems on determination of molar mass of the non-		
volatile	e solutes.		
3. Apply	phase rule to understand behaviour of one and two	component	
systems.			
2.1	Colligative Properties of Dilute Solutions	7L	
2.1.1	Dilute solutions, colligative properties, Raoult's law, relative lowering of vapour pressure.		

2.1.2	Elevation in boiling point of a solution, thermodynamic	
	derivation relating elevation in boiling point of a	
	solution and the molar mass of a non-volatile solute.	
2.1.3	Depression in freezing point of a solution,	
	thermodynamic derivation relating the depression in	
	the freezing point of a solution and the molar mass of	
	a non-volatile solute.	
2.1.4	Osmotic pressure, van't Hoff's equation for osmotic	
	pressure (derivation is expected) and determination of	
	molar mass of the solute. Abnormal molar masses of	
	solutes and van't Hoff factor (calculation of Degree of	
	Association and Degree of Dissociation.)	
2.2	Association and Degree of Dissociation.) Phase Rule	5L
2.2 2.2.1	Association and Degree of Dissociation.) Phase Rule Gibb's phase rule and terms involved in the equation	5L
2.2 2.2.1 2.2.2	Association and Degree of Dissociation.) Phase Rule Gibb's phase rule and terms involved in the equation Application of phase rule to ONE component systems:	5L
2.2 2.2.1 2.2.2	Association and Degree of Dissociation.) Phase Rule Gibb's phase rule and terms involved in the equation Application of phase rule to ONE component systems: Water system	5L
2.2 2.2.1 2.2.2 2.2.3	Association and Degree of Dissociation.) Phase Rule Gibb's phase rule and terms involved in the equation Application of phase rule to ONE component systems: Water system Application of phase rule to TWO component systems,	5L
2.2 2.2.1 2.2.2 2.2.3	Association and Degree of Dissociation.) Phase Rule Gibb's phase rule and terms involved in the equation Application of phase rule to ONE component systems: Water system Application of phase rule to TWO component systems, condensed systems, condensed phase rule, eutectic	5L
2.2 2.2.1 2.2.2 2.2.3	Association and Degree of Dissociation.) Phase Rule Gibb's phase rule and terms involved in the equation Application of phase rule to ONE component systems: Water system Application of phase rule to TWO component systems, condensed systems, condensed phase rule, eutectic systems (Lead – Silver system), desilverisation of lead.	5L
2.2.1 2.2.1 2.2.2 2.2.3 2.2.4	Association and Degree of Dissociation.) Phase Rule Gibb's phase rule and terms involved in the equation Application of phase rule to ONE component systems: Water system Application of phase rule to TWO component systems, condensed systems, condensed phase rule, eutectic systems (Lead – Silver system), desilverisation of lead. Introduction to THREE component systems, triangular	5L
2.2 2.2.1 2.2.2 2.2.3 2.2.4	Association and Degree of Dissociation.) Phase Rule Gibb's phase rule and terms involved in the equation Application of phase rule to ONE component systems: Water system Application of phase rule to TWO component systems, condensed systems, condensed phase rule, eutectic systems (Lead – Silver system), desilverisation of lead. Introduction to THREE component systems, triangular plots.	5L

- Principles of Physical Chemistry, Puri, Sharma, Pathania, 41st Millennium Edition, Vishal Publishers.
- Peter Atkins & Julio De Paula, Physical Chemistry 10th Ed., Oxford University Press (2014).

The Phase Rule And Its Applications, Alexander Findlay, Longmans, Green, and Co., 1911			
Mod	ule 3	Solvent extraction and Solid phase extraction	[12L]
Learni	ng Obje	ectives:	
The m	odule i	s intended to	
1.	 Discuss the solvent extraction as a major method of separation in analytical chemistry 		
2.	Descrit	be basic extraction methods using different extraction	mechanism
	and dif	ferent extraction methodologies	
3.	Illustrat	e solid phase extraction as a new versatile method of separati	on.
Learni	ng Out	come:	
After 1	the succ	cessful completion of the module, the learner will be able	e to
1.	Explain	the basic concept solvent extraction. Different extract	ion systems
	and me	echanisms	
2.	Descrit	be experimental extraction techniques, role of pH an	d selecting
	approp	priate method for desired separation	
3.	Apply s	solvent extraction technique in chemistry	
4.	Illustra	te solid phase extraction as new method of separation.	
3	.	Solvent Extraction	8L
3.	1.1	Partition coefficient and distribution ratio	
3.1	1.2	Extraction efficiency, separation factor	
3.	1.3	Role of complexing agents in solvent extraction,	
		chelation, ion pair formation, solvation	
3.1	.4	Types of solvent extraction: batch, continuous.	
		[Numerical problems expected]	
3	.2	introduction to solid phase extraction	4L

Somanya T R U S T

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

3.2.1	Limitations of solvent extraction	
3.2.2	Basic Principles, Equipments used	
3.2.3	Applications of Solid phase extraction	

References:

- S. M. Khopkar, Basic Concepts of Analytical Chemistry, 3rd ed, New Age International Publishers, 2008
- R.A.Dey & D.L.Underwood, Quantitative Analysis, 6th ed. Prentice Hall Of India Pvt. Ltd. New Delhi, 1993.
- G.D.Christian, Analytical Chemistry, 6th ed. John Wiley & Sons, Singapore, 2004.

T.Y. B. Sc. (CHEMISTRY) SEMESTER VI

Core Course-II

COURSE TITLE: Inorganic-Organic Chemistry II

COURSE CODE: 23US6BCHCC2IOC2 [CREDITS - O2]

1.1.1	Organolithium Compounds: Preparation using	
	alkyl/aryl halides. Reactions with compounds	
	containing acidic hydrogen, alkyl halides, carbonyl	
	compounds, cyanides and CO ₂ . Lithium dialkylcuprates:	
	Preparation and reactions with aliphatic	
	/aromatic/vinylic halides	
1.1.2	Organozinc compounds: Preparation of dialkyl zinc.	
	Reaction with water, acid chlorides and alkyl halides.	
	Reformatsky reaction (with mechanism).	
1.2	Reagents and Catalysts	8L
1.2.1	Study of the following catalysts and reagents with	
	respect to functional group transformations and	
	selectivity (no mechanism).	
1.2.2	Catalysts: Catalysts for hydrogenation: Raney Ni, Pt and	
	PtO ₂ : C=C, CN, NO ₂ , aromatic ring; Pd/C: C=C, COCl→	
	CHO (Rosenmund's); Lindlar catalyst: alkynes;	
	Wilkinson's catalyst for stereo selective reduction of	
	olefins.	
1.2.3	Reagents: (1) LiAlH ₄ and Red-Al: reduction of CO,	
	COOR, CN, NO ₂ . (2) NaBH ₄ : reduction of CO (3) SeO ₂ :	
	hydroxylation of allylic and benzylic positions,	
	oxidation of CH ₂ , alpha to CO to CO. (5) m-CPBA and	
	R-OOH/H ₂ O ₂ for epoxidation of C=C. (6) NBS: allylic	
	and benzylic bromination of position alpha to CO.	
References:	1	

• Textbook of Organic Chemistry, 2012, by V K Ahluwalia, Rakesh K Parashar, Viva Books Private Limited.

• Organic Chemistry: Second Edition, 2014, Jonathan Clayden, Nick Greeves, Stuart Warren.

Somanya

 Modern Synthetic Reactions H. O. House, Massachusetts Institute of Technology. W. A. Benjamin, Inc., New York, 1965. 		
Module 2	Spectroscopy [12	L]
Learning Ob	ojectives:	
This module	e is intended to elucidate the structure of simple organic compo	unds
using U.V, I.I	R and NMR spectra.	
Learning Ou	itcome:	
After the su	ccessful completion of the module, the learner will be able to:	
1. Ident	ify various functional groups on the basis of the U.V and IR spectr	a.
2. Predie	ct the electronic environment around different types hydro	ogen
prese	nt in the organic compound based on the IH NMR spectrum.	
3. Predie	ct the structure of simple organic compounds using U.V, IR an	d 1H
NMR	spectrum in synchronization and vice versa.	
2.1	Introduction: Electromagnetic spectrum, units of	
	wavelength and frequency	
2.2	UV- Visible Spectroscopy: Basic theory, solvents, nature	
	of UV-VIS spectrum	
2.3	IR Spectroscopy: Basic theory, nature of IR spectrum,	
	selection rule, fingerprint region.	
2.4	PMR Spectroscopy: Basic theory of NMR, nature of	
	PMR spectrum, chemical shift (a unit), standard for	
	PMR, solvents used. Factors affecting chemical shift: (1)	
	inductive effect (2) anisotropic effect (with reference	
	to C=C, C=C, C=O and benzene ring). Spin spin	
	coupling and coupling constant. Proton exchange-	
	application of deuterium exchange, Application of	
	PMR in structure determination.	

25	Spectral characteristics of following classes of organic	
2.)	spectral characteristics of following classes of organic	
	compounds, including benzene and monosubstituted	
	benzenes, with respect to UV-VIS, IR, PMR: (1) alkenes	
	(2) alkenes and polyenes (3) alkynes (4) haloalkanes (5)	
	alcohols (6) carbonyl compounds (7) ethers (8)	
	carboxylic acids (9) esters (10) amines (11) amides (broad	
	regions characteristic of different groups are	
	expected).	
2.6	Problems of structure elucidation of simple organic	
	compounds using individual or combined uses of the	
	above spectroscopic technique are expected. (index of	
	hydrogen deficiency should be the first step in solving	
	the problems).	

References:

- P.S. Kalsi, Spectroscopy of Organic compounds, New Age International Ltd., 1995.
- Jagmohan, Organic Spectroscopy- Principles and Applications, 2 nd Edition, Narosa Publication, 2008.
- W. Kemp, Organic Spectroscopy, 3rd Edition, Palgrave, Indian Edition, 2005.
- Williams and Fleming, Spectroscopic methods in Organic Chemistry, 5 th Edition, McGraw Hill, 1995.

Module 3 Coordination Chemistry

[12L]

Learning Objectives:

The module is intended to

4. Discuss the study of electronic spectra of complexes.

Autonomous (Affiliated to University of Mumbai)

- 5. Illustrate the stability of complexes
- 6. Explain the substitution reactions in complexes.

Learning Outcome:

After the successful completion of the module, the learner will be able to:

- 1. Explain the electronic spectra of complexes and to recognize various types of electronic transitions, geometry of complexes.
- 2. Illustrate the complex chemistry of transition metal coordination compounds by studying kinetics, mechanisms of various reactions and stability of complexes

3.1	Electronic Spectra of Complexes	5L
3.1.1	Type of electronic transitions like intra-ligand transitions, charge transfer transitions and intra-metal transitions (d-d or ligand field transitions for transition metals)	
3.1.2	Rule for electronic transitions: Spin and Orbital or Laporte selection rules	
3.1.3	Splitting of Terms in weak crystal field, the Hole formalism	
3.1.4	Orgel Diagrams for D Terms i.e. d ¹ , d ⁴ and d ⁶ , d ⁹ electronic configurations	
3.1.5	Applications of electronic spectra in brief, with special reference to (i) cis-trans isomerism in complexes and (ii) Geometry of complexes	
3.2	Stability of octahedral complexes	3L
3.2.1	Thermodynamic stability and kinetic stability of complexes with examples	
3.2.2	Stability constants: stepwise and overall constants and their inter relationship	

3.2.3	Factors affecting thermodynamic stability		
3.3	Substitution reactions in octahedral complexes	4L	
3.3.1	Introduction, types of reactions in complexes		
3.3.2	Ligand substitution reactions: basic mechanisms		
3.3.3	Inert and labile complexes and electronic configurations and lability		
3.3.4	Acid hydrolysis, base hydrolysis and anation reactions.		
 References: Selected Topics in Inorganic Chemistry - W.U. Malik, G.D. Tuli and R.D. 			

Madan - S. Chand Publications (2019).

• Inorganic Chemistry by GARY L. MIESSLER DONALD A. TARR, Third Edition, PPH publication.

T. Y. B. Sc. (CHEMISTRY) SEMESTER VI - Practical Based on CCI COURSE CODE: 23US6BCHCCP Credit- O1

Learning Objectives:

The practical is intended to

- 1. Discuss partition coefficient method to determine equilibrium constant of a reaction.
- 2. Illustrate conductometric titration method of mixture of acids and salt to determine the percentage composition.
- 3. Describe GC and HPLC for real sample analysis.
- 4. Use instrumental methods for analysis of real samples like Vinegar.

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Determine equilibrium constant of a reaction by partition coefficient method.
- 2. Illustrate conductometric titration method.
- 3. Demonstrate use of GC and HPLC as a major separation and estimation techniques in Analytical Chemistry
- 4. Use Instrumental methods of analysis for commercial samples like vinegar.

Core Course I

Physical-Analytical Chemistry II

- 1. Partition coefficient To determine the equilibrium constant for the reaction $KI + I_2 = KI_3$ by partition coefficient method.
- Conductometry To estimate the concentration of sulphuric acid, acetic acid and copper sulphate in the given solution by conductometric titration method.

- 3. Potentiometry Estimation of acetic acid.
- 4. Determination of hardness of water
 - a. Determination of alkalinity of potable water by acid base titration
 - b. Estimation of total hardness of water sample by complexometric titrations.

References:

- Experimental Physical Chemistry, V. D. Athawale, 2007, New Age International Publishers.
- Physical Chemistry Experiments, R. Rajalakshmi, 2020, Notion press Publishers.
- Vogel's Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.B. Barnes, M. Thomas, B. Sivsankar, 2009, Pearson Publication.

T. Y. B. Sc. (CHEMISTRY)

SEMESTER VI - Practical Based on CC II

COURSE CODE: 23US6BCHCCP Credit- O1

Learning Objectives:

The practical is intended to

- 1. Separate binary mixture of compounds by physical separation
- 2. Prepare of inorganic complexes.
- 3. Discuss the analytical chemistry aspects of complexometric titration.
- 4. Describe the concept of the experiment and the different steps involved in the experiment in the real lab more accurately and precisely.

Learning Outcome:

After the successful completion of the practical, the learner will be able to

- 1. Use the technique of separation of mixtures containing various organic compounds based on their physical properties.
- 2. Acquire the skills to prepare Inorganic complexes

Organic-Inorganic Chemistry II

1. Binary Mixture Separation & Identification

Core Course II

(Volatile liquid + Nonvolatile liquid) (Solid + Volatile liquid)

- 2. Commercial Analysis
- i. Analysis of calcium tablets for its calcium contentcomplexometrically.
- ii. Analysis of Boric acid for its percentagepurity.
 - 3. Inorganic Preparations
- i. 8-hydoxyquinolinato magnesium(II).
- ii. Bis-(acetylacetanato) copper(II).

References:

- 1. Vogel, A. I. Elementary Practical Organic Chemistry.
- Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).