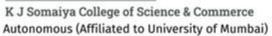


Somanya TRUS

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

> SYLLABUS FOR SEM I & II Program: M.Sc. Course: Physics

From Academic year 2023-24



Board of studies in Physics

		Post graduate	
	Name	Designation	Institute/Industry
		Head of the Departmen	
1	Dr. Deepak More	Chairman	K. J. Somaiya college of science and commerce
	Subject	Expert nominated by Vice	
1	Dr. Anita Kanwar	Principal	VES college, Chembur
1	DI. Ainta Kanwai	Timeipai	v Lis conege, chemour
		Subject experts	
1	Dr. Nigvendra	Head of the	Maharashtra College of
1	Sharma	Department	Arts, Science & amp; Commerce
2	Dr Dinesh Kala	Head of the	G N Khalsa College of Arts,
		Department	Science & amp; Commerce
3	Dr. Paresh Joshi	Chairman, BASE	HBCSE
	Representativ	e from Industry/corporate	sector/allied area
1	R.	Director –Vision & amp;	Tej Control System PVT
	Venkataraman	Robotics	LTD. Thane 400064
		Meritorious Alumnus	
1	Vikrant Jadhav	Start-up	Panacea Intech PVT LTD
2			
	Two expe	rts from other than the par	ent University
1	Raghunath	Associate	Department of Physics,
	Chelakkot	Professor	IITB, Mumbai
2	R. R. Deshmukh	Professor	Department of physics,
			ICT, Mumbai
		Faculty of the specialisati	on
1	Dr. Deepak More	Associate Professor	K. J. Somaiya college
			of science and commerce
2	Dr. Geeta Nair	Assistant Professor	K. J. Somaiya college
			of science and commerce

3	Mr. A M Shaker	Assistant Professor	K. J. Somaiya college of science and commerce
4	Dr. Jitendra Pendharkar	Assistant Professor	K. J. Somaiya college of science and commerce

5	Dr. Smita Survase	Assistant Professor	K. J. Somaiya college of science and commerce
6	Mr. Anshul Gupta	Assistant Professor	K. J. Somaiya college of science and commerce
7	Mr. Deepak Jalla	Assistant Professor	K. J. Somaiya college of science and commerce
8	Mr. Amit More	Assistant Professor	K. J. Somaiya college of science and commerce
9	Dr. Pallavi Raote	Assistant Professor	K. J. Somaiya college of science and commerce
10	Mr. Ketankumar Gayakwad	Assistant Professor	K. J. Somaiya college of science and commerce
11	Dr. Rucha Naik	Assistant Professor	K. J. Somaiya college of science and commerce
12	Dr. Shruti Barve	Assistant Professor	K. J. Somaiya college of science and commerce
13	Mr. Ranjit Yadav	Assistant Professor	K. J. Somaiya college of science and commerce

Acknowledgement

At the outset, I would like to thank our, Principal Dr. Pradnya Prabhu for her guidance and support during the curriculum restructuring process. I am also grateful to all the esteemed members of the Board of Studies, for their constructive suggestions and contributions.

Above all, I am deeply indebted to all the young and vibrant colleagues in the Department of Physics for the long and arduous work they have put in during the compiling of the restructured syllabus.

Dr. Deepak More Chairperson Board of Studies in Physics

Graduate Attributes

After the successful completion of modules in different courses of B.Sc. PHYSICS, the learner will be able to:

GA 1: Apply physics concepts and acquired skill sets to novel and unknown problems in order to establish an effective approach or strategy for dealing with them.

GA 2: Explore and derive quantitative data in the realms of physics.

GA 3: Collect, analyze, and interpret scientific data in the realms of physics using modern experimental apparatus and research methods.

GA 4: Develop Psycho-motive, analytical, observation skills through lab work

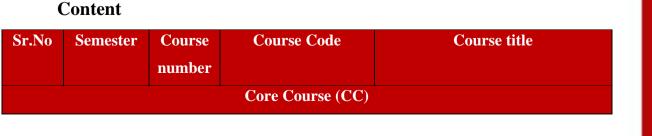
GA 5: Approach any real life problem with proper assumption, logic and constraints.

GA 6: Prepare for jobs, career development, and lifelong learning in Physics, by using acquired ICT skills, physics practical skills, and mathematical skills.

Programme Learning outcomes

After the successful completion of modules in different courses of B.Sc. physics the learner will be able to:

PLO I: Apply principles of physics on various physical phenomenon.


PLO II: Calculate physical parameters from the available data.

PLO III: Analyse and interpret the data in various forms (numerical/graphical)

PLO IV: Development of Psycho-motive, analytical, observation skills through lab work.

PLO V: Approach any real life problem with proper assumption, logic and constraints.

PLO VI: Compete and succeed in various qualifying examinations in various related fields. (Higher education/software/industry)

5

1	Ι	CCI	23PSPH1CC1MTM	MATHEMATICAL METHODS
2		CCII	23PSPH1CC2CM	CLASSICAL MECHANICS
3		CCIII	23PSPH1CC3QMI	QUANTUM MECHANICS - I
4		CCIV	23PSPH1CC4CMP	CONDENSED MATTER
				PHYSICS
5	III	CCI	23PSPH2CC1AEL	APPLIED ELECTRONICS
6		CCII	23PSPH2CC2CED	CLASSICAL
				ELECTRODYNAMICS
7		CCIII	23PSPH2CC3QMII	QUANTUM MECHANICS - II
8		CCIV	23PSPH2CC4AMP	ATOMIC AND MOLECULAR
				PHYSICS
			Discipline Specific Ele	ctives (DSE)
1	Ι	DSE I	23PSPH1DS1MIP	8086 MICROPROCESSORS
2		DSE II	23PSPH1DS2ScL	SCILAB
3	II	DSE I	23PSPH2DS1MIC	8051 MICROCONTROLLER
4		DSE II	23PSPH2DS2PYP	PYTHON PROGRAMMING

Detailed B.Sc. Physics Syllabus

MSc. Syllabus with effect from the Academic year 2023-24 Syllabus - MSc. Physics

Cour	Course	Course	Cr	Hou	Period	Modul	Lectur	E	xaminatio	n
se No.	Title	Code	edi ts	r	s (1 Hour)	e	es per modul e (60 minute s)	Intern al Marks	Extern al Marks	Total Mark s
SEME	STER I									
Core c	ourses THE	ORY								
Ι	MATHEM ATICAL METHODS	23PSPH1C C1MTM	2	30	2	2	15	40	60	100
II	CLASSICA L MECHANI CS	23PSPH1C C2CM	2	30	2	2	15	40	60	100
III	QUANTUM MECHANI CS - I	23PSPH1C C3QMI	2	30	2	2	15	40	60	100
IV	CONDENS ED MATTER PHYSICS	23PSPH1C C4CMP	2	30	2	2	15	40	60	100
Core c	ourses PRA	CTICAL			-		·	-		
CCPI	PRACTICA L 1	23PSPH1P R1	1.5	75	3			40	60	100
CCPII	PRACTICA L 2	23PSPH1P R2	1.5	75	3			40	60	100
		Discipli	ne Sp	ecific I	Electives ((DSE)-Th	eory			
DSEI	8086 MICROPR OCESSORS	23PSPH1DS 1MIP	2	30	4	2	15	40	60	100
DSEII	SCILAB	23PSPH1DS 2ScL	2	30	4	2	15	40	60	100

	Discipline Specific Electives (DSE)-PRACTICAL											
DSEI	8086 MICROPRO CESSORS	23PSPHP1DS1	2	30	4			40	60	100		
DSEII	SCiLab	23PSPHP1DS2	2	30	4			40	60	100		

SEMESTER II Core courses THEORY I APPLIED 23PSPH2CC1A 2 30 2 2 15 40 60 100 **ELECTRO** EL NICS Π 30 2 2 15 40 100 CLASSIC 23PSPH2CC2C 2 60 AL ED ELECTRO DYNAMI CS III 2 30 2 2 15 100 40 60 QUANTU 23PSPH2CC3Q MII Μ MECHANI CS - II IV ATOMIC 2 30 2 2 15 40 60 100 23PSPH2CC4A AND MP **MOLECU** LAR PHYSICS **Core courses PRACTICAL** CCPI 40 100 PRACTIC 60 23PSPH2PR1 1.5 75 3 AL I CCPII 1.5 75 3 40 60 100 PRACTIC 23PSPH2PR2 AL II **Discipline Specific Electives (DSE)-Theory** DSEI 30 2 100 23PSPH2DS1M 2 4 15 40 60 8051 MICROCO IC NTROLLE R DSEII 15 100 **PYTHON** 23PSPH2DS2P 2 30 4 2 40 60 PROGRA YP MMING

	Discipline Specific Electives (DSE) - Practical											
DSEI	8051 MICROCO NTROLLE R	23PSPH2PDS1	2	30	4			40	60	100		

8

Some TRUS

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

DSEII	PYTHON	23PSPH2PDS2	2	30	4		40	60	100
	PROGRAM								
	MING								

M. Sc. (PHYSICS) SEMESTER I Core course - I COURSE TITLE: Mathematical Methods

	COURSE CODE: 23PSPH1CC1MTM [CREDITS - 0.	2]
	Course Learning Outcome	
 Underst Underst Underst Underst 	ssful completion of the Course, the learner will be able to: and applications of Complex variable and Complex integrals and Special functions and Tensor analysis	
Module 1		[15L]
2. To creat	intended to blish the mathematical background to understand core areas of p te a solid foundation for theoretical and experimental research i	•
1. Analyze	come: ssful completion of the module, the learner will be able to e complex variables and their applications. te complex integral.	
1.1	Complex Variables, Cauchy-Riemann Equations, Analytic functions, Harmonic functions,	4L
1.2	Elementary functions: Exponential and Trigonometric, Taylor and Laurent series, Solution of differential equation using power series Frobenius method., Residues, Residue theorem, Principal part of the functions, Residues at poles, zeroes and poles of order m	6L
1.3	Contour Integrals, Evaluation of improper real integrals, improper integral involving Sines and Cosines, Definite integrals involving sine and cosine functions.	5L
Module 2		[15L]
Learning Object This module is 1. Underst		

2. Unders	tand Tensor Analysis	
1. Evaluat	come: essful completion of the module, the learner will be able to te Special Functions n Tensor Analysis	
2.1	 Legendre functions: Legendre polynomials, Rodrigue's formula; generating function and recursion relations; Orthogonality and normalization; associated Legendre function, special harmonics. Bessel functions: Bessel functions of the first kind, recursion relations and orthogonality. Hermite functions: Hermite polynomials, generating function, recursion relations; Orthogonality. 	7L
2.2	 Laguerre functions: Laguerre & associated Lauguerre polynomials, recursion relations, Orthogonality. Tensor Analysis: Introduction to Tensor Analysis, Addition and Subtraction of Tensors, summation convention, Contraction, Direct Product, Levi-Civita Symbol. 	8L
References:	 Mathematical Physics, H.K.Dass, S.Chand and Company Ltd.,2010. Mathematical Methods for Physicists, G. Arfken: Mathematical Methods for Physicists, Academic Press Academic Press. Schaum's Outline of Complex Variables, 2ed Mathematical Methods for Physicists (4th edition): George Arfken& Hans J. Weber, Academic Press, San Diego (1995). Mathematical Methods in Physical Sciences (2nd edition): Mary L. Boas, John Wiley & Sons, New York (1983). Mathematical Physics: P. K. Chattopadhyay, Wiley Eastern Ltd., New Delhi (1990). Introduction to Mathematical Physics: Charlie Harper, Prentice Hall of India Pvt. Ltd., New Delhi (1995). Mathematical Methods for Physicists (4th edition): George Arfken& Hans J. Weber, Academic Press, San Diego (1995). Mathematical Methods for Physicists (4th edition): George Arfken& Hans J. Weber, Academic Press, San Diego (1995). Mathematical Methods in Physical Sciences (2nd edition): Mary L. Boas, John Wiley & Sons, New York (1983). 	

10. Mathematical Physics: P. K. Chattopadhyay, Wiley	
Eastern Ltd., New Delhi (1990).	
11. Introduction to Mathematical Physics: Charlie	
Harper, Prentice Hall of India Pvt. Ltd., New Delhi	
(1995).	
12. Matrices and Tensors in Physics (3rd edition): A.W.	
Joshi, New Age International (P) Ltd. Publishers,	
New Delhi (2000).	
13. Mathematical Physics, H.K.Dass, S.Chand and	
Company Ltd.,2010.	

M. Sc. (PHYSICS) SEMESTER I Core course - II COURSE TITLE: Classical Mechanics COURSE CODE: 23PSPH1CC2CM [CREDITS - 02] Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. To establish new mechanics to overcome the difficulties in applying Newtonian Mechanics.
- 2. To introduce the concept of Lagrangian and Hamiltonian mechanics.
- 3. To learn to compare coordinate transformation amongst all the above mechanics.

Module 1	Lagrangian dynamics & calculus of variations				
Learning	Objectives:				
This mod	ale is intended to				
1. In	roduce the concepts of Hamiltonian and Lagrangian mechanics				
2. Fa	miliarize learner with the calculus of variations				
Learning	Outcome:				
After the	successful completion of the module, the learner will be able to				
1. Aj	oply the calculus of variations to Physics problems, Apply Lagrangian dyn	amics to			
Ph	ysics problems				
2. Es	tablish connection between ignorable coordinates and laws of conservations.				
1.1	Hamilton's principle, Calculus of variations, Derivation of Lagrange's	6			
	equations from Hamilton's principle				
1.2	Lagrange Multipliers and constraint extremization Problems, Extension	5			
	of Hamilton's principle to nonholonomic systems				
1.3	Advantages of a variational principle formulation, Cyclic coordinates and	4			
	conservation theorems.				

Module 2	Hamiltonian dynamics and canonical transformations	[15L]				
	Objectives:					
-	le is intended to					
1. Int	roduce and apply Hamilitonian equations of motion.					
	2. Introduce the concept of canonical transformations					
Learning	Outcome:					
After the s	uccessful completion of the module, the learner will be able to					
1. To	apply canonical transforms to simplify Physics problems					
2. Us	e canonical invariants to determine if a coordinate transformation is canonic	al				
2.1	Derivation of Hamilton's equations from a variational principle.	3				
2.2	Canonical Transformations, Examples of canonical transformations, The	7				
	symplectic approach to canonical transformations, Poisson brackets and					
	other canonical invariants					
2.3	Equations of motion, infinitesimal canonical transformations and	5				
	conservation theorems in the Poisson bracket formulation, The angular					
	momentum Poisson bracket relations.					
Referen	1.Classical Mechanics, H. Goldstein, Poole and Safko, 3rd Edition, Narosa	ì				
ces:	Publication (2001)					
2. N. C. Rana and P. S. Joag., Classical Mechanics, Tata McGraw Hill		olication				
	3. S. N. Biswas, Classical Mechanics, Allied Publishers (Calcutta).					
	4. V. B. Bhatia, Classical Mechanics, Narosa Publishing (1997).					
	5. Landau and Lifshitz, Butterworth, Heinemann, Mechanics.					
	6. R. V. Kamat, The Action Principle in Physics, New Age Intl. (1995).					
7. E. A. Deslougue, Classical Mechanics, Vol I and II, John Wiley (1982).						

Paper III

M. Sc. (PHYSICS) SEMESTER I COURSE TITLE: QUANTUM MECHANICS - I

COURSE CODE: 23PSPH1CC3QM1 [CREDITS - 02]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Understand basic principles of quantum mechanics and applications.
- 2. Apply commutation relations in uncertainty principles
- 3. After completing this module, the learners will understand the basic principles of

quantum mechanics. 4. Apply Schrodinger equation in one dimensional potential barrier. Module 1 **Introduction to Quantum mechanics** [15L] **Learning Objectives:** This module is intended to 1. Explain the basic principles of quantum mechanics and solution to initial value problem 2. Describe the commutation relationship and its application in uncertainty principle. **Learning Outcome:** After the successful completion of the module, the learner will be able to 1. Understand basic principles of quantum mechanics and applications. 2. Apply commutation relations in uncertainty principles. 1.1 Postulates of QM: Observables and operators; measurements; the 08L state function and expectation values; the time-dependent Schrodinger equation; time development of state functions; solution to the initial value problem. Problem solving Superposition and Commutation: The superposition principle; 1.2 07L Commutator relations: their connection to the uncertainty principle; degeneracy; complete sets of commuting observables. Time development of state functions and expectation values. Problem solving **References:** Richard Liboff, Introductory Quantum Mechanics, 4thed., 2003. (RL DJ Griffiths, Introduction to Quantum Mechanics, 3rd Edition 2018. (DG) • Nouredine Zettili, Quantum Mechanics- Concepts and Applications, 2nd edition, 2009, • Wiley (NZ) Module 2 **Matrix Formalism** [15L] **Learning Objectives:** This module is intended to 1. Develop matrix formulation for Quantum Mechanics. 2. Explain concept of tunneling in potential barrier. **Learning Outcome:** After the successful completion of the module, the learner will be able to

1. After completing this module, the learners will understand the basic principles of

quantum mechanics.

^	A 1	C - 1			11	······································
1	ADDIV	Schrödinger	equation i	in one	armensional	potential barrier.
	· · · pp· · j	Sembanger	equation		annenonan	potential cultion.

2.1	Dirac notation; Hilbert space; Dirac Notation, Operators: Uncertainty relations between operators, Hermitian operators and their properties. Matrix mechanics: Basis and representations; matrix properties; unitary transformations. Symmetries and conservation laws. Poisson's bracket and commutators	10L
2.2	Particle in a box, Harmonic oscillator, Unbound states, Rectangular potential barrier-tunnelling	05L

References:

- Richard Liboff, Introductory Quantum Mechanics, 4thed., 2003. (RL
- D. J. Griffiths, Introduction to Quantum Mechanics, 3rd Edition 2018. (DG)
- Nouredine Zettili, Quantum Mechanics- Concepts and Applications, 2nd edition, 2009, Wiley (NZ)

Additional References:

1.W Greiner, Quantum Mechanics: An Introduction, 4th. ed., 2004.

2. R Shankar, Principles of Quantum Mechanics, 2nded., 1994.3SN Biswas, Quantum Mechanics, 1998.

3. A Ghatak & S Lokanathan, Quantum Mechanics: Theory & Applications. 5thed., 2004.

Paper IV M. Sc. (PHYSICS) SEMESTER I

COURSE TITLE: Condensed Matter physics

COURSE CODE: 23PSPH1CC4CMP [CREDITS - 02]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Understand fabrication techniques for p-n junctions and various concepts related to semiconductor devices.
- 2. Explain the crystal structure and several ways of analyzing it and develop theories to describe various kinds of magnetism in materials.

Semiconductor Devices

[15L]

Somanian TRUST

Learning Objectives:

This module is intended to

- 1. Explain the techniques used for fabrication of p-n junction and its characteristics.
- 2. Explain the metal semiconductor contacts and various properties related to it.

Learning Outcome:

After the successful completion of the module, the learner will be able to

1. Describe various p-n junction fabrication methods.

- 2. Derive the IV and CV characteristics of a diode.
- 3. Explain metal semiconductor contacts and various concepts related to it.

1.1	p-n junction: Fabrication of p-n junction by diffusion and ion-	08L
	implantation; Abrupt and linearly graded junctions; Thermal	
	equilibrium conditions; Depletion regions; Depletion	
	capacitance, Capacitance – voltage (C-V) characteristics,	
	Evaluation of impurity distribution, Ideal and Practical Current-	
	voltage (I-V) characteristics; Tunneling and avalanche reverse	
	junction break down mechanisms; Minority carrier storage,	
	diffusion capacitance. Carrier lifetime measurement by reverse	
	recovery of junction diode. Tunnel diode.	
1.2	Metal – Semiconductor Contacts: Schottky barrier – Energy	07L
	band relation, Capacitance-voltage (C-V) characteristics,	
	Current-voltage (I-V) characteristics; Ideality factor, Barrier	
	height and carrier concentration measurements; Ohmic contacts	
	functions and expectation values.	

References:

- S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.
- B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.
- W.R. Runyan, Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975. 4. Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall, Englewood Cliffs, N.J., 1984.

Module 2	Crystal Physics and Magnetism	[15L]
Learning Objec	ctives:	

This module is intended to

- 1. Explain concepts of reciprocal lattices and structure factors.
- 2. Explain the theory of magnetism.

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Explain reciprocal lattice and scattering from surfaces.
- 2. Understand the theory of magnetism and equations related to it.

2.1	Reciprocal Lattice and Brillouin Zones. Reciprocal Lattice to sc, bcc, fcc, Scattered wave amplitude, Fourier analysis of the basis; Structure Factor of lattices (sc, bcc, fcc); Atomic Form Factor; Temperature dependence of reflection lines. Elastic scattering from Surfaces; Elastic scattering from amorphous solids.	10L
2.2	Langevin's diamagnetic equation, diamagnetic response, Quantum mechanical formulation, core diamagnetism. Langevin's Theory of Para magnetism, Rare Earth Ions, Hund's Rule.	05L

References:

- Charles Kittel "Introduction to Solid State Physics," 7th edition John Wiley & Sons.
- J.Richard Christman "Fundamentals of Solid State Physics" John Wiley & sons
- M.A.Wahab "Solid State Physics –Structure and properties of Materials" Narosa Publications 1999.
- M. Ali Omar "Elementary Solid State Physics" Addison Wesley (LPE)

M. Sc. (PHYSICS) SEMESTER I COURSE TITLE: DSE 1: 8086 MICROPROCESSORS

COURSE CODE: 23PSPH1DS1MIP [CREDITS - 02]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. To know the architecture of 8086 Microprocessor
- 2. To understand the Programming of 8086
- 3. To understand The Instruction set of x86 Processor

	lerstand the Interrupt mechanism of x86 cing with PPI & Keyboard and Display Controllers	
Module 1	THE 8086 MICROPROCESSOR	[15L]
Learning Obj	jectives:	
This module is	s intended to	
Understand f Microprocesso	the Architecture, addressing modes and instruction sets or.	of 8086
Learning Out	come:	
Understand the	essful completion of the module, the learner will be able to e block diagram and architecture of 8086 rious instruction sets of 8086	
1.1	Role of Microprocessor in Micro Computer – Brief history	08L
	of Microprocessors (with specific insight into x86 family),	
	Features of 8086 Internal Block Diagram of 8086,	
	Execution Unit, Bus Interface Unit, Addressing Modes	
	Hardware structure of 8086- Pin Configuration, Clock,	
	Processor activities (Interrupt, DMA, etc.), Maximum mode,	
	Instruction cycle Assembly process, Assemblers for x86,	
	Instruction Design	
1.2	Data transfer Instructions, Branch instructions, Arithmetic instructions, Shift and Rotate Instructions, String Instructions, Procedures, Macros, Number Format Conversions, ASCII operations	07L
References:		
Module 2	Interrupt mechanism of x86 & Interfacing of chips	[15L]
Learning Obj	jectives:	
This module is	s intended to	
Explain Interfa	acing with PPI & Keyboard and Display Controllers	

Sometinger TRUST

After the successful completion of the module, the learner will be able to 1. Understand interrupts and their types 2. Explain interfacing of PPI and Keyboard and Display Controllers 2 Interrupts of 8086, Dedicated Interrupt types, Software interrupts,Hardware interrupts, Priority of interrupts, Programmable Interrupt Controller (8259) Organization and Interfacing of PPI (8255) and Keyboard and display Interface (8279). 15 L References: 1. A. K.Ray , K M Bhurchandi, "Advanced Microprocessor & Peripherals", Tat McGraw Hill,3rd Edition,2013 1. 2. Douglas V Hall, "Microprocessor & Interfacing: Programming and Hardware" Tata McGraw Hill, 2nd Edition,2006. 3. BARRY B. BREY, " THE INTEL MICROPROCESSORS-Architecture Programming, and Interfacing", Pearson Education India. Eighth Edition	Learning Out	come:	
 2. Explain interfacing of PPI and Keyboard and Display Controllers 2 Interrupts of 8086, Dedicated Interrupt types, Software interrupts, Hardware interrupts, Priority of interrupts, Programmable Interrupt Controller (8259) Organization and Interfacing of PPI (8255) and Keyboard and display Interface (8279). References: A. K.Ray , K M Bhurchandi, "Advanced Microprocessor & Peripherals", Tat McGraw Hill, 3rd Edition, 2013 1. Douglas V Hall, "Microprocessor & Interfacing: Programming and Hardware" Tata McGraw Hill, 2nd Edition, 2006. BARRY B. BREY, " THE INTEL MICROPROCESSORS-Architecture 	After the succe	essful completion of the module, the learner will be able to	
2 Interrupts of 8086, Dedicated Interrupt types, Software interrupts, Hardware interrupts, Priority of interrupts, Programmable Interrupt Controller (8259) Organization and Interfacing of PPI (8255) and Keyboard and display Interface (8279). 15 L References: 1. A. K.Ray , K M Bhurchandi, "Advanced Microprocessor & Peripherals", Tat McGraw Hill,3rd Edition,2013 1. 2. Douglas V Hall, "Microprocessor & Interfacing: Programming and Hardware" Tata McGraw Hill, 2nd Edition,2006. 3. BARRY B. BREY, " THE INTEL MICROPROCESSORS-Architecture	1. Unders	tand interrupts and their types	
 interrupts, Hardware interrupts, Priority of interrupts, Programmable Interrupt Controller (8259) Organization and Interfacing of PPI (8255) and Keyboard and display Interface (8279). References: A. K.Ray , K M Bhurchandi, "Advanced Microprocessor & Peripherals", Tat McGraw Hill,3rd Edition,2013 1. Douglas V Hall, "Microprocessor & Interfacing: Programming and Hardware" Tata McGraw Hill, 2nd Edition,2006. BARRY B. BREY, " THE INTEL MICROPROCESSORS-Architecture 	2. Explair	n interfacing of PPI and Keyboard and Display Controllers	
 A. K.Ray , K M Bhurchandi, "Advanced Microprocessor & Peripherals", Tat McGraw Hill,3rd Edition,2013 1. Douglas V Hall, "Microprocessor & Interfacing: Programming and Hardware" Tata McGraw Hill, 2nd Edition,2006. BARRY B. BREY, " THE INTEL MICROPROCESSORS-Architecture 	2	interrupts,Hardware interrupts, Priority of interrupts, Programmable Interrupt Controller (8259) Organization and Interfacing of PPI (8255) and Keyboard and display	15 L
	 A. K.R McGra Dougla Tata M BARR 	w Hill,3rd Edition,2013 1. s V Hall, "Microprocessor & Interfacing: Programming and cGraw Hill, 2nd Edition,2006. Y B. BREY, " THE INTEL MICROPROCESSORS-	Hardware", Architecture,

M. Sc. (PHYSICS) SEMESTER I COURSE TITLE: DSE II: SCiLab

COURSE CODE: 23PSPH1DS2ScL [CREDITS - 02]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

1. Understand free simulation softwares

2. Code a	and simulate Physics equations in second order ODE	
Module 1	Elements of SciLab	[15L]
Learning Ob	jectives:	
This module i	s intended to	
	learner able to understand elementary functioning of scilab envir	ronment
1. White	fourier uple to understand elementary functioning of senae en m	omnent.
Learning Ou	tcome:	
After the succ	essful completion of the module, the learner will be able to learn	:
1. Progra	am simple physics plotting	
1.1	Scilab, a freeware numerical computation software, The general environment and the console, Scilab as an	08L
	interactive calculator, Scilab workspace and working	
	directory. Plotting graphs.	
	Simple numerical calculations, Variables, assignment and display.	
1.2	Scilab workspace and working directory. Plotting graphs.	07L
	Simple numerical calculations, Variables, assignment and	072
	display.	
References:		
Module 2	ODE Programming	[15L]
Learning Ob	jectives:	
This module i	s intended to	
1. This n	nodule is intended to let the learner code second order ODE.	
Learning Ou	tcome:	
After the succ	essful completion of the module, the learner will be able to	
1. After t	the successful completion of the module, the learner will be able	to code, r
and sin	mulate second order Physics equations	
2.1	Working with polynomials, Solving ODE using SciLAb.	07L

	application to real Physics Problems.
Refer	ences:
1.	Scilab for very beginners Scilab Enterprises Versailles (France) - www.scilab-
	enterprises.com
2.	Programming with SCILAB By Gilberto E. Urroz, Ph.D Distributed by

2. Programming with SCILAB By Gilberto E. Urroz, Ph.D Distributed by infoClearinghouse.com

M. Sc. (PHYSICS) SEMESTER I

COURSE TITLE: LAB COURSE

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Make layout and adjustments of the equipment.
- 2. Record observations and plot graphs.
- 3. Estimate possible errors in the observation of results.
- 4. Design simple experiments

	PRACTICAL I (COURSE CODE: 23PSPH1PR1)	
1	Analysis of sodium spectrum	
2	h/e by vacuum photocell	
3	Absorption spectrum of specific liquids	
4	Coupled Oscillations	
5	Resistivity by four probe method	
6	DC Hall effect	
7	Temperature dependence of avalanche and Zener breakdown diodes	
8	Carrier lifetime by pulsed reverse method	
	NIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPO URNAL	RTED IN
	PRACTICAL II (COURSE CODE: 23PSPH1PR2)	
1	Delayed linear sweep using IC 555	
2	Regulated power supply using IC LM 317 as voltage regulator	

3 Regulated dual power supply using IC LM 317 & LM 337 voltage

		regulator					
	4 Constant current supply using IC 741 and LM 317						
	5	Active filter circuits (second order)					
	6	Waveform Generator using ICs					
	7	Instrumentation amplifier and its applications					
	8	Study of 8-bit DAC					
\checkmark	MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN						
	JO	URNAL					
Refere	erences:						
1.	Adv	vanced Practical Physics -Worsnop and Flint					
2.	Ato	omic spectra- H.E. White					
3.	Electronic Principles - A. P. Malvino						
4.	Operational amplifiers and linear Integrated circuits - Coughlin & Driscoll						
5.	Op-amps and linear integrated circuit technology- R. Gayakwad						
6.	Semiconductor electronics by Gibson						
7	Semiconductor measurements by Runyan						

- 7. Semiconductor measurements by Runyan
- 8. Electronic devices & circuits Millman and Halkias
- 9. Digital principles and applications by Malvino and Leach

M. Sc. (PHYSICS) SEMESTER I

COURSE TITLE: DSE 1 LAB COURSE

Course Learning Outcome

 After the successful completion of the Course, the learner will be able to:

 Write simple programmes (8086) and execute them

 8086 Microprocessor based experiments (COURSE CODE: 23PSPHP1DS1)

 1
 8/16-bit addition and subtraction

 2
 Multiplication & Division of 8-bit numbers

 3
 8/16-bit data transfer

 4
 To find greatest/smallest number from a list of numbers

 5
 To find positive/negative numbers from a list of numbers

6 To find odd/even numbers, ascending/descending of numbers

> MINIMUM FOUR EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

M. Sc. (PHYSICS) SEMESTER I

COURSE TITLE: DSE 11 LAB COURSE

ine s	sinp	le programs to simulate physics events and solving second order ODEs	
		SciLab (COURSE CODE: 23PSPHP1DS2)	
	1	To solve the differential equation $dy/dx=-x$ with $x(0)=0$. $y(0)=-2$ from $x=0$ to 10 interval =1.	wit
	2	To solve the differential equation using Euler's Method with given initial value condition.	
	3	Determination of Kinetic energy to be imparted to recoil electron using Scilab.	
	4	Determination of barrier tunneling probability.	

SEMESTER II M. Sc. (PHYSICS) SEMESTER II **COURSE TITLE:** Paper 1: Applied Electronics

COURSE CODE: 23PSPH2CC1AEL [CREDITS - 02]

Paper I Applied Electronics **Course Learning Outcome** After the successful completion of the Course, the learner will be able to: 1] To understand the concept of various circuits used in power electronics. 2] To understand the working and applications of photonic devices. Module 1 Photonic devices [15L] **Learning Objectives:** This module is intended to 1] Understand and compare different types of Optical Sources and Detectors. 2] Analyse working and characteristics of LEDs, Laser Diodes and Solar cells. **Learning Outcome:** After the successful completion of the module, the learner will be able to 1. Explain various optical sources and detectors. 2. Describe working principles and characteristics of optical sources and detectors. 1.1 Optical Sources and Detectors: Radiative transitions and 05 L optical absorption, Coherent and Non- Coherent sources, quantum efficiency, modulation capability of optical sources. PIN, APD, noise analysis in detectors. LEDs: Working principle and characteristics. Different types 1.2 10L of LEDS: homo junction and heterojunction LEDS, surface emitting and edge emitting LEDs, OLED, white LED. Laser Diodes: Working principle and characteristics. Solar cells: working principle and characteristics (as PV devices)

References:

- Keiser, G. Optical Fiber Communications, Mcgraw Hill, Int. Student Ed.
- B.G. Streetman and S. Banerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.

Module 2	Power Electronics	[15L]
Learning O	bjectives:	
This module	e is intended to	
1. Unde	erstand the power electronics system and its applications.	
	yse working different types of DC-DC converters. The applications of DC-Dc converters.	
Learning O	utcome:	
After the suc	ccessful completion of the module, the learner will be able to	
comj	rribe and distinguish between varous power electronics system ponents. trate DC-DC converters and desribe their working.	n and the
2.1	Power Electronics: Introduction to Power electronic systems, Power electronics versus linear electronics, Classification power processors and converters, scope and applications. Semiconductor Power Switches: General properties of semiconductor power switches, Power electronic devices such as diode, thyristor, GTO, IGBT and MOSFET. Comparison of semiconductor power switches	05L
2.2	DC – DC Converters: Types, Analysis, Control of converters: time ratio and current limit control. Principles of Step up and Step-down Switching Voltage converters.Analysis of buck, boost, buck-boost converters, Cuk converters.Application of DC – DC converters. switch-mode power	10L

3. Alok Jain, Power Electronics and its applications, 2nd Edition, Penram International India.

Paper II M. Sc. (PHYSICS) SEMESTER II

COURSE TITLE: Classical Electrodynamics

COURSE CODE: 23PSPH2CC2CED [CREDITS - 02]

	Course Learning Outcome				
After the succe	essful completion of the Course, the learner will be able to:				
 To app wavegu 	oly the concept of electro -magnetic waves to vacuum, matter and iides.				
2. To stud	2. To study retarded potentials and radiation from charged particles				
Module 1	Waves in Conducting media and waveguides [15L]				
Learning Obj	ectives:				
 Derive Analyze 	a the concept of waves in conducting medium. the frequency dependence of various wave properties. e the propagation of electromagnetic waves through waveguides				
Learning Out	come:				
After the successful completion of the module, the learner will be able to					
1. Derive frequency dependence of various wave properties like refractive index,					
conductivity and polarizability.					
conduct					

1.1	Plane waves in conducting media, skin effect and skin depth, frequency dependence of conductivity, frequency dependence of polarizability, frequency dependence of refractive index.	08L
1.2	Wave guides, Propagation of waves between conducting planes, waves in hollow conductors, TE and TM waves, rectangular waveguides, phase velocity and group velocity, resonant cavities, introduction to transmission lines.	07L
References:		
	cal Electrodynamics, J.D. Jackson, 4th edition, (John Wiley and S	Sons.)2005.
	action to Electrodynamics, D.J. Griffith, 2nd edition, (Prentice H	
3. Classic	cal Electromagnetic Radiation, Heald and Marion, 2nd (1980) Ac	cademic
Press	-	
 5. Electro 6. Classic 	iner, Classical Electrodynamics (Springer- Verlag, 2000) (WG). omagnetics: B.B. Laud. Wiley Eastern Ltd., Bangalore (1987) cal Electrodynamics; S P Puri, Tata McGraw Hill Publishing Cor Delhi, (1990).	npany Ltd.
0 0		[15L]
Learning Obj This module is 1. Explai 2. Study	ectives:	[15L]
Learning Obj This module is 1. Explai 2. Study 3. Explai	jectives: s intended to n the concept of retarded potentials and fields the power radiated from accelerating charges. n application of concept of radiation to antennas	[15L]
Learning Obj This module is 1. Explai 2. Study 3. Explai Learning Out	jectives: s intended to n the concept of retarded potentials and fields the power radiated from accelerating charges. n application of concept of radiation to antennas	[15L]
Learning Obj This module is 1. Explai 2. Study 3. Explai Learning Out	jectives: s intended to n the concept of retarded potentials and fields the power radiated from accelerating charges. n application of concept of radiation to antennas	[15L]
Learning Obj This module is 1. Explait 2. Study 3. Explait Learning Out After the succo 1. Explait 2. Derive	jectives: s intended to n the concept of retarded potentials and fields the power radiated from accelerating charges. n application of concept of radiation to antennas t come: essful completion of the module, the learner will be able to	[15L]
Learning Obj This module is 1. Explait 2. Study 3. Explait Learning Out After the succo 1. Explait 2. Derive	jectives: s intended to n the concept of retarded potentials and fields the power radiated from accelerating charges. n application of concept of radiation to antennas tecome: essful completion of the module, the learner will be able to n the retarded potentials and fields the expression for power radiated from charges.	[15L]

Hertzian Dipole, linear antennas, center tap antenna, Magnetic dipole radiation.

References:

- Classical Electromagnetic Radiation, Heald and Marion, 2nd (1980) Academic Press
- 2. W.Greiner, Classical Electrodynamics (Springer- Verlag, 2000) (WG).

Paper III

M. Sc. (PHYSICS) SEMESTER II

COURSE TITLE: QUANTUM MECHANICS - II

COURSE CODE: 23PSPH2CC3QMII [CREDITS - 02]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Solve problems in angular momentum and ladder operators, Understands Pauli's spin matrices and their commutations.
- 2. Understands Time dependent and time independent perturbation and its applications

Module 1

Angular Momentum

[15L]

Learning Objectives:

This module is intended to

- 1. Introduce the concepts of ladder operator and Pauli's matrices.
- 2. Familiarize learner with various operations pertaining to spin

Learning Outcome:

After the successful completion of the module, the learner will be able to

1. Perform commutation operations among angular momenta.

2. Use Pa	uli's matrices properties.	
1.1	Ladder operators, eigenvalues and eigen functions of L^2 and L_z using spherical harmonics	04L
1.2	Addition of angular momentum, Clebsch Gordon coefficients for $j1=j2=1/2$ and $j1=1$, $j2=1/2$, coupled and uncoupled representation of eigenfunctions	05L
1.3	Angular momentum matrices; Pauli spin matrices; spin eigen functions; free particle wave functions including spin, addition of two spins	06
• DJ Gri	d Liboff, Introductory Quantum Mechanics, 4thed., 2003. (RL ffiths, Introduction to Quantum Mechanics, 3 rd Edition 2018. (DG) line Zettili, Quantum Mechanics- Concepts and Applications, 2 nd edition (NZ)	, 2009
Module 2	Perturbation Theory	[15L]
Learning Obj	jectives:	
This module is	s intended to	
1. Introdu	ice the concept of Perturbation.	
	stand the applications of Perturbation.	
Learning Out	come:	
After the succ	essful completion of the module, the learner will be able to	
1. To app	ly time dependent perturbation to Quantum Mechanics Problems.	
	ly time independent perturbation to Quantum Mechanics Problems	
2.1	Perturbation Theory: 1. Time-independent perturbation theory: First-order and second- order corrections to non- degenerate perturbation theory.	06
2.2	Degenerate perturbation theory - First order energies and secular equation. Time-dependent perturbation theory and applications.	06
2.3	RITZ Variational method	03
• D. J. G	d Liboff, Introductory Quantum Mechanics, 4thed., 2003. (RL riffiths, Introduction to Quantum Mechanics, 3 rd Edition 2018. (DG) line Zettili, Quantum Mechanics- Concepts and Applications, 2 nd edition	, 2009

Wiley (NZ)

Additional References:

1.W Greiner, Quantum Mechanics: An Introduction, 4th. ed., 2004.

2. R Shankar, Principles of Quantum Mechanics, 2nded., 1994.3SN Biswas, Quantum Mechanics, 1998.

3. A Ghatak & S Lokanathan, Quantum Mechanics: Theory & Applications. 5thed., 2004.

Paper IV

M. Sc. (PHYSICS) SEMESTER II

Core course - IV

COURSE TITLE: Atomic and Molecular Physics

COURSE CODE: 23PSPH2CC4AMP [CREDITS - 02]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Study the fine structure of the hydrogen atom
- 2. Apply Schrodinger equation to two electron systems
- 3. Acquire the knowledge of various types of couplings in atomic system
- 4. Study the general theory of advanced spectroscopy and spectrometers

Module 1

ATOMIC PHYSICS

[15L]

Learning Objectives:

This module is intended to

1. Uno	1. Understand the fine structure of hydrogen atom and apply Schrodinger equation to				
mu	multi-electron system				
2. Cor	npare the fine structure spectrum with hyperfine spectrum.				
3. Stu	ly general theory of NMR spectroscopy				
	uire the knowledge of various types of coupling				
1. 1100	une the knowledge of various types of coupling				
-					
Learning	Jutcome:				
After the su	accessful completion of the module, the learner will be able to				
1. Eva	luate energy splitting under magnetic field				
2. Ana					
3. Des					
	culate number of energy levels in various types of couplings				
iii Cui	4. Calculate number of energy levels in various types of couplings				
		~ ~			
1.1	(Review: Atomic spectrum, Spectroscopic terms, Quantum numbers, Total angular momentum, The magnetic moment	5L			
	of atom, Lande g factor) Fine structure of hydrogenic atoms				
	- Zeeman effect in strong and weak field, Paschen Back				
	effect				
1.2	Stark Effect, Nuclear spin and Hyperfine structure, isotope	5L			
1.0	effect, NMR spectroscopy: principle, working, applications	~*			
1.3	Term symbols, Selection rules, Exchange symmetry of wave	5L			
	functions, Pauli's exclusion principle, L-S and j-j coupling schemes, allowed terms in the coupling, The central field,				
	ground and excited state of two-electron atoms				
Module		[15L]			
Learning					
This module is intended to					
1. Exp	lain the theory of electronic spectrum				

- 2. Acquire the knowledge of different molecular rotational and vibrational spectrums.
- 3. Study general theory of Microwave spectroscopy
- 4. Acquire the knowledge of basics of IR spectroscopy

Learning Outcome:

After the successful completion of the module, the learner will be able to

1. Describe the principle and working of UV/ VIS spectroscopy

2. Evaluate wavenumbers for the spectrum of rotating linear diatomic molecule				
3. Derive	the expression for energy levels of molecular vibrational for dia	tomic		
molecu	iles			
4. Summa	arize the working principle of Microwave spectroscopy			
5. Descrit	be the principle and working of IR spectroscopy			
2.1	Electronic Spectroscopy: Molecular orbital approximation theory, Vibrational and rotational structure of electronic spectra, example: UV / Visible spectroscopy: principle, working, applications	4L		
2.2	Molecular rotational spectroscopy: Classification of molecules: linear, spherical, symmetric and asymmetric tops, rotational energy levels of rigid and non-rigid diatomic molecules, isotope effect and intensity of rotational lines, example: Microwave spectroscopy: principle, working, applications	6L		
2.3	Molecular vibrational spectroscopy: Vibration of molecules: vibrational energy levels of diatomic molecules, simple harmonic and anharmonic oscillators, diatomic vibrating rotator and vibrational-rotational spectra. Example: IR spectroscopy: principle, working, applications	5L		
References:	 Robert Eisberg and Robert Resnick, Quantum physics of Atoms, Molecules, Solids, Nuclei and Particles, John Wiley & Sons, 2nd ed, (ER) B.H. Bransden and G. J. Joachain, Physics of atoms and molecules, Pearson Education 2nd ed, 2004 (BJ) C. N. Banwell, Fundamentals of molecular spectroscopy, Tata McGraw-Hill, 3rd ed G. K. Woodgate, Elementary Atomic Structure, Oxford university press, 2nd ed, (GW). G. Aruldhas, Molecular structure and spectroscopy, Prentice Hall of India 2nd ed, 2002 (GA) Ira N. Levine, Quantum Chemistry, Pearson Education, 5th edition, 2003 (IL) 			

DSE II

M. Sc. (PHYSICS) SEMESTER II

DSE II

COURSE TITLE: 8051 Microcontroller

COURSE CODE: 23PSPH2DS1MIC [CREDITS - 02]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Develop an in-depth understanding of the operation of microcontrollers.
- 2. Get the knowledge about assembly language programming
- 3. Understand the concept of interrupts and interfacing.
- 4. Acquire the knowledge about the architecture of microcontroller
- 5. Study the programming model of microcontroller
- 6. Be able to write an assembly program for specified applications.

\mathbf{N}	[od	6	1
1.1	luu		1

Introduction to 8051

[15L]

Learning Objectives: This module is intended to

- 1. Compare microprocessor and microcontroller
- 3. Understand various types of controllers and their specific applications
- 4. Study architecture of 8051 microcontroller
- 5. Acquire the knowledge about basics of assembly language
- 6. Study various instructions available in 8051 assembly programming
- 7. Understand various addressing modes present in 8051 instructions set

Learning Outcome:

After the successful completion of the module, the learner will be able to

- 1. Differentiate between microprocessor and microcontrollers
- 2. Analyse types of microcontrollers and their suitability for different applications

3. Describ	be in detail pins available, their functions and architectu	re of 8051		
microco	ontroller			
4. Unders	tand the concepts of assembly language programming			
5. List and	d compare different groups of instructions in 8051 assembly			
	a different types of addressing modes present in 8051 assembly.			
1.1	Introduction: Difference between microprocessor and	2L		
	microcontroller, types of microcontrollers and architectures,			
1.2	Overview of 8051 family, Applications of Microcontrollers. 8051 Architecture : 8051 pin description, oscillator and	7L		
	clock, Registers, role of PC and DPTR, PSW, Internal			
	Memory Organization, Special function registers, External memory interfacing,			
1.3	I/O Ports and serial port, timers and counters,	6L		
	Basics of Assembly programming, Addressing Modes,			
	Instruction set, Assembly programs for data management and manipulation in different types of memories			
Module 2	Programming in 8051	[15L]		
Learning Obj	ectives:			
This module is				
1. Study j	umping and branching instructions in 8051 assembly			
2. Underst	tand port programming for communication purpose			
3. Explain	data manipulation by using arithmetic and logical instructions			
4. Acquire	e the knowledge of timer and counter programming			
3. Explain	the interfacing of 8051 with electrical components			
Learning Out	come:			
After the succe	essful completion of the module, the learner will be able to			
1. Analyse logic behind different assembly programs and write the efficient one using				
branching of code				
2. Describe different types of ports, their special functions and use for communicating				
with external connected devices				
3. Evaluat	e outputs of small codes with arithmetic and logical instructions	5		
4. Calcula	te the time required for the execution of the loop in assembly			
5. Study t	he interfacing of electrical and electronic components like LE	D, keyboard,		
DC mo	tor etc.			
2.1	Assembly Language Programming for 8051: Braching:	4L		

	Jump Loop and Call Instructions, I/O Port Programming, Arithmetical and Logical Instructions, Coding for serial communication	
2.2	Timer and Interrupt programming : Programming 8051 Timers, Counter Programming, Programming Timer	5L
2.3	Interrupts, Programming External hardware Interrupts I/O Interfacing: Interfacing with Light Emitting Diodes	6L
2.5	(LEDs), Push Buttons, Relays and Latch Connections and	OL
	Keyboard; Interfacing 7-Segment Displays, LCD, ADC and	
	DAC etc. with 89C51 Microcontroller IC. Interfacing and	
	operating DC motor	
References:	 Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems", Second Edition, Pearson Prentice Hall. Kenneth J. Ayala, "The 8051 microcontroller", Cengage Learning, 2004 RSG: - Microprocessor Architecture, Programming and Applications with the 8085 by Ramesh S. Gaonkar, Fifth Edition Penram International Publication (India) AB: - Advanced Microprocessors and Peripherals by a K Ray and K M Bhurchandi Second Edition Tata McGraw–Hill Publishing Company ltd. 	
Additional	1. Douglas V. Hall, Microprocessors and interfacing,	
References:	programming and hardware, (TMH) 2. Dr. Rajiv Kapadia (Jaico Pub.House) The 8051 Microcontroller & Embedded Systems	
	3. K.J.Ayala, Penram International 8086 Microprocessor: Programming and Interfacing	
	 Design with PIC microcontrollers by John B. Peatman, Pearson Education Asia. 	
	5. Programming & customizing the 8051 microcontroller By Myke Predko, TMH	

[Microcontroller 8031/8051 based experiments: (Experiment no. 1 is compulsory and any two experiments from 2, 3 & 4)

1. 8031/51 C-assembly language programming

Simple data manipulation programs.(8/16-bit addition, subtraction, multiplication, division, 8/16 bit data transfer, cubes of nos., to rotate a 32- bit number, finding greatest/smallest number from a block of data, decimal / hexadecimal counter) 2. Study of IN and OUT port of 8031/51 by Interfacing switches, LEDs and Relays: to display bit pattern on LED's, to count the number of "ON" switches and display on

LED's, to trip a relay depending on the logic condition of switches, event counter(using LDR and light source)

3. Study of external interrupts (INT0/INT1) of 8031/51.

4. Study of internal timer and counter in 8031/51.

A2: Interfacing 8031/8051 based experiments: (Any two experiments from 1, 2 & 3)

1. Interfacing 8 bit DAC with 8031/51 to generate waveforms: *square, saw tooth, triangular.*

2. Interfacing stepper motor with 8031/51: to control direction, speed and number of steps.

3. Interface 8-bit ADC (0804) with 8031/51: to convert an analog signal into its binary equivalent.

M. Sc. (PHYSICS) SEMESTER II

DSE II

COURSE TITLE: Python Programming

COURSE CODE: 23PSPH2DS2PYP [CREDITS - 02]

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Write Python code , compile, debug and run.
- 2. Apply various data types and control structures in Python programming.
- 3. Construct python conditional and looping statements
- 4. Understand class inheritance and poly

Module 1

Basic Python Programming

[15L]

Learning Objectives: This module is intended to

- 1. Learn syntax of Python programming language.
- 2. Learn core Python scripting elements such as variables, expression and operators

Learning Outcome:

After the successful completion of the module, the learner will be able to

1. Understand basic concepts in python.

2. Explor	re contents of files, directories and text processing with python	
1.1	Introduction to Python, Interpreter v/s compiler Installing Anaconda, Python IDEs.	3L
1.2	Python simple coding statements, Print statement and print formats, Data types and Data structures, Python Operators (Mathematical and Logical), Assignment statements, Input Output statements.	12L
Module 2	Python Programming with functions and class	[15L]
Learning Obj	ectives:	
1. This m	odule is intended to Learn how to write loops and decision	statements in
Python		
2. Learn h	now to write functions and pass arguments in Python	
Learning Out	come:	
After the succe	essful completion of the module, the learner will be able to	
1. Learn l	oops and decision statements in Python.	
2. Learn	write functions and pass arguments in Python	
2.1	Conditional statements, Looping statements.	6L
2.2	Python namespaces and scopes, Packages and modules, imports, User defined function, Introduction to OOP, Classes, Objects, Interfaces, Inheritance.	9L
References:	1. Python in easy steps(2018) : Mike McGrath, BPB	
	publications	
	2. Python made simple(2019) : Rydhm Beri, BPB	
	publications	
	3. Let us Python, 5 th Edition(2019) : Yashwant	
	Kanetkar and Aditya Kanetkar, BPB publications	

[Python based experiments: (Experiment no. 1 is compulsory and any two experiments from 2 & 3)

1. Basics python programming using various data types and control statements.

- 2. Python program using functions.
- 3. Python program with class and object.

M. Sc. (PHYSICS) SEMESTER II COURSE TITLE: Physics Practical Course

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Make layout and adjustments of the equipment.
- 2. Record observations and plot graphs.
- 3. Estimate possible errors in the observation of results.
- 4. Design simple experiments

PRACTICAL I (COURSE CODE: 23PSPH2PR1)

1 Characteristics of a Geiger Muller counter and measurement of dead time

2 Ultrasonic Interferometry- Velocity measurements in different Fluids

3 Double slit- Fraunhofer diffraction (missing order etc.)

4 Barrier capacitance of a junction diode

5 Dielectric constant of liquid

6 Energy Band gap by four probe method

7 Double slit- Fraunhofer diffraction (Determination of slit width)

• MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

PRACTICAL II (COURSE CODE: 23PSPH2PR2)

2 Study of Presettable counters - 74190 and 74193

3 TTL characteristics of totem pole, open collector and tristate devices

4 Shift registers

5 Interfacing TTL with buzzers, relays, motors and solenoids.

6 Study of sample and hold circuit

7 16 channel digital multiplexer

• MINIMUM SIX EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

References:

- 1. Experiments in modern physics- Mellissions
- 2. Manual of experimental physics -EV-Smith
- 3. Advance practical physics Worsnop and Flint
- 4. Digital principles and applications -Malvino and Leach
- 5. Digital circuits practice R.P. Jain
- 6. Semiconductor measurements by Runyan
- 7. Integrated Circuits K. R. Botkar
- 8. Electronic instrumentation & measurement W. D. Cooper

M. Sc. (PHYSICS) SEMESTER II

COURSE TITLE: DSE 1 LAB COURSE

COURSE CODE: 23PSPH2PDS1

Course Learning Outcome

 After the successful completion of the Course, the learner will be able to:

 8051 based experiments (COURSE CODE: 23PSPHP2DSE1)

 1
 Simple data manipulation programs.(8/16-bit addition, subtraction, multiplication, division, 8/16 bit data transfer, cubes of nos., to rotate a 32- bit number, finding greatest/smallest number from a block of data, decimal / hexadecimal counter)

2	Study of IN and OUT port of 8031/51 by Interfacing switches, LEDs and Relays: to display bit pattern on LED's, to count the number of "ON" switches and display on LED's, to trip a relay depending on the logic condition of switches, event counter(using LDR and light source)
3	Study of external interrupts (INT0/INT1) of 8031/51.
4	Study of internal timer and counter in 8031/51.
	Interfacing 8031/8051 based experiments:
	 (Any two experiments from 1, 2 & 3) 1. Interfacing 8 bit DAC with 8031/51 to generate waveforms: square, saw tooth, triangular.
	2. Interfacing stepper motor with 8031/51: to control direction, speed and number of steps.
	3. Interface 8-bit ADC (0804) with 8031/51: to convert an analog signal into its binary equivalent.

• MINIMUM FOUR EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

M. Sc. (PHYSICS) SEMESTER II COURSE TITLE: DSE 2 LAB COURSE COURSE CODE: 23PSPH2PDS2

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

• Write python code for given problem statements

Programming with Python (COURSE CODE: 23PSPHP2DSE2)				
	1	Basics python programming using various data types and control statements		
	2	Python program using functions,		

3

Python program with class and object.

• MINIMUM THREE EXPERIMENTS NEED TO BE DONE AND REPORTED IN JOURNAL

