

ZOOLOGY SEMESTER VII (MSc sem I/ honors) Core Course- I COURSE TITLE: Phylogeny of Invertebrates and Vertebrates COURSE CODE:23PS7ZOCC1PIV [CREDITS - 02]

Course learning outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Enlist the salient features of non-chordates
- 2. Classify and describe non-chordates upto Class level
- 3. Explain phylogeny and systematics of various Chordates
- 4. Describe unique characteristics and affinities of Protochordates and Vertebrates.
- 5. Classify Protochordates and Vertebrates upto order level.

Module IInstructionLearning of the module is intended to -The module is intended to -• Introduce learner to detailed classification of non chordates
• Discuss salient features of various phyla with examples.Learning outromesAfter the successful completion of the module, the learner will be able to -• Classify major phyla of non-chordates upto Class level
• Assign Phylum/Class based on the characteristics of an animal

		-
1.1	Phylogeny, salient features, classification up to Class level (wherever applicable) of the following phyla 1.1.1 Protista (Protozoa) 1.1.2. Porifera 1.1.3 Coelenterata 1.1.4 Ctenophora 1.1.5 Mollusca	1L 1L 1L 1L 1L
	1.1.6 Bryozoa 1.1.7 Brachiopoda	1L
	1 1 8 Echinodermata	1L
	1.1.9 Chaetognatha	1L
	1.1.10 Platyhelminthes and Nemathelminthes	1L
	1.1.11 Acanthocephala	1L
	1.1.12 Annelida	1L
	1.1.13 Sipunculoidea	1L
	1.1.14 Arthropoda	
	1.1.15 Onychophora – Peripatus: A connecting link between	
	Annelida and Arthropoda	IL
 Invertebrate Zoology by P S Verma (Author), E L Jordon : S Chand; Fifteenth edition Biology Of Non-Chordates by Fatik Mandal, PHI Learning; 2nd edition 		
Module II	Hemichordate, Protochordate and Chordate Phylogeny	[15L]
Learning objectives		
The module is intended to		

The module is intended to -

- Describe Phylogeny, salient features, classification up to Class of Hemichordate and Protochordate
- Explain Vertebrate ancestry and origin of Vertebrates.
- Describe salient features and phylogeny of Ostracoderms and affinities of Cyclostomes
- Describe features of early tetrapods and lungfishes
- Describe affinities of Aves
- Identify affinities of Aves with other organisms
- Explain different types of flight in organisms
- Describe evolution and various features of Mammals

Learning outcomes

After the successful completion of the module, the learner will be able to -

- Discuss phylogeny, salient features, Classification up to Class of hemichordate and Protochordate
- Elaborate on Vertebrate ancestry and origin of Vertebrates
- Discuss on salient features and phylogeny of Ostracoderms and affinities of Cyclostomes
- Recognize the features of chordates on field
- Relate organisms based on phylogeny
- Analyze and compare different types of flights in animals
- Analyze and compare different types of walking gaits in animals

2.1	Phylogeny, salient features, classification up to Class level (wherever applicable) of the following phyla	
	2.1.1 Hemichordata and its affinities	1L
	2.1.2 Urochordata and its affinities	1L
	2.1.3 Cephalochordata and its affinities.	1L
	2.1.4 Vertebrate ancestry and origin of Vertebrates.	2L
	Salient features and phylogeny of Ostracoderms.	
2.2	2.21 Affinities of Cyclostomes	1L
	2.2.2 Primitive tetrapods and Crossopterygians	1L
	2.2.3 Dipnoi - lungfishes who failed to evolve as Amphibians	1L
	2.2.4 Warm blooded reptile - Archaeopteryx	1L
	2.2.5 Affinities of Aves	1L
	2.2.6 Origin of flight	1L
	2.2.7 Egg laying Mammals - connecting link between	1L

	mammals and reptiles 2.2.8 Evolution of Mammals 2.2.9 Walking gait in animals	1L 1L 1L
 P.S. Dhami & J.K. Dhami, 1981. Chordate zoology. (R. Chand & Co.). R.L.Kotpal, 2000. Modern textbook of zoology, Vertebrates. (Rastogi Publ., Meerut). 		

• E.L. Jordan & P.S. Verma, 1998. Chordate zoology. (S. Chand & Co.)

ZOOLOGY SEMESTER VII (MSc sem I/ honors) Core Course- II COURSE TITLE: Biomolecules and Metabolism COURSE CODE: 23PS7ZOCC2BMM [CREDITS - 02]

		1
1.1	Carbohydrates 1.1.1 Classification: mono-, oligo- and poly-saccharides. 1.1.2 Monosaccharides 1.1.3 Oligosaccharides 1.1.4 Polysaccharides- homo- and hetero-polysaccharides. 1.1.5 Biological functions of carbohydrates.	3L
1.2	Carbohydrate Metabolism 1.2.1 Glycolysis Reaction sequence, flow of carbon, Conversion of pyruvate to lactate and Acetyl coenzyme-A, significance of pyruvate lactate interconversion, aerobic and anaerobic glycolysis and energetic of glycolysis. Regulation of glycolysis	2L
	gluconeogenesis from amino acids, glycerol, propionate, lactate. Regulation of gluconeogenesis 1.2.3 Glycogen metabolism: Glycogenesis, Glycogenolysis.	1L
	Regulation of the two pathways. 1.2.4 Significance of following pathways: Hexose monophosphate shunt as a multifunctional pathway; Uronic Acid Pathway; Glyoxylate cycle.	1L 1L
1.3	Lipids 1.3.1 Classification: simple and complex lipids 1.3.2 Fatty acids 1.3.3 Acylglycerols 1.3.4 Complex lipids 1.3.5 Glycolipids 1.3.6 Biological functions of lipids.	3 L
1.4	Lipid Metabolism 1.4.1 Dynamics of body lipids, mobilisation of fats, regulation of hormone sensitive TG lipase, fate of glycerol and free fatty acids. 1.4.2 Fatty acid metabolism: Oxidation of even-carbon and odd- carbon atom fatty acid, oxidation of unsaturated fatty acids, biosynthesis of fatty acids including desaturation, metabolism of phospholipids, cholesterol and alcohol.	2L 2L
 References Biochemistry by U.Satyanarayana and U.Chakrapani published by Elsevier and co- published with Books and Allied, Fourth Edition, 2013. 		

		1	
• APA. Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry (7th ed.)			
Module II	Proteins and Nucleic acids	15L	
Learning ob	jectives		
The module	is intended to -		
 Introc biolog Interp Expla 	 Introduce the properties of biomolecules (proteins and nucleic acids) along with their biological functions. Interpret the regulation of various metabolic pathways. Explain the process of energy demand and supply through metabolism. 		
Learning ou	tcomes		
After the suc	cessful completion of the module, the learner will be able to -		
 Explain the functions and classification of proteins and nucleic acids Understand the process of synthesis, conversion and degradation of these biomolecules. Discuss the roles of various types of complex biomolecules. Sketch various metabolic cycles. Summarise the process of metabolism by integrating major metabolic pathways. 			
Module II	Title	15L	
2.1	Proteins 2.1.1 Amino acids: structure and classification 2.1.2 Organization of protein structure: Primary structure and peptide bond, secondary, tertiary and quaternary structure; conjugate proteins haemoglobin, cytochromes, myoglobin; bonds involved in protein organization. 2.1.3 Properties of proteins: classification.	1L 1L 1L	
	denaturation and protein folding.2.1.4 Biological functions of proteins. Biologically important peptides: glutathione, octa-, nona and deca-peptides. Glycoproteins, Lipoproteins	1L	
2.2	Protein Metabolism 2.2.1 Metabolism of amino acids: Amino acid pool, transamination; oxidative and nonoxidative deamination; metabolism of	2L	

	branched chain amino acids; fate of carbon skeleton of amino acids. 2.2.2 Metabolism of ammonia: Urea cycle	2L
2.3	Nucleic acids 2.3.1 Types, Components, Structure of DNA	2L
	2.3.2 Structure, types and functions of RNA	1L
2.4	Metabolism of Nucleic acids 2.4.1 Synthesis of ribonucleotides- a brief idea of de novo pathway and salvation pathway 2.4.2 Conversion of ribonucleotides to deoxyribonucleotides 2.4.3 Degradation of nucleotides 2.4.4 Integration of Metabolism, Energy demand and supply: Integration of major metabolic pathways of energy metabolism, intermediary metabolism; organ specialisation and metabolic integration. Metabolism in starvation	1L 1L 1L 1L
 References Biochemistry by U.Satyanarayana and U.Chakrapani published by Elsevier and co-published with Books and Allied, Fourth Edition, 2013. APA. Nelson, D. L., & Cox, M. M. (2017). Lehninger principles of biochemistry (7th ed.) 		

ZOOLOGY SEMESTER VII Core Course- III COURSE TITLE: Evolution and Developmental Biology COURSE CODE 23PS7ZOCC3EDB [CREDITS - 02]

	Course learning outcomes	
 After the successful completion of the Course, the learner will be able to - 1. Describe evolutionary stages, trends and causes of Horse, Elephant and Human evolution 2. Analyze molecular data for phylogenetic analysis. 3. Explain the concept in development biology 4. Describe the vulva formation in <i>C. elegans</i>, limb development in vertebrates, concepts of regeneration and distinguish between the types of regeneration, role of stem cells and metamorphosis in insects. 		
Module I	Evolution	15L
Learning objectives		
The module	is intended to -	
 Understand theories of evolution and concepts related to evolution Understand concepts related to molecular evolution 		
Learning ou	Learning outcomes	
After the suc	cessful completion of the module, the learner will be able to -	
Describe process of evolution of Horse, Elephant and HumanDefine concepts in Molecular Phylogeny		
Module 1		15L
1.1	Extinct bird order - Archaeopterigyformes	1L
1.2	Evolution of Horse	2L

1.3	Evolution of Elephant	2L
1.4	Human Evolution, evolutionary adaptations in human lineages	2L
1.5	Human Migration	1L
1.6	Molecular Evolution 1.5.1 Patterns and modes of nucleotide substitutions 1.5.1.1 Nucleotide substitutions in DNA 1.5.1.2 Rate of substitution and variation in evolutionary rate between genes 1.5.1.3 Housekeeping genes and pseudogenes	4L
	 1.5.1.4 Molecular clock 1.5.1.5 Single nucleotide polymorphism and Copy number variation 1.5.2 Molecular Phylogeny 1.5.2.1 Reading Phylogenetic tree and it's reconstruction methods 1.5.2.2 Horizontal gene transfer 1.5.2.3 Acquisition and origin of new functions 1.5.2.4 Multigene families 1.5.2.5 Gene duplication and conversion 	3L
References CNV • https: 1655: Mole • https: diver • http:/ Origi • https: lineag • http:/ 41950 • http:/ 41950	s //www.nature.com/scitable/ebooks/genetic-variation-and-evolution- 3748/126455448/ cular clock //www.nature.com/scitable/topicpage/the-molecular-clock-and-estimating-sp gence-41971/ /www.nature.com/scitable/topicpage/origins-of-new-genes-and-pseudogenes n of new genes and pseudogenes //www.nature.com/scitable/topicpage/evolutionary-adaptation-in-the-human- ge-12397/ /www.nature.com/scitable/topicpage/reading-a-phylogenetic-tree-the-meanin 6 //www.nature.com/scitable/topicpage/reading-a-phylogenetic-tree-the-meanin 6	<u>-835</u> - <u>g-of-</u> g-of-

Learning objectives

The module is intended to -

- Explain the concepts of developmental biology.
- Discuss organogenesis
- Explain metamorphosis and the hormonal regulation involved.
- Explain the role of stem cells in development.

Learning outcomes

After the successful completion of the module, the learner will be able to -

- Discuss cell aggregation and cell differentiation
- Enlist the genes and their role in axis formation in drosophila and in organogenesis.
- Explain the concepts of organogenesis, metamorphosis, regeneration, aging and stem cells.

Subtopic	Title	15L
2.1	Basic concepts of Developmental Biology – cell fate, competence, commitment, trans differentiation and differentiation, dedifferentiation, cell specification	2L
2.2	Cell aggregation and differentiation in Dictyostelium	1L
2.3	Morphogenesis and cell adhesion- Differential cell affinity, cadherins and cell adhesion.	1L
2.4	2.4.1 Axis formation and pattern formation: <i>Drosophila</i> and <i>Xenopus</i>.2.4.2 Sea Urchin fertilization and early development	3L
2.5	Organogenesis 2.5.1 Vulva formation in <i>Caenorhabditis elegans</i> 2.5.2 Limb development in tetrapods	2L

2.6	Metamorphosis (a) Amphibian metamorphosis (b) Hormonal control of insect metamorphosis (c) Programmed cell death	2L
2.7	Regeneration (a) Regeneration in Hydra (b) Regeneration of Salamander limbs	2L
2.8	Aging: Senescence, life span and causes of aging	1L
2.9	Stem cell and their role in development	1L

References

- DEVELOPMENTAL BIOLOGY, 11TH EDITION 2016 S. F. Gilbert, M. J. F. Barres
- Korzh, V. (2005). Boris Balinsky: transition from embryology to developmental biology. *BioEssays*, 27(9), 970-977

ZOOLOGY SEMESTER VII (MSc sem I/ honors) Core Course- IV COURSE TITLE: Instrumentation COURSE CODE 23PS7ZOCC4INT [CREDITS - 02]

Course learning outcomes		
After the suc 1. Unde 2. The v 3. Knov	ecessful completion of the Course, the learner will be able to - orstand various instruments and techniques working and principle of instruments w their application in industries	
Module I	Microtomy, Microscopy, Radioactivity and Separation Techniques	15L
Learning ob	ojectives	
The module	is intended to -	
 Understand the principle, working and application of various instruments and techniques in different industries Know the different types of Microscope and Microtome that are used in industries 		
• The c	concept of Radioactivity and its principle and application	
Learning ou	itcomes	
After the suc	ccessful completion of the module, the learner will be able to -	
 Have clear concept of Microtomy, Microscopy and Techniques such as FIltration, Distillation and Extraction 		
 Explain the detail working of Microtome and Microscope Have The clear knowledge and understanding of Radioactivity, its detection and measurement in industries 		
 Knowledge of applications in industries Significance of the instruments 		
1.1	Microtomy	

	1.1.1 Basic Introduction to Microtomy: Principle and Working of	1L	
	1.1.2 Turnes of Microtome	11	
	1.1.2 Types of Microtome		
	1.1.3 Procedure and Preparation involved in Microtomy	IL	
	1.1.4 Applications of Microtomy	1L	
1.2	 Microscopy 1.2.1 Principle, working and applications of microscopy: a) Light Microscopy b) Phase contrast Microscopy c) Confocal Microscopy 	2L	
	d) Eluorescence microscopy		
	a) Delerized Microscopy		
	e) Foldlised Microscopy		
	f) Electron microscopy- I ENI and SEINI,		
	Preparation of specimen for electron microscope		
	1.2.2 Concepts of digital microscopy and image analysis	2L	
1.3	Radioactivity		
	1.3.1 The nature of radioactivity	1L	
	1.3.2 Units of radioactivity	1L	
	1.3.3 Detection and measurement of radioactivity - liquid scintillation		
	counting	11	
	1.2.4 Design principles of redispective labeling	1L 1T	
	1.3.4 Basic principles of radioactive labeling.	IL	
1.4	Separation Techniques		
	1.4.1 Principle and Applications of Vacuum Filtration	1L	
	1.4.2 Principle and Applications of Steam and Fractional Distillation	1L	
	1.4.3 Principle and Application of Solvent Extraction		
		1L	
References			
 Bioinstrumentation by L. Veerakumari Bioinstrumentation by M. H. Fulekar and Bhawana Pandey https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SMB2103.pdf 			
Module II	Chromatography, Electrophoresis and Spectroscopy	15L	
Learning ob	Learning objectives		

The module is intended to -

- Understand the concept of Chromatography, Electrophoresis and Spectroscopy
- Understand the principle and working of the instruments
- Applications in different industries
- Understanding the factors affecting different electrophoresis

Learning outcomes

After the successful completion of the module, the learner will be able to -

- Have clear understanding about the principle of Chromatography, Electrophoresis and Spectroscopy
- The knowledge of different instruments application in the industries
- Know the clear working techniques of the instruments

Subtopic	Title	15L
2.1	Chromatography 2.1.1 Principle of separation, 2.1.2 Working and application: a) Planar Chromatography b) HPTLC	1L 4L
	 c) Column Chromatography d) HPLC e) Size-exclusion Chromatography f) Gradient elution g) Gas Chromatography 	
2.2	 Electrophoretic Techniques 2.2.1 General principles, applications and factors affecting electrophoresis of a) Native-PAGE; b) Isoelectric focusing (IEF) - pH gradient gels, c) Two Dimensional Gel Electrophoresis (2-DE) d) Pulse field electrophoresis 	1L 1L 1L 1L
2.3	Spectroscopy Principle and applications of Spectroscopy: a) Ultraviolet and visible absorption spectroscopy b) Fluorescence spectroscopy	1L 1L

	 c) FTIR d) Mass spectroscopy e) Atomic absorption spectrophotometer. f) NMRS 	1L 1L 1L 1L
ReferenceBioinstrumentation by L. Veerakumari		

Bioinstrumentation by M. H. Fulekar and Bhawana Pandey •

https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SMB2103.pdf •

Practicals: 23PS7ZOCCP1

Core course I	Comparative Vertebrate Anatomy	
Learning Object	tives	
 This practical is intended to Explain the structure of vertebrate axial and appendicular skeleton and its significance 		
Learning Outco	omes	
After completion • Compare • State sign	n of this practical, learner will be able to the structure of axial and appendicular skeleton in different vertebrate groups nificance of parts of vertebrate axial and appendicular skeleton	
1 Compa Cartila Bony f Amphi Reptile Aves Mamm	arative study of vertebrate axial skeleton - vertebrae of ginous fish ish ibia	
2 Compa Cartila Bony f Amphi Reptile Aves Mamm	arative study of vertebrate axial skeleton - Skull of ginous fish ish ibia e nals	
3 Compa hindlir Mamm	arative study of vertebrate appendicular skeleton - forelimbs and nbs of Cartilaginous fish, bony fish, Amphibia, Reptile, Aves and nal	
4 Morph	ometric studies of appendicular skeletons to identify the species.	

Suggested Project:

- 1. Alizarin stained skeletal preparations of fish
- 2. Preparation of skeletal whole mount for museum display

23PS7ZOCCP2

Core course II Biomolecules and Metabolism		es and Metabolism		
Learning Objectives	Learning Objectives			
 This practical is intended to Make the learner understand biochemical assay techniques and their analysis Explain the applications of large scale culture and their commercial products 				
Learning Outcomes				
 After the successful completion of the practical, the learner will be able to Extract various biomolecules from tissues Analyse the extracted molecules by colorimetry and electrophoresis Calculate the amount of biomolecules extracted using formulae or graphs 				
1.	Isolation of β -Amylase from Sweet Potato	https://vlab.amrita.edu/?sub=3 &brch=64∼=730&cnt=1		
2.	Gelatin Zymography [PAGE]	https://vlab.amrita.edu/?sub=3 &brch=64∼=700&cnt=1		
3.	Construction of Maltose standard curve by DNSA method	https://vlab.amrita.edu/?sub=3 &brch=64∼=163&cnt=1		
4.	Construction of protein standard curve using Folin's Lowry method	https://vlab.amrita.edu/?sub=3 &brch=64∼=1087&cnt=1		

5.	Extraction of Caffeine from tea/coffee	https://vlab.amrita.edu/?sub=3 &brch=64∼=169&cnt=1
6.	Effect of substrate concentration on Enzyme Kinetics	https://vlab.amrita.edu/?sub=3 &brch=64∼=1090&cnt=1
7.	Effect of temperature on Enzyme Kinetics	https://vlab.amrita.edu/?sub=3 &brch=64∼=1342&cnt=1
8.	Extraction and analysis of liver lipids- Soxhelt extraction	https://www.protocols.io/view/ extraction-and-analysis-of- liver-lipids-n92ld7ool5br/v1 http://cyberlipid.gerli.com/soxh let-type-extraction/

23PS7ZOCCP3

Core course III	Evolution and Developmental Biology			
Learning objectives	Learning objectives			
This Practical is inter	nded to			
 Develop basic 	c laboratory skills of the student			
• Make the stuc	lent understand basic concepts in evolution and developmental biology			
• Explain to the	e learner the practical applications of learning developmental biology			
Learning Outcomes	Learning Outcomes			
After the successful	completion of the Practical, the learner will be able to			
• Perform several developmental biology related techniques				
• Use basic lab apparatus and equipments				
• Apply formula and find values of unknown samples				
1	Introduction to Phylogenetics: Definition and significance of phylogenetics, Historical background and key contributors			

2	Tree-Building Methods: Distance-based methods: Neighbor Joining, UPGMA, Character-based methods: Maximum Parsimony, Maximum Likelihood, Bayesian Inference
3	Construction of phylogenetic trees from molecular and morphological data using phylogenetic software (e.g., Chromas Lite, Mega (Molecular Evolutionary Genetics Analysis), BEAST]
4	Interpretation of Phylogenetic Trees [Branch lengths, nodes, and root placement, Monophyletic, paraphyletic, and polyphyletic groups Molecular dating and divergence times, Ancestral character reconstruction]
5	Effect of teratogens on animal development
6	Study of regeneration in Hydra
7	Frog developmental stages – egg, 4 and 8 celled stage, blastula, gastrula and tadpole larva.
8	Developmental changes in Chick Embryo
9	Developmental changes in frog
10	Ontogeny recapitulates phylogeny

23PS7ZOCCP4

Core course IV	Instrumentation		
Learning Objectives: This Practical is intended to • Introduce the learner to several instrumentation techniques such as microtomy and			
 Demonstrate the process of microtom processing of histological sections such preserving the tissues. Develop the skills in learners to isola chromatography. 	by explaining various steps involved in the as fixation, embedding, sectioning, staining and ate and separate various biomolecules by using		

Learning Outcomes:

After the successful completion of the Practical, the learner will be able to

- Identify and recognise various histological sections under microscope.,
- Make permanent slides of histological sections by performing microtomy for histological studies.
- Separate and extract various plant pigments by performing adsorption chromatography.
- Perform the separation techniques like Ion Exchange Chromatography and 2-D Chromatography in order to isolate and extract various amino acids.

1	Microtomy: i) Fixation of tissue ii) Dehydration iii) Embedding, block preparation and trimming iv) Sectioning and slide preparation v) Staining and mounting
2	Separation of pigments from leaves or flowers by adsorption column chromatography
3	Separation of amino acids by ion exchange chromatography using cation exchanger
4	Identification of amino acids by 2D chromatography
5	Microscopy- Principle and Working
6	Study of Gel Electrophoresis
7	Visit to Instrumentation lab

Suggested projects:

- 1. Electrophoretic analysis of DNA from different sources
- 2. PAGE of various serum
- 3. Chromatography of pigment from different sources

15L

ZOOLOGY SEMESTER VII DSE- I COURSE TITLE: Physical and Chemical Oceanography

COURSE CODE 23PS7ZODSE1PCO [CREDITS - 02]

Course learning outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Compare between the organisms, their characters and requirements
- 2. Discuss the physical factors that affects marine life
- 3. Elucidate the role of marine bacteria
- 4. Enlist various marine microorganisms.
- 5. Compare and contrast between the various groups of microbes found in mangroves and coral reefs.
- 6. Describe the ecology of coastal water, shallow water and deep-sea microorganisms
- 7. Discuss the process of breakdown of various xenobiotics by microbes
- 8. Describe methods for controlling water pollution

Module I Physical Oceanography

Learning objectives

The module is intended to -

- Explain the marine environment and its components to the learner
- Elucidate on effect of various physical parameter of seawater on marine animals
- Discuss on marine biotic diversity, intertidal organisms and their zonations and role of marine bacteria in marine environment

Learning outcomes

After the successful completion of the module, the learner will be able to -

15L

- Define various component of marine environment
- Classify between marine biotic diversity
- Explain species richness and diversity gradient models
- Measure species diversity and richness using quadrant method
- Enlist the effect of various physical parameter of seawater on marine animals

Subtopic	Title	Lectu re distrib ution
1.1	Oceanographic circulation: Ekman spiral, geotropic current, westward intensification with dynamic topography.	3L
1.2	Vertical circulation: wind induced circulation, Thermohaline circulation and upwelling of water.	3L
1.3	Waves: Characteristics of waves, deep water and shallow water waves, transitional waves, wind generated waves, internal waves and Tsunami	3L
1.4	Tides: Tides generating forces, equilibrium theory of tides, dynamic theory of tides	3L
1.5	Currents: Types of currents, major currents of the world, Coriolis effect and El Nino effect, Eddy currents	3L

References:

- The Oceans: Their Physics, Chemistry, and General Biology by H. U. Sverdrup, Martin W. Johnson, Richard H. Fleming; Prentice-Hall of India Pvt.Ltd
- Essentials of oceanography by P. Trujillo Alan, Harold V. Thurman; Prentice-Hall of India Pvt.Ltd
- Oceanography: An Invitation to Marine Science by Tom Garrison; Brooks/Cole; 9th edition
- A Textbook of Marine Ecology Nair, N.B. & Thumpy, D.H., the Macmillan Book Company of India Ltd
- Element of marine ecology by R.V. Tait and F.A. Dipper
- Introduction to Physical Oceanography by Robert H. Stewart

Module II Chemical Oceanography

Learning objectives

The module is intended to -

- Explain the chemical properties of seawater
- Elucidate on various gaseous and nutrient cycle of ocean

Learning outcomes

After the successful completion of the module, the learner will be able to -

- Discuss on chemical properties of seawater
- Explain various gaseous and nutrient cycle of seawater

Subtopic	Title	Lectu re distrib ution
2.1	Composition of sea water- constancy of its composition and factors affecting the composition, major and minor constituents, trace elements and their biological role.	5L
2.2	Dissolved gases in the sea water and their role in the environment, CO2 system, dissolved O2 and oxygen profile, hydrogen sulphide.	5L
2.3	Nutrients in the ocean, their cycles and factors influencing their distribution a) Nitrogen b) Phosphorus c) Silicon	5L
References:		

• The Oceans: Their Physics, Chemistry, and General Biology by H. U. Sverdrup, Martin W. Johnson, Richard H. Fleming; Prentice-Hall of India Pvt.Ltd

• Essentials of oceanography by P. Trujillo Alan, Harold V. Thurman; Prentice-Hall of India Pvt.Ltd

Practical

DO	
	н.

Physical and Chemical Oceanography

Learning Objectives

This Practical is intended to

• Introduce the learner to several abiotic components of the ocean.

- Explain the significant role of nutrients in the ocean.
- Develop an understanding in the learner about the process of estimation of several physico-chemical parameters such as salinity, dissolved oxygen, carbon dioxide and nutrients.
- Teach the learner the skill to identify foraminiferans and radiolarians.
- Define and explain primary productivity.
- Demonstrate the experiment of sediment analysis to determine soil texture.
- Discuss various intertidal ecosystems.

Learning Outcomes

After the successful completion of the Practical, the learner will be able to

- Enlist various physico-chemical parameters of the ocean.
- Quantify and measure various physico-chemical parameters of the ocean such as salinity, dissolved oxygen, carbon dioxide etc.
- Determine the presence of nutrients in ocean water.
- Estimate the primary productivity by light and dark bottle reaction
- Calculate the gross and net primary productivity.
- Identify various foraminiferans and radiolarians.
- Determine the soil texture and recognise various types of soil.
- Describe intertidal ecology and discuss types of shores.
- Identify and differentiate various intertidal organisms on the basis of their type of shore.

1	Determination of salinity (Argentometric and conductivity method).
2	Determination of Dissolved oxygen.
3	Determination of Carbon dioxide.
4	Determination of Nitrates-nitrites.
5	Determination of Silicates.
6	Determination of Phosphate-phosphorus.
7	Estimation of Primary Productivity
8	Textural features: Sediment analysis- size fraction (sand, silt, clay)
9	Measuring Turbidity by using Secchi's Disc

10	Determining Salinity by using Salinometer
11	Study of Tide Time-table and Tide Charts
12	Study of various Maps/Satellite Images by India Meteorological Department

ZOOLOGY SEMESTER VII DSE- II COURSE TITLE: Insect Classification and Diversity COURSE CODE: 23PS7ZODSE2ENT [CREDITS - 02]

Course learning outcomes					
After the suc 1. Descr 2. Expla 3. Identi	 After the successful completion of the Course, the learner will be able to - 1. Describe insect orders with characteristics 2. Explain method of identification of insects using keys 3. Identify insect 				
Module I	Insect Classification, Metamorphosis and Ametabolous Insect Orders	15L			
Learning ob	jectives				
The module	is intended to -				
 Expla Desci Desci Desci Desci 	 Explain insect classification Describe metamorphosis in insects and its regulation Describe parthenogenesis Describe moulting and its regulation Describe ametabolous insect orders 				
Learning outcomes					
 After the successful completion of the module, the learner will be able to - Analyse insect characters Identify insect type Recollect life cycle and life stages in insect life 					
1.1	Definition and introduction to taxonomy	1L			
1.2	Dichotomous key for identification	1L			

1.3	Insect classification – past and present	1L
1.4	Metamorphosis – definition and types	1L
1.5	Hormonal regulation of metamorphosis	1L
1.6	Life stages of insect – egg, larva, nymph, and pupae	2L
1.7	Parthenogenesis	2L
1.8	Moulting	1L
1.9	Hormonal regulation of Moulting	1L
1.10	Ametabolous Orders - Thysanura, Diplura, Protura, Collembola	4L

References

- Ross, H.H., Ross C.A. & Ross J.R.P., Text book of Entomology, Ed. 4. John Willey & Bons, New York.
- Richards, O.W. & Davis, R.G.: General Text Book of Entomology. Ed. 10. Chapman & Hall London.
- Nayar, K.K. & Ananthkrishnan, T.N. & David. B.V.: General and Applied Entomology, Tata McGraw Hill Co Ltd., Bombay.
- Mani. M.S.: General Entomology. End 3, Oxford & IBH Publishing Co., New Delhi.
- Sondgrass, R.E.: Principles of Insect Morphology, Tata McGraw Hill, Rutl. Co. Ltd., Bombay, New Delhi.
- Wigglesworth, V.B.: The Principles of Insects Physiology. Vlbs & Methuten & Co.Ltd., London.
- Chapman, R.F.: The Insects Structure & Function, English University Press, London.
- Comstock, J.H.: An Introduction to Entomology. Ithaca, New York.
- Kerkut: G.A. & Gillbert, L.I.: Comprehensive Insect. Physiology, Biochemistry and Pharmacology. Vol. 1 to 13. Pergamon Press, Oxford & New York.
- Beament, J.W.L. Tieherne, J.E. & Wigglesworth, V.B.: Advances in Insect Physiology, Academic Press, New York.
- Tembhare, D.B.: modern entomology II End. HPH publications.
- Metcalf, C.L., Flint. W.P. & Metcalf. R.L.: Destructive and Useful Insects Their habits &

Somanja.

control End. 4, Ms Graw Hill, New York			
Module II	Hemimetabolous and Holometabolous Insect Orders	15L	
Learning of	ojectives		
The module	is intended to -		
Desc.Desc.	ribe hemimetabolous ribe holometabolous insect order		
Learning ou	itcomes		
 After the successful completion of the module, the learner will be able to - Analyse insect characters Identify insect type 			
2.1	Hemimetabolous Insect Orders		
	2.1.1 Ephemeroptera, Odonata, Orthoptera, Phasmida, Dermaptera,	4L	
	2.1.2 Hemiptera, Blattaria, Mantoidea, Isoptera, Siphunculata	4L	
2.2	Holometabolous Insect Orders	3L	
	2.2.1 Thysanoptera, Neuroptera, Strepsiptera, Siphunculata,	4L	
	2.2.2 Diptera, Coleoptera, Lepidoptera, Hymenoptera		
 References Ross, H.H., Ross C.A. & Ross J.R.P., Text book of Entomology, Ed. 4. John Willey & Bons, New York. 			

- Richards, O.W. & Davis, R.G.: General Text Book of Entomology. Ed. 10. Chapman & Hall London.
- Nayar, K.K. & Ananthkrishnan, T.N. & David. B.V.: General and Applied Entomology, Tata McGraw Hill Co Ltd., Bombay.
- Mani. M.S.: General Entomology. End 3, Oxford & IBH Publishing Co., New Delhi.

Practical:

DSE II	Entomology
 Dis Des Un Des 	cuss Entomological Orders With Examples scribe Development Of Insect Using Examples derstand Parthenogenesis scribe identification using key
RelElaUso	ate Insect To The Characteristics Of A Particular Order borate And Draw Examples Of Insect Orders e Dichotomous key to identify insects
1	Use of dichotomous key for insect identification
2	Study of types of larvae
3	Study of types of pupae
4	Study of parthenogenesis
5	Study of ametabolous insect orders - examples
6	Study of hemimetabolous insect orders - examples
7	Study of holometabolous insect orders – examples
8	Field visit and report – insect identification on field

References

- Ross, H.H., Ross C.A. & Ross J.R.P., Text book of Entomology, Ed. 4. John Willey & Bons, New York.
- Richards, O.W. & Davis, R.G.: General Text Book of Entomology. Ed. 10. Chapman & Hall London.
- Nayar, K.K. & Ananthkrishnan, T.N. & David. B.V.: General and Applied Entomology, Tata McGraw Hill Co Ltd., Bombay.
- Mani. M.S.: General Entomology. End 3, Oxford & IBH Publishing Co., New Delhi.
- Sondgrass, R.E.: Principles of Insect Morphology, Tata McGraw Hill, Rutl. Co. Ltd., Bombay, New Delhi.

- Wigglesworth, V.B.: The Principles of Insects Physiology. Vlbs & Methuten & Co.Ltd., London.
- Chapman, R.F.: The Insects Structure & Function, English University Press, London.
- Comstock, J.H.: An Introduction to Entomology. Ithaca, New York.
- Kerkut: G.A. & Gillbert, L.I.: Comprehensive Insect. Physiology, Biochemistry and Pharmacology. Vol. 1 to 13. Pergamon Press, Oxford & New York.
- Beament, J.W.L. Tieherne, J.E. & Wigglesworth, V.B.: Advances in Insect Physiology, Academic Press, New York.
- Tembhare, D.B.: modern entomology II End. HPH publications.
- Metcalf, C.L., Flint. W.P. & Metcalf. R.L.: Destructive and Useful Insects Their habits & control End. 4, Ms Graw Hill, New York

ZOOLOGY SEMESTER VII DSE- III COURSE TITLE: Animal Type study COURSE CODE 23PS7ZODSE3ATS [CREDITS - 02]

Course learning outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Describe the morphology and organ systems of sepia
- 2. Elaborate the economic importance and conservation status of sepia
- 3. Describe the morphology and organ systems of shark

4. Elaborate the economic importance and conservation status of shark		
Module I	Invertebrate Model Organism - Sepia	15L
Learning ob	jectives	
The module i	s intended to -	
MakeDesc	e the learner understand the morphology and anatomy of sepia ribe to the learner the importance of this animal in nature	
Learning ou	tcomes	
After the suc	cessful completion of the module, the learner will be able to -	
• Class	ify sepia	
• Descr	ibe all systems of sepia	
• Draw	neat and labelled diagrams of the same	
• Elabo	rate on the economic importance and conservation status of sepia	
1.1	Morphology and systemic position	2L
1.2	Digestive system	2L

1.3	Circulatory System	2L
1.4	Nervous system	3L
1.5	Reproductive system - male and female	4L
1.6	Economic importance and conservation status	2L
Deferences		

References

• Invertebrate Zoology by P S Verma (Author), E L Jordon : S Chand; Fifteenth edition

Module II	Type Study of Vertebrate - Shark	[15L]
Learning ob	jectives	
The module	is intended to -	
MakDesc	e the learner understand the morphology and anatomy of shark wribe to the learner the importance of this animal in nature	
Learning ou	tcomes	
After the suc	cessful completion of the module, the learner will be able to -	
• Class	ify shark	
Desci	ribe all systems of shark	
Elabo	prate on the economic importance and conservation status of shark	
2.1	Morphology and systemic position	2L
2.2	Digestive system	2L
2.3	Circulatory System	2L
2.4	Nervous system	3L

2.5	Reproductive system - male and female	4L
2.6	Economic importance and conservation status	2L

References:

- P.S. Dhami & J.K. Dhami, 1981. Chordate zoology. (R. Chand & Co.).
- R.L.Kotpal, 2000. Modern textbook of zoology, Vertebrates. (Rastogi Publ., Meerut).
- E.L. Jordan & P.S. Verma, 1998. Chordate zoology. (S. Chand & Co.)

Practical:

DSE III	Type Study of Invertebrate and Vertebrate			
 Learning Objectives This practical is intended to Make the learner understand the morphology and anatomy of sepia and Shark 				
 Learning Outcomes After the successful completion of the practical, Describe the morphology and organ syst Describe the morphology and organ syst 	the learner will be able to tems of sepia tems of shark			
 Study of Digestive system of Sepia Study of Circulatory system of Sepia Study of Nervous system of Sepia 				
 4. Study of male Reproductive system of S 5. Study of Female reproductive of Sepia 6. Morphometric study of any available (La 	epia ab bred) fish			
7. Study of Digestive system of Shark				

- 8. Study of Circulatory system of Shark
- 9. Study of Nervous system of Shark
- 10. Study of male Reproductive system of Shark
- 11. Study of Female reproductive of Shark
- Above practicals will be based on study of systems using diagrams and virtual resources. Dissection of animals will not be performed under this course.

ZOOLOGY SEMESTER VIII Core Course- I COURSE TITLE: Industrial Biotechnology COURSE CODE 23PS8ZOCC1IBT [CREDITS - 02]

	Course learning outcomes			
 After the successful completion of the Course, the learner will be able to - 1. Describe the process of large scale culture of various biomolecules by recombinant microorganism and genetically engineered animal cells by various fermentation methods. 2. Discuss the various types of vaccines, their production and advantages over conventional vaccines 3. Explain the production and applications of monoclonal antibodies 4. Enlist applications of biotechnology in agricultural fields such as use of biotechnology techniques for better nitrogen fixation, pest resistance and disease resistance. 5. Explore the use of algae for biofuel and its various bioactive compounds. 				
Module I	Large scale culturing techniques	15L		
Learning ob	jectives			
The module i	s intended to -			
 Make the learner understand large scale culturing techniques and downstream processing involving recombinant bacterial and animal cells Explain the applications of large scale culture and their commercial products 				
Learning ou	Learning outcomes			
After the suc	After the successful completion of the module, the learner will be able to -			
 Explain different types of bioreactor designs based on the requirement of the culture Discuss the optimum parameters required for large scale culture system 				

• Enlist different animal cell lines and their applications in large scale culture

Subtopic	Title	15L
1.1	Large scale culture & production from recombinant microorganisms- 1.1.1 Batch fermentation	
	11.2 Fed batch fermentation	1L
	1.1.3 Continuous fermentation	1L
	1.1.4 Maximizing the efficiency of fermentation process	1L
	1.1.5 Harvesting, disrupting & downstream processing	1L
	1.1.6 Typical Large-scale fermentation systems :	1L
	Two-Stage Fermentation in Tandem Airlift Reactors, Two-Stage	4L
	Fermentation in a Single Stirred-Tank Reactor, Batch versus Fed-Batch	
	Fermentation	
1.2	Large scale culture & production from genetically engineered animal cell cultures -	
	1.2.1 Basic structure of Bioreactors, Design of bioreactors for large scale animal cell culture-Batch, Fed batch	1L
	1.2.2 Mammalian cell lines & their characteristics	2L
	1.2.3 Media for the cultivation of mammalian cells	2L
	1.2.4 Commercial products produced with mammalian cell culture	1L
References		

- Molecular Biotechnology- Principles and applications of recombinant DNA- B. Glick and J. Pasternak, 3rd edition
- Biotechnology U. Satyanarayana, Books and Allied Ltd.
- Basic Biotechnology- Colin Ratledge , 3rd Edition

Module II Agricultural Biotechnology

Learning objectives

The module is intended to -

- Convey the importance of new biotechnological practices in improving agricultural produce
- Make the learner understand the concepts of biofertilizers and biopesticides
- Impress upon the learner the need to explore alternative energy sources from marine environment

15L

Learning outcomes

After the successful completion of the module, the learner will be able to -

- State the drawbacks of conventional fertilizers and pesticides
- Schematically explain process of nitrogen fixation and nodulation
- Describe the genetic engineering of nif,hup and nod genes
- Define genetic complementation
- Explain the production of Bt based pesticides
- Elaborate the processes to make various resistant crops/ plants
- Enumerate marine natural products and their applications

2.1	Bio-fertilizers	
	2.1.1 Concept of Nitrogen fixation	1L
	2.1.2 Nitrogenase-Component of nitrogenase; Genetic	1L
	engineering of nitrogenase cluster	
	2.1.3 Hydrogenase-Hydrogen metabolism	1L
	2.1.4 Genetic engineering of hydrogenase gene	1L
	2.1.5 Nodulation-Competition among nodulation organisms, genetic	1L
	engineering of nodulation gene	
2.2	Bio-insecticides	
	2.2.1 Toxins of <i>Bacillus thuringiensis</i> ,	1L
	2.2.2 mode of action & use of <i>thuringiensis</i> toxins,	1L
	2.2.3 Thuringiensis toxin gene isolation,	1L
	2.2.4 Genetic engineering of <i>Bacillus thuringiensis</i> strains	1L
	2.2.5 Cloning of <i>thuringiensis</i> toxin gene.	1L
2.2		
2.3	Iransgenic Plant Technology	11
	2.3.1 Insect resistant plants	
	2.3.2 Virus resistant plants	IL 17
	2.3.3 Herbicide resistant plants	1L
2.4	Algal products	
	2.4.1 Fuels from algae	1L
	2.4.2 Marine natural products & their medical potential-anticancer,	1L
	antiviral compounds, antibacterial agents.	
Dofononcoa		
Kelerences		

• Molecular Biotechnology- Principles and applications of recombinant DNA- B. Glick and J. Pasternak, 3rd edition

15L

- Biotechnology U. Satyanarayana, Books and Allied Ltd.
- Basic Biotechnology- Colin Ratledge, 3rd Edition

ZOOLOGY SEMESTER VIII Core Course- II COURSE TITLE: Ethology - Animal Behavior and Behavioral Ecology COURSE CODE 23PS8ZOCC2ABE [CREDITS - 02]

Course learning outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Understand the fundamental concepts, theories, and methodologies in ethology and animal behavior.
- 2. Analyze the proximate and ultimate causes of animal behavior, including genetic, physiological, and evolutionary factors.
- 3. Apply observational and experimental methods to study and interpret animal behavior.
- 4. Evaluate the ecological and evolutionary implications of animal behavior in various contexts.

Module I Introduction to Ethology

Learning objectives

The module is intended to -

- Understand the concepts, scope, and historical development of ethology
- Differentiate between proximate, ultimate causes of behavior and develop proficiency in observational and experimental studies, modes of communication.

Learning outcomes

After the successful completion of the module, the learner will be able to -

• Explain the concept and scope and contributions in ethology.

- Differentiate between proximate and ultimate causes of animal behavior and provide examples of genetic, physiological, and developmental factors influencing behavior.
- Observe and interpret experimental methods to study animal behavior.

Subtopic	Title	Lectu re distrib ution
1.1	Overview of Ethology 1.1.1 Definition and scope of ethology 1.1.2 Historical perspectives and key contributors	2L 2L
1.2	Animal Behavior: Proximate and Ultimate Causes 1.2.1 Proximate causes: Genetic, physiological, and developmental mechanisms 1.2.2 Ultimate causes: Adaptive significance and evolutionary explanations 1.2.3 The role of genes and environment in shaping behavior	2L 1L 1L
1.3	Methods in Ethology 1.3.1 Observational methods: Direct and indirect observations 1.3.2 Experimental methods: Field experiments, laboratory experiments, and controlled studies 1.3.3 Data collection and analysis techniques	1L 2L 1L
1.4	Communication and Signaling 1.4.1 Types of animal communication: Visual, auditory, chemical, and tactile 1.4.2 Signaling mechanisms: Signals, cues, and displays 1.4.3 Functions and evolution of animal communication	1L 2L 1L
References		

- John Alcock, 2009. Animal Behavior: An Evolutionary Approach. Ninth Edition. Sinauer Associates.
- Michael Begon, Colin R. Townsend, John L. Harper, 2006. Ecology From Individuals to Ecosystem. Fourth Edition. Blackwell Publishing.
- Aubrey Manning, Marian Stamp Dawkins, 2012. AN INTRODUCTION TO ANIMAL

BEHAVIOUR. Sixth Edition. Cambridge University Press. • Eugene P. Odum, Gray W. Barrett, 2017. Fundamental of Ecology. Fifth Edition. Cengage India. Module II **Behavioral Ecology** 15L Learning objectives The module is intended to -• Understand the theories of foraging and decision-making strategies. • Analyze the different forms of reproductive behavior, influence of parental investment on reproductive success. • Examine the concepts of territoriality, home range and migration. Explore the evolutionary mechanisms of social organization and cooperation. Learning outcomes After the successful completion of the module, the learner will be able to -• Apply the principles of optimal foraging theory to explain food choice and decisionmaking in animals. • Describe the mechanisms of sexual selection, mate choice and territoriality. • Analyze the patterns, navigation strategies and mechanisms of migration, • Explain the evolutionary drivers of social organization and cooperation. Subtopic Title 15L 2.1 Foraging Behavior: 2.1.1 Optimal foraging theory 2L 2.1.2 Food choice and decision-making 1L 2.1.3 Predation risk and anti-predator strategies 1L2.2 Reproductive Behavior: 2.2.1 Sexual selection and mate choice 2L2.2.2 Mating systems and strategies 1L2.2.3 Parental investment and reproductive success 1L 2.3 Territoriality and Home Range:

	2.3.1 Territory establishment and defense2.3.2 Resource distribution and territorial behavior2.3.3 Ecological and evolutionary implications of territoriality	1L 1L 1L
2.4	Social Organization and Cooperation: 2.4.1 Evolution of sociality: Kin selection and inclusive fitness 2.4.2 Altruism and reciprocal cooperation, Reciprocal altruism and cooperation among non-relatives 2.4.3 Cooperative breeding and eusociality	2L 1L
		IL

References

- John Alcock, 2009. ANIMAL BEHAVIOR: AN EVOLUTIONARY APPROACH. Ninth Edition. Sinauer Associates.
- Michael Begon, Colin R. Townsend, John L. Harper, 2006. ECOLOGY FROM INDIVIDUALS TO ECOSYSTEM. Fourth Edition. Blackwell Publishing.
- Aubrey Manning, Marian Stamp Dawkins, 2012. AN INTRODUCTION TO ANIMAL BEHAVIOUR. Sixth Edition. Cambridge University Press.
- Eugene P. Odum, Gray W. Barrett, 2017. FUNDAMENTAL OF ECOLOGY. Fifth Edition. Cengage India.

[15L]

ZOOLOGY SEMESTER VIII Core Course- III COURSE TITLE: Human Diseases COURSE CODE 23PS8ZOCC3HUD [CREDITS - 02]

Course learning outcomes

After the successful completion of the Course, the learner will be able to -

- 1. Explain the various metabolic errors observed in humans
- 2. Analyze the causes and treatments of these disorders
- 3. Enlist various lifestyle disorders commonly observed in society
- 4. State the risk factor, causes, symptoms, treatment and prevention of major lifestyle diseases

Module I

Inborn errors of Metabolism

Learning Objectives

The module is intended to

- Explain the significance of errors in metabolism, their occurrence in the human population, causes and effects
- Make the learner aware of the genetic basis and clinical manifestations of inborn errors of metabolism

Learning Outcomes

After the successful completion of the module, the learner will be able to

- Enlist the causes, symptoms and clinical presentations for various inborn errors of metabolism
- Elaborate on the treatment modalities for the same

Subtopic	Title	Lectu
----------	-------	-------

		re distrib ution
1.1	Concept of Inborn Errors in Metabolism	1L
1.2	 Carbohydrate metabolism G-6PD deficiency Pompe's Disease Kori's disease 	3L
1.3	Lipid metabolism: Metabolic disorders of cerebrosides Gaucher's disease Tay Sachs disease Niemann Pick disease	3L
1.4	Protein metabolism Alkaptonuria PKU Albinism	3L
1.5	Purine metabolism Primary Gout Lesch Nyhan Syndrome	2L
1.6	Mineral metabolism and diseases Hypocalcaemia Hypercalcaemia Osteoporosis	3L
 References: iGenetics- A Molecular approach by Peter J.Russell, 3rd edition Genetics- Strickberger, Monroe W.,Second edition, Macmillan Publication. 		
Module II	Lifestyle diseases	15L
Learning Objectives		
The module • Expla	 Explain the significance of lifestyle factors affecting human health 	

- Make the learner aware of various lifestyle related diseases
- Discuss characteristics and causes of non communicable diseases with respect to lifestyle disease

Learning Outcomes

After the successful completion of the module, the learner will be able to

- Enlist the risk factor, causes, symptoms, treatment and prevention of major lifestyle disease
- Elaborate on dynamics of lifestyle disease in India
- Explain and differentiate between characteristics and causes of non communicable diseases with respect to lifestyle disease

2.1	Non communicable diseases: characteristics and causes with respect to lifestyle disease	2L
2.2	Risk factor, causes, symptoms, treatment and prevention of major lifestyle disease: a. Cardiovascular diseases b. Diabetes c. Cancer (lung, cervical, breast, prostate and colorectal) d. Chronic Obstructive Pulmonary Disease (COPD) e. Obesity f. PCOS	2L 2L 2L 2L 2L 1L
2.3	Dynamics of lifestyle disease in India - Trends in population and Governments measures	2L
 References: <u>https://www.un.org/en/chronicle/article/lifestyle-diseases-economic-burden-health-services</u> <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862441/</u> <u>https://pib.gov.in/Pressreleaseshare.aspx?PRID=1540840</u> Lifestyle Diseases Paperback by Surendra G Gattani (Author), Ajay D Kshirsagar 		

ZOOLOGY SEMESTER VIII Core Course- IV COURSE TITLE: Biostatistics - Basic concepts and hypothesis testing COURSE CODE 23PS8ZOCC4BHT [CREDITS - 02]

Course learning outcomes		
 After the successful completion of the Course, the learner will be able to - 1. Define basic terminology of biostatistics 2. Compare between various sampling methods and distribution tables 3. Apply the rules of probability to biological systems 4. Analyze data using t-test, z test and chi square test 5. Use computers to solve statistical problems 		
Module I	Basic Concepts In Biostatistics	15L
Learning of	Learning objectives	
The module	The module is intended to -	
• Make the learner understand the basic concepts of Biostatistics.		
Learning ou	Learning outcomes	
After the suc	After the successful completion of the module, the learner will be able to -	
 Analyze basic data using principles of Biostatistics. Define terminologies related to Biostatistics. Classify the given data through various representation methods. 		
Subtopic	Title	15L
1.1	Scope of biostatistics- definition and limitations Use of computers in biostatistics	2L

15L

1.2	 1.2.1 Classification of data : Tabulation-simple tables , complex tables, frequency distribution tables, 1.2.2 Diagrammatic presentation—frequency polygon, frequency curves, bar, column, (simple, multiple, segmented, 100% stacked), area, line, pie diagrams. Using Graph paper and MS excel 	1L 3L
1.3	Measure of central tendency and dispersion : Mode, Median, Mean, range, Variance and Standard deviation Using manual method and MS Excel	4L
1.4	Normal distribution Curve: Properties and Significance	2L
1.5	Rules of Probability and its application	3L

References

- Cochran W.G. : Sampling Technique Third edition. Wiley Eastern.
- Des Raj and Chandok: Sampling Design. Tata McGraw Hill.

Module II

Various Tests In Biostatistics

Learning objectives

The module is intended to -

• Acquaint the learner with the concepts of probability and the parametric and nonparametric tests in Biostatistics.

Learning outcomes

After the successful completion of the module, the learner will be able to -

• Demonstrate the applications of probability and various tests in Biostatistics in biological scenarios.

Subtopic	Title	15L
2.1	Statistical hypothesis- null hypothesis, alternative Hypothesis	2L
2.2	Parametric test of significance - student's t test	3L
2.3	Z- test and its applications	2L
2.4	F-test and its application	2L
2.5	Non parametric test - chi-square test	2L
2.5	ANOVA and types	4L

References

- Veer Bala Rastogi, Biostatistics third edition, medtech pub 2017
- B. K. Mahajan Methods in Biostatistics 7th edition, Jaypee pub. Jan2010

Practical 23PS8ZOCCP1

Core course I	Biotechnology and Culturing Techniques	
Learning Objectives		
 This Practical is intended to Demonstrate basic aseptic skills to the learner Emphasise on the need to maintain asepsis in the Biotechnology laboratory Prepare the student for performing basic microbiological practicals and projects independently 		

Learning Outcomes

After the successful completion of the Practical, the learner will be able to

- Perform aseptic transfers of cultures
- Prepare sterile media and glassware for tissue culture
- Demonstrate various streaking techniques for Bacterial isolation
- Carry out various bacteriological enumeration experiments
- Immobilize yeast cells in calcium alginate and test its activity
- Use the mini-prep test kit to demonstrate isolation of plasmid DNA
- 1. Demonstration of aseptic Techniques
- 2. Media Preparation to prepare and sterilise various media such as NA,NB,LB and check the sterility
- 3. Preparation of LB agar slant, butt and plate
- 4. Streaking Techniques T streak, side streak, quadrant streak
- 5. Determination of viable cell count in the given culture of bacteria by Serial dilution & spreading technique.
- 6. Nephelometry-To estimate the number of bacteria in the given culture by Nephelometry
- 7. Using Mini-prep method isolate Plasmid DNA from the given strain of bacteria & show the purity of the isolate by performing agarose gel electrophoresis
- 8. Immobilize Yeast cells in calcium alginate & prepare a bioreactor column to demonstrate Invertase activity in the bioreactor column
- 9. To plot a growth curve for the given bacterial population and compare the growth pattern in various media

Suggested project:

1. To Compare the bacterial profile of processed and fresh foods/ beverages

23PS8ZOCCP2

Core Ethological data collection and interpretation course II

Learning Objectives

This Practical is intended to make the students

- Understand the key concepts of Ethology, data collection on field and its analysis
- Document comparative animal behaviour under various stimuli
- Apply Ethological concepts on field and frame experiments

Learning Outcomes

After the successful completion of the Practical, the learner will be able to

- Collect data from the field using various techniques
- Apply concepts of animal behaviour and draw conclusions
- Perform field experiments to various taxa
- Create an ethogram and analyse time budget using software

1	Study of Field sampling methods - Focal sampling, scan sampling
2	Study of Field sampling methods - behaviour sampling, ad lib sampling
3	Study of construction of ethogram
4	Recording animal behaviour and calculating time budget using BORIS
5	Study of Burrow and chimney building behaviour of sand bubbler crabs
6	Report writing on documentary
7	Zoo visit to record animal behaviour in captivity
8	Study of behaviour system using fish display tank

23PS8ZOCCP3

Core course III	Human Diseases	
 Learning Objectives: The practicals are intended to help the learner Analyze various lifestyle diseases dynamics Assess the significance of BMI Estimate level of glucose, triglycerides and protein from blood 		
 Learning Outcomes After successful completion of the practical the learner will be able to Describe the dynamics of lifestyle diseases Measure BMI Quantify level of glucose, triglycerides and protein from blood 		
 Test kit for G6PD Conduct a Case study on- PCOS COPD Lung cancer Obesity Type 2 diabetes Survey and analysis on any lifestyle diseases and metabolic disorders Survey, calculation and analysis of BMI Estimation of blood sugar level using glucometer/ GOD POD test kit Estimation of cholesterol from blood/serum sample Estimation of triglycerides from blood/serum sample 		
 Suggested projects: Comparative study of fiber content of various food groups Survey of various dietary practices Comparative study of protein content of various food groups Comparative study of sugar content of various food/ fruit groups 		

23PS8ZOCCP4

ZOOLOGY SEMESTER VIII DSE- I COURSE TITLE: Biological Oceanography And Marine Microbiology

COURSE CODE: 23PS8ZODSE1BOM [CREDITS - 02]

Course learning outcomes			
 After the successful completion of the Course, the learner will be able to - Compare between the organisms, their characters and requirements Discuss the physical factors that affects marine life Enlist various marine microorganisms, Compare and contrast between the various groups of microbes found in mangroves and coral reefs. Discuss the process of breakdown of various xenobiotics by microbes and Describe methods for controlling water pollution 			
Modu	le I	Biological Oceanography	15L
Learn	ing ob	jectives	
The m	odule i	is intended to -	
• •	Expla Elucio Discu marin	in the marine environment and its components to the learner date on effect of various physical parameter of seawater on marine animals ass on marine biotic diversity, intertidal organisms and their zonations and rol be bacteria in marine environment	e of
1.1		Division of marine environment	1L
1.2		1.2.1 Marine biotic diversity:Plankton, Nekton, Benthos- Classification and adaptation1.2.2 Factors influencing the distribution and abundance of plankton,plankton bloom, patchiness and their vertical distribution, Diurnal	2L 3L

	 migration of zooplankton, Inter-relationship between phytoplankton and zooplankton. 1.2.3 Benthic organisms in relation to food chain and their ecological role 1.2.4 Intertidal organisms and their zonation, adaptation 	1L 1L
1.3	 Effect of physical factors on marine life a) Light- photosynthesis, colouration, structural adaptations, bioluminescence. b) Temperature- tolerance, geographical distribution, size, calcium precipitation, metabolism, bipolarity, tropical submergence and periodicity. c) Salinity- tolerance and distribution, size, buoyancy and osmoregulation. d) Currents- role in nutrition, transportation and propagation 	2L 2L 2L 1L
References • The O W. Jo • Esser India • Ocea editio • A Te Comp • Elem • Biolo Butte	Decans: Their Physics, Chemistry, and General Biology by H. U. Sverdrup, Mohnson, Richard H. Fleming; Prentice-Hall of India Pvt.Ltd ntials of oceanography by P. Trujillo Alan, Harold V. Thurman; Prentice-Hall Pvt.Ltd nography: An Invitation to Marine Science by Tom Garrison; Brooks/Cole; 9 on xtbook of Marine Ecology – Nair, N.B. & Thumpy, D.H., the Macmillan Boo pany of India Ltd ent of marine ecology by R.V. Tait and F.A. Dipper ogical Oceanography: An Introduction by Carol M. Lalli and Timothy R. Pars prworth-Heinemann; 2nd edition	fartin l of th Dk ons;
Module II	Marine Microbiology and biodegradation	15L
Learning ob	jectives	
The module	is intended to -	
 Disc Elabo Desc Eluci marin 	uss the diversity of various marine microorganisms. brate the importance of microbial ecology of coastal, shallow and deep sea wa ribe various groups of microbes found in mangroves and coral environments. date the bioremediation process with respect to various synthetic compo- ne water bodies	nters. ounds in

• Elaborate on the types of microbes involved in bioremediation

Learning outcomes

After the successful completion of the module, the learner will be able to -

he successful completion of the module, the learner will be able to

- Enlist different marine microbes along with their roles in the ecosystem.
- Compare the microbial ecology of coastal, shallow and deep sea waters.
- Conclude the significance of various microorganisms found in mangroves and coral environments.
- Emphasize on the need for bioremediation in marine environment
- Describe the mechanisms involved in bioremediation
- Enlist the microbes involved in bioremediation of different compounds

Subtopic	Title	15L
2.1	Ecology of coastal, shallow and deep sea microorganisms - importance and their significance.	2L
2.2	Diversity of microorganism - Archaea, bacteria, cyanobacteria, algae, fungi, viruses and actinomycetes in the mangroves and coral environment	3L
2.3	Natural and synthetic material in the marine environment- pesticide, cellulose degradation, hydrocarbon production.	5L
2.4	Bioremediation of xenobiotics, oil, heavy metals, pesticides, plastics, etc. Mining and metal biotechnology.	5L

References

- John Paul 1999. Marine Microbiology, Elsevier.
- Munn and Munn 1996. Marine Microbiology: Ecology and Applications. BIOS Scientific publisher.
- Kirchman, L Microbial Ecology of the Oceans 2000 John Wiley and Sons. Hans G. Truperet. al 1991.
- Rheinheimer, G., 1980 Aquatic Microbiology-an Ecological Approach. Blackwell Scientific Publications

Practical:

23PS8ZODSEP1

DSE I

Biological Oceanography And Marine Microbiology

Learning Objectives

This Practical is intended to

- Demonstrate various methods for plankton population estimation
- Assist the learner identify various zooplanktons
- Study fecundity of fish by correlating various biometric parameters and by measuring fish ova diameter

Learning Outcomes

After the successful completion of the Practical, the learner will be able to

- Calculate plankton population from given sample
- Identify common zooplanktons by observing their permanent slides
- Calculate fecundity-maturation of fish by their biometric parameters and ova diameter
- 1. Laboratory procedure for quantitative estimation of plankton settling method, we weight method, weight displacement method, counting method.
- 2. Preparation of permanent slides for zooplankton
- 3. Introduction to sampling techniques for Benthos
- 4. Identification of Zooplankton permanent slides (Noctiluca, Obelia medusa, Zoea, Copepods, Mysids, Echinoderm larvae, Nauplius, Sagitta, Doliolum, Salpa, Lucifer sp., Chaetognaths, Fish eggs and larvae, Jellyfish, Physalia, Porpita)
- 5. Study of fecundity-maturation in fish.
- 6. Plotting the frequency polygon by ova diameter measurement.
- 7. Isolation of pathogenic organism from seafood
- 8. Characterization of marine bacteria using biochemical tests and staining techniques
- 9. Comparative bacterial profile of processed and fresh seafood
- 10. Study of Microbial diseases in fishes
- 11. Visit to intertidal zone and submission of report

ZOOLOGY SEMESTER VIII DSE- II COURSE TITLE: Entomology – Type animal and Insect control COURSE CODE 23PS8ZODSE2TIC [CREDITS - 02]

Course learning outcomes After the successful completion of the Course, the learner will be able to -1. Recognize various morphological features of cockroach as a type animal 2. Understand anatomy of cockroach as a type animal 3. Identify different insect toxicants and their effect 4. Summarize Biological Control and IPM techniques Module I Study of type animal - Cockroach 15L Learning objectives The module is intended to -• Describe morphology of cockroach • Describe anatomical organization of cockroach • Discuss ecosystem services by cockroach Learning outcomes After the successful completion of the module, the learner will be able to -Identify cockroach in field ۲ Analyze relation between various anatomical features of cockroach 1.1 1L Classification and diversity

1.2	Morphology	1L
1.3	Digestive system	1L
1.4	Circulatory system	2L
1.5	Excretory system	2L
1.6	Nervous system	2L
1.7	Reproductive system	2L
1.8	Development	2L
1.9	Ecosystem services by cockroach	1L
1.10	Cockroach in entomological research	1L

References

- Ross, H.H., Ross C.A. & Ross J.R.P., Textbook of Entomology, Ed. 4. John Willey & Bons, New York.
- Richards, O.W. & Davis, R.G.: General TextBook of Entomology. Ed. 10. Chapman & Hall London.
- Nayar, K.K. & Ananthkrishnan, T.N. & David. B.V.: General and Applied Entomology, Tata McGraw Hill Co Ltd., Bombay.
- Mani. M.S.: General Entomology. End 3, Oxford & IBH Publishing Co., New Delhi.
- Sondgrass, R.E.: Principles of Insect Morphology, Tata McGraw Hill, Rutl. Co. Ltd., Bombay, New Delhi.
- Wigglesworth, V.B.: The Principles of Insects Physiology. Vlbs & Methuten & Co.Ltd., London.
- Chapman, R.F.: The Insects Structure & Function, English University Press, London.
- Comstock, J.H.: An Introduction to Entomology. Ithaca, New York.
- Kerkut: G.A. & Gilbert, L.I.: Comprehensive Insect. Physiology, Biochemistry and Pharmacology. Vol. 1 to 13. Pergamon Press, Oxford & New York.
- Beament, J.W.L. Tieherne, J.E. & Wigglesworth, V.B.: Advances in Insect Physiology, Academic Press, New York.

15L

- Tembhare, D.B.: modern entomology II End. HPH publications.
- Metcalf, C.L., Flint. W.P. & Metcalf. R.L.: Destructive and Useful Insects Their habits & control End. 4, Mcgraw Hill, New York

Module II	Principles of Insect Contro	Л
iouule II	I incipies of insect contro	4

Learning objectives

The module is intended to -

- Explain different methods of control
- Classify types of insecticides
- Identify mode of action and resistance to the methods
- Identify integrated pest management

Learning outcomes

After the successful completion of the module, the learner will be able to -

- Understand the type of infection and apply control method/s
- Recognize importance of integrative approach to insect control
- Categorize insecticides based on their effect

Subtopic	Title	15L
2.1	Scope, definition, and history of insecticides	1L
2.2	Chemical control – classification and evolution of insecticides, types, mode of action, insecticide formulation and application	4L
2.3	Biological control methods	1L
2.4	Integrated pest management	2L
2.5	Principles of toxicology. Evaluation of insecticide toxicity, synergists, potentiation, antagonism	3L

2.6	Insecticide metabolism	2L
2.7	Insecticide residues	1L
2.8	Pest resistance to insecticides	1L

References

- Ross, H.H., Ross C.A. & Ross J.R.P., Textbook of Entomology, Ed. 4. John Willey & Bons, New York.
- Richards, O.W. & Davis, R.G.: General TextBook of Entomology. Ed. 10. Chapman & Hall London.
- Nayar, K.K. & Ananthkrishnan, T.N. & David. B.V.: General and Applied Entomology, Tata McGraw Hill Co Ltd., Bombay.
- Mani. M.S.: General Entomology. End 3, Oxford & IBH Publishing Co., New Delhi.

Practical 23PS8ZODSEP2

DSE 2	Type animal and Insect control	
Learning objectives		
This practical is intended to		
• Describe morphology and anatomy of lo	cally available pest insect	
• Understand the effect of pesticide on organisms		
Learning outcomes		
After the successful completion of the practical, the learner will be able to		
Draw morphological and anatomical features of cockroach		
• Relate insecticide and toxicant and its ef	fect on insects	
1. Study of morphology of cockroach		

- 2. Study of different species of cockroaches in India
- 3. Study of digestive system of cockroach
- 4. Study of circulatory system of cockroach
- 5. Study of nervous system of cockroach
- 6. Study of excretory system of cockroach
- 7. Study of reproductive system of cockroach
- 8. Effect of insecticide (Lc50)
- 9. Study of different types of insecticides structure, mode of action

References

- Ross, H.H., Ross C.A. & Ross J.R.P., Textbook of Entomology, Ed. 4. John Willey & Bons, New York.
- Richards, O.W. & Davis, R.G.: General TextBook of Entomology. Ed. 10. Chapman & Hall London.
- Nayar, K.K. & Ananthkrishnan, T.N. & David. B.V.: General and Applied Entomology, Tata McGraw Hill Co Ltd., Bombay.
- Mani. M.S.: General Entomology. End 3, Oxford & IBH Publishing Co., New Delhi.
- Sondgrass, R.E.: Principles of Insect Morphology, Tata McGraw Hill, Rutl. Co. Ltd., Bombay, New Delhi.
- Wigglesworth, V.B.: The Principles of Insects Physiology. Vlbs & Methuten & Co.Ltd., London.
- Chapman, R.F.: The Insects Structure & Function, English University Press, London.
- Comstock, J.H.: An Introduction to Entomology. Ithaca, New York.
- Kerkut: G.A. & Gilbert, L.I.: Comprehensive Insect. Physiology, Biochemistry and Pharmacology. Vol. 1 to 13. Pergamon Press, Oxford & New York.
- Beament, J.W.L. Tieherne, J.E. & Wigglesworth, V.B.: Advances in Insect Physiology, Academic Press, New York.
- Tembhare, D.B.: modern entomology II End. HPH publications.
- Metcalf, C.L., Flint. W.P. & Metcalf. R.L.: Destructive and Useful Insects Their habits & control End. 4, Mcgraw Hill, New York

ZOOLOGY SEMESTER VIII DSE- III COURSE TITLE: Model organisms in biological research COURSE CODE 23PS8ZODSE3MOB [CREDITS - 02]

1.2	 General characteristics, Morphology, Genome characteristics, Breeding, maintenance and applications of following model organisms in biological research 1. Dictyostelium 2. Caenorhabditis elegans 3. Drosophila 	2L 2L 2L
1.3	Advantages and disadvantages of invertebrate model organisms	2L
1.4	Experimental design and requirements for using invertebrate model organisms	3L
1.5	Ethical use of laboratory animals	3L

References

- Leonelli, S., & Ankeny, R. A. (2013). What makes a model organism?. *Endeavour*, *37*(4), 209-212.
- Bozzaro, S. (2013). The model organism *Dictyostelium discoideum*. *Dictyostelium Discoideum Protocols*, 17-37.
- Meneely, P. M., Dahlberg, C. L., & Rose, J. K. (2019). Working with worms: *Caenorhabditis elegans* as a model organism. *Current Protocols Essential Laboratory Techniques*, 19(1), e35
- Roberts, D. B. (2006). Drosophila melanogaster: the model organism. *Entomologia experimentalis et applicata*, *121*(2), 93-103.
- Baumans, V. (2004). Use of animals in experimental research: an ethical dilemma?. *Gene therapy*, *11*(1), S64-S66.
- American Psychological Association. (1986). Guidelines for ethical conduct in the care and use of animals. *Journal of the Experimental Analysis of Behavior*, 45(2), 127.

Module II Vertebrate Model organisms

15L

Learning objectives

The module is intended to -

- Familiarize the learner with some vertebrate model organisms used in research
- Make the learner understand the significance of vertebrate systems

Learning outcomes

After the successful completion of the module, the learner will be able to -

- Describe various vertebrate model organisms
- Explain their characteristics, Morphology, Genome, Breeding, maintenance and applications
- Elaborate on CPCSEA guidelines for animal research
- Design experiments employing model organisms

Subtopic	Title	15L
2.1	 General characteristics, Morphology, Genome characteristics, Breeding, maintenance and applications of following model organisms in biological research Zebrafish Xenopus Mice Rat 	2L 2L 2L 2L 2L
2.2	Advantages and disadvantages of vertebrate model organisms	2L
2.3	Experimental design and requirements for using vertebrate model organisms	3L
2.4	CPCSEA guidelines for use of model organisms for biological research	2L

References

- Meyers, J. R. (2018). Zebrafish: development of a vertebrate model organism. *Current Protocols Essential Laboratory Techniques*, *16*(1), e19.
- Cannatella, D. C., & De Sá, R. O. (1993). Xenopus laevis as a model organism. Systematic Biology, 42(4), 476-507.
- Canales, C. P., & Walz, K. (2019). The mouse, a model organism for biomedical research. In *Cellular and animal models in human genomics research* (pp. 119-140). Academic Press.
- Rubio-Aliaga, I. (2012). Model organisms in molecular nutrition research. *Molecular nutrition & food research*, *56*(6), 844-85
- Committee for the Purpose of Control and Supervision on Experiments on Animals. (2003). CPCSEA Guidelines for laboratory animal facility. *Indian J. Pharmacol.*, *35*(4)

Practical 23PS8ZODSEP3

DSE I	Ш	Model organisms in biological research	
Learn •	 Learning objectives The practicals are intended to help the learner Understand the significance of model organisms in research Plan experiments related to model organisms 		
Learn • •	 Learning outcomes After successful completion of the practical the learner will be able to Identify various mutants of drosophila Prepare media for drosophila culture Describe various laboratory techniques employing model organisms Write detailed reports of the various visits 		
1.	. Visit to a research lab.		
2.	Workshop on Drosophila culture.		
3.	Observation of permanent slides of Drosophila mutants.		
4.	Visit to an Animal house.		
5.	Media and setup preparation for Drosophila culture.		
6.	To estimate LC50 of salt of heavy metal for daphnia		
7.	Observation of changes in giant Chromosome of chironomus larvae due to exposure to toxicants.		
8.	Setting up and maintenance of E.Coli culture		
9.	Visit the CPCSEA website to understand various application procedures.		