

Learning Outcomes based Curriculum Framework (LOCF)

For

S.Y.B.Sc. Geology

Undergraduate Programme

from

Academic year 2022-23

S.Y. B. Sc. (GEOLOGY)

SEMESTER III

Core Course - I

COURSE TITLE: Principles of Stratigraphy and Palaeontology

COURSE CODE: 22US3CCIPSP

[CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

- 1. Explain the geologic timescale and analyse the age of strata-formation
- 2. Enumerate the basic principles of stratigraphy and palaeontology, the chronological arrangement of rocks and appearance and evolution of life through the geologic time
- Acquire knowledge of the concepts of correlation and relate them to field observations, in construction of stratigraphic and sedimentological logs, outcrop description by line drawings and identification and interpretation of major sedimentary structures in outcrop
- 4. Understand the application of palaeontology, palaeobotany and micropalaeontology
- 5. Identify the various mega- and micro-fossils and gain knowledge of their geological distribution
- 6. Evaluate potential and limits of the fossil record for reconstructing past events and environments

Stratigraphy

[12L]

Learning Objectives:

Module 1

This module is intended to

1. Explain the Geologic Timescale and analyse the age of strata-formation

- 2. Study the correlation between different stratigraphic units
- 3. Understand unconformity

Learning Outcomes:

After the successful completion of the module, the learner will be able to

- 1. List major events of Geological time scale
- 2. Correlate lithostratigraphy, chronostratigraphy and biostratigraphy units
- 3. Identify the various types of unconformities

1.1	Geological time scale	[2L]
1.2	Development of stratigraphic concepts:	[6L]
	importance of stratigraphy. Stratigraphic	
	classification and nomenclature, Fundamentals of	
	lithostratigraphy, chronostratigraphy, and	
	biostratigraphy, their units. Inter-	
	relationship between lithostratigraphic,	
	chronostratigraphic and biostratigraphic units	
	Brief introduction to chemostratigraphy	
	(oxygen and carbon), magnetostratigraphy	
	and seismic stratigraphy	
1.3	• Principles of stratigraphic analysis. Facies concept in	[4L]
	stratigraphy, Walther's Law of Facies	
	• Unconformity: importance of unconformities,	
	Classification and evidence of unconformities	
References:		

- Weller J.M. (1960), Stratigraphic Principles and Practice, Harper
- Kumar R. (1996), Fundamentals of Historical Geology and Stratigraphy of India, 4th ed., New Age International Limited

Autonomous (Affiliated to University of Mumbai)

oorning Obio		
earning Obje.	ectives:	
This module is	s intended to	
1. Explain	how life evolved in the geological past, and various principle	es/theorie
of origir	n and evolution of life	
2. Compar	e the evolutionary trends of Lamellibranches, Cephalopods	, Trilobite
and Bra	chiopods	
3. Explain	Trace fossils	
earning Outo	comes:	
	essful completion of the module, the learner will be able t	0
1. Identify	various evolutionary trends	
2. Differen	tiate between the less evolved and more	evolve
morpho	logical features	
3. Evaluate	e the importance of trace fossils	
4. Identity	trace fossils	
2.1	Modern concept of origin and evolution of life:	[4L]
	origin of life, principles and theories of evolution,	
	mechanism and pattern of evolution, causes of	
	migration, dispersal and extinction of organisms	
2.2	Invertebrate Palaeontology: Brief study of	[6L]
	evolutionary trends of Lamellibranches,	
	Cephalopods, Trilobites and Brachiopods	
2.3	Trace fossils: Value of trace fossils in palaeo-	[2L]
	environmental interpretation	
References:		
	n E. (1993), Invertebrate Paleontology and Evolution, Chapn	

		-
• Raup D.	and Stanley S.M. (1971), Principles of Paleontology, W.H. F	reeman
 Dasgupt 	ta, A.,(2005), Introduction to Palaeontology, (1st Edition),	World
Press		
Module 3	Palaeontology – II	[12L]
Learning Obje	ectives:	
The module is	intended to	
1. Identify	the various mega- and micro-fossils and gain knowled	lge of
their ge	ological distribution	
2. Discuss	the application of palaeontology, palaeobotan	v and
micropa	laeontology	,
·······		
Learning Outo	comes:	
After the succ	essful completion of the module, the learner will be able	to
1. Identify	plant fossils from various stratigraphic horizons	
2. Recogni	ze the microfossils and their application	
3. Evaluate	e the use of paleobotany and Micropalaentology	
3.1	Micropalaentology: Introduction, definition,	[5L]
	different types of microfossils, their size range and	
	composition, branches	
3.2	Palaeobotany: Definition, conditions and different	[5L]
	modes of preservation of plant fossils,	
	classification and distribution of plants through	
	geological ages	
	• Brief study of the following genera with respect	
	to their characteristics and distribution:	
	Ptillophyllum, Glossopteris, Gangamopteris,	
	Vertebraria and Nilssonia. Record of plant fossils	

	in India with reference to Gondwana and Post- Gondwana Flora	
3.3	Application of Palaeontology,	[2L]
	Micropaleontology, Paleobotany	
References:		
 Dasgup 	ta, A., (2005), Introduction to Palaeontology, (1st Edition)	, World
Press		
 Saraswa 	ti, P. K., & Srinivasan, M. S. (2015), Micropaleontology: Pri	nciples and
Applica	tions. Springer	

Question Paper Template

S.Y. B. Sc. (GEOLOGY) SEMESTER III

Core Course - I

COURSE TITLE: Principles of Stratigraphy and Palaeontology

COURSE CODE: 22US3CCIPSP [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	11	O8	05	03	03		30
II	13	09	03	03	02		30
ш	10	09	06	03	02		30
Total marks per objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

S.Y. B. Sc. (GEOLOGY) SEMESTER III Core Course - II COURSE TITLE: Crystallography COURSE CODE: 22US3GECC2CTG [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

- 1. State concepts such as lattice, point and space groups
- 2. Understand the basic principles of structure of materials, crystallography and crystal defects
- 3. Explain Bragg's Law and explain its the relation to crystal structure
- 4. Identify and describe different diffraction methods
- 5. Interpret and assign X-ray and electron diffraction patterns
- 6. Determine Miller indices of a plane in a crystal
- 7. Discuss and identify the 32 point group and its symmetry elements
- 8. Identify and draw the different crystal forms
- 9. Formulate the Hermann-Mauguin symbols of Cubic, Tetragonal and Hexagonal systems
- 10. Explain and discuss twinning in crystals
- Describe and illustrate the symmetry elements, operations of Orthorhombic, Monoclinic and Triclinic systems

Module 1

XRD and Characteristics of crystals

[12L]

Learning Objectives:

This module is intended to

- 1. Make the learner understand Bravais lattice and atomic arrangement in crystal
- 2. Teach the characteristic symmetry of point groups
- 3. Formulate the relationship between crystal axes and symmetry notation of crystal systems

Learning Outcomes:

After the successful completion of the module, the learner will be able to

- 1. Explain Baravis lattices and atomic arrangement in crystals
- 2. Articulate the elements of symmetry
- 3. Classify the crystals

1.1	• Atomic arrangement in crystals: Bravais Lattices,	[4L]
	Crystal symmetry	
1.2	• Elements of symmetry: Planes, Axes and Centre, Axis	[4L]
	of inversion symmetry, Crystallographic axes, Miller	
	Indices, Axial ratios	
1.3	Classification of crystals, Stereographic projections of	[4L]
	symmetry	

References:

- Hurlbut, C. S., & Klein, C. (1993), Manual of mineralogy (after James D. Dana).
 Wiley
- Read H.H. (Rev. ed. C.D. Gribble) (1988), Rutley's Elements of Mineralogy (27TH Edition), CBS Publications
- Perkins Dexter (2011), Mineralogy (International Edition), Pearson Education
- Ram S. Sharma and Anurag Sharma (2013) Crystallography and Mineralogy Concepts and Methods. Text Book Series, Geological Society of India, Bangalore

Module 2	Crystal Systems – I	[12L]
Learning Obje	ectives:	
This module is	intended to	
1. Explain	the forms and crystal morphology	
2. Teach o	characteristic symmetry and operations in Cubic, Tetr	agonal and
Hexago	nal system	
Learning Outo	comes:	
	essful completion of the module, the learner will be able classify and distinguish between different forms of crysta	
	e and illustrate the symmetry elements, operations nal and Hexagonal systems	of Cubic,
	te the Hermann-Mauguin symbols of cubic agonal systems	, tetragonal
2.1	• Forms and crystal morphology: Name of forms,	[4L]
	Illustration and description of forms, open forms and	
	closed forms, point groups and crystal systems	
2.2	Cubic, Tetragonal And Hexagonal: Characteristic	[4L]
	symmetry, relationships between crystal axes and	
	symmetry notation of crystal systems	
2.3	• Hermann-Mauguin symbols of Cubic, Tetragonal And	[4L]
	Hexagonal	
References:		
• Hurlbut,	C. S., and Klein, C. (1993), Manual of mineralogy (after Jam	ies D. Dana).
Wiley		

descriptions, determinations, W.F. Freeman and Co.

• Flint, Y., (1975) Essential of crystallography, Mir Publishers

- Dana, E.S. and Ford, W.E., (2002) A textbook of Mineralogy (Reprints)
- R.N. Hota (2012) Practical approach to Mineralogy and Crystallography, CBS Publications & Distributions

Module 3

Crystal Systems - II

[12L]

Learning Objectives:

The module is intended to

- 1. Explain the forms and crystal morphology and characteristic symmetry and operations in Orthorhombic, monoclinic and triclinic systems
- 2. Demonstrate the twinning of crystals and discuss the types of twinning
- 3. Teach the principles of XRD and its application in understanding the atomic arrangement and symmetry elements in crystals

Learning Outcomes:

After the successful completion of the module, the learner will be able to

- 1. Identify, classify and distinguish between different forms of crystals
- 2. Describe and illustrate the symmetry elements, operations of Orthorhombic, monoclinic and triclinic systems
- 3. Formulate the Hermann-Mauguin symbols of Orthorhombic, monoclinic and triclinic
- 4. Explain the origin of twinning
- 5. Identify, classify and distinguish the different types of twinning and twin laws
- 6. Describe the principles of XRD
- 7. Describe Bragg's Law

3.1	Orthorhombic, monoclinic and triclinic: [4]	L]
	Characteristic symmetry and relationships	
	between crystal axes and symmetry notation of	
	crystal systems	
	• Hermann-Mauguin symbols of Orthorhombic,	
	Monoclinic and Triclinic	

2.2		F 41 7		
3.2		[4L]		
	• Twin crystals: Twin axis, Twin plane, Composition			
	plane			
	• Types of Twinning: Simple and Multiple contact			
	twins, Simple and Multiple penetration twins, Cyclic			
	twins			
	• Twinning in Feldspars: Carlsbad, Manebech, Baveno,			
	Albite, Albite-Carlsbad			
3.3	• X-ray Diffraction: Brief introduction of X-rays,	[4L]		
	Diffraction effects and Bragg equation, Application			
	of X-rays in crystallography and mineralogy			
References:				
 Hurlbut 	r, C. S., and Klein, C. (1993), Manual of mineralogy (after Jan	nes D. Dana).		
Wiley				
• Dana J.	D. and Ford W.E. (rev. ed.) (2010), Dana's Manual of N	1ineralogy, J.		
Wiley &	z Sons			
Perkins	Dexter (2011), Mineralogy (International Edition), Pearsor	1 Education		
• Flint, Y.	, (1975) Essential of crystallography, Mir Publishers			
• Dana, E	.S. and Ford, W.E., (2002) A textbook of Mineralogy (Rep	orints)		
	ta (2012) Practical approach to Mineralogy and Crystallo			

Publications & Distributions

Question Paper Template S.Y. B. Sc. (GEOLOGY) SEMESTER III Core Course - II COURSE TITLE: Crystallography

COURSE CODE: 22US3GECC2CTG [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	11	O8	05	03	03		30
II	13	09	03	03	02		30
ш	10	09	06	03	02		30
Total marks per objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

S.Y. B. Sc. (GEOLOGY)

SEMESTER III

Core Course - III

COURSE TITLE: Geomorphology

COURSE CODE: 22US3GECC3GMP [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

- 1. Analyze geomorphological systems in terms of resisting and driving forces
- 2. Evaluate the creation of landforms by different surface processes
- 3. Describe the exogenous and endogenous processes in the landscape, their importance in landform development, and distinguish the mechanisms that control these processes
- 4. Analyse how variations in climate, tectonics and environment affect the development of landforms
- 5. Assess how different scales of time and space affect geomorphological processes

N	lod	u	e	1

Introduction to Geomorphology

[12L]

Learning Objectives:

This module is intended to

- 1. Distinguish between the endogenic and exogenic sources of energy
- 2. Evaluate the evolution of the geomorphic theory over time
- 3. Identify landforms created by various weathering processes
- 4. Identify the geomorphic landforms created by aeolian processes and evaluate the role of various aeolian parameters in their formation
- 5. Assess the role of anthropogenic activities on a landscape

Learning Outcomes:

After the successful completion of the module, the learner will be able to

- 1. Identify the interactions that result in formation of different landscapes and predict the outcome given a set of geomorphic conditions
- 2. Judge the applicability of an isotopic dating method in a given situation to solve a geomorphic problem
- 3. Distinguish between the different types of deserts based on their causative mechanisms and generate a list of common factors that lead to formation of deserts

1.1	Basic concepts of Geomorphology: Energy for	[4L]
	landform change, landform evolution models,	
	mountains and relief, rock uplift, denudation,	
	exhumation, endogenic and exogenic processes,	
	isotopic dating and its application to geomorphic	
	problems. Geomorphic Systems: People as	
	Geomorphic Agents, People as creators	
1.2	Drainage patterns and concept of watershed:	[4L]
	Antecedent, Consequent, Superimposed, Captured	
	drainage, headward erosion	
	Weathering and Landforms: Weathering processes:	
	Physical, Chemical, Biological, Corestones, Tors, Pits,	
	Pans, Caverns, Rills, Duricrust	
1.3	Aeolian Processes and Landforms: Aeolian erosion,	[4L]
	transport and deposition	
References:	·	
• Selby	M.J. (1985), Earth's Changing Surface - An Intro	duction to

Geomorphology, Oxford University Press

Autonomous (Affiliated to University of Mumbai)

• Hugget	t, R. J. (2016), Fundamentals of geomorphology. Routledge	e
• Vaidyar	nadhan, K. (2001), Introduction to Geomorphology.	Journal of
Geolog	ical Society of India (Online archive from Vol 1 to Vol 78),	58(1), 92-92
Module 2	Geomorphological Processes - I	[12L]
Learning Obje	ectives:	
This module i	s intended to	
1. Identify	the geomorphic landforms created by fluvial processes	
2. Estimate	e the scale of a flood and determine its severity	based on
a time-	dependent change in the hydrographs	
3. Differer	ntiate between consequent and transverse drainage patte	rns
4. Identify	geomorphic landforms created by glacial processes an	nd evaluate
the role	e of various glacial parameters in their formation	
Learning Out	comes:	
After the succ	cessful completion of the module, the learner will be able	to
	e the role of various fluvial parameters in their formation	
2. Evaluate	e the tectonic changes in the landscape	
3. Classify	and distinguish between the different types o	of glaciers,
their fo	rmation and the mechanisms of their movement	
	e the effect of epeirogeny in a region and determine in c rebalance of the tectonic plate	ts effect on
2.1	• Fluvial Processes and Landforms: W.M. Davis Cycle	[4L]
	of erosion, Fluvial Transport and Deposition: Alluvial	
	Fans, Floodplains and Terraces, Alluvial Bars, Braided	
	Channels, Straight and Meandering Channels	
2.2	Discharge of Water: Hydrograph Shapes, Flood	[4L]
	Frequency, Patterns of Discharge	

 Vaidya 	 Glaciers and Glaciated landforms: Ice movement, [4L] flow patterns, forms of glacier surfaces, Glaciated erosional landforms and glaciated depositional landforms tt, R. J. (2016), Fundamentals of geomorphology. Routledge nadhan, K. (2001), Introduction to Geomorphology. Journal of
Module 3	gical Society of India (Online archive from Vol 1 to Vol 78), 58(1), 92-92 Geomorphological Processes – II [12L]
Learning Obje	
The module is	s intended to
1. Identify	the geomorphic landforms created by coastal processes
2. Assemb	le a list of factors that affect the formation of karst landforms
3. Identify	the surface and sub-surface geomorphic landforms created by karst
process	es in tropical and temperate climates
Learning Out	comes:
After the succ	essful completion of the module, the learner will be able to
	e the formation of waves and determine the areas of high-energy and
1	ergy wave action that may lead to coastal erosion or coastal
-	ion respectively
	e the role of relative tectonic uplift or subsidence in generating
	landforms
3.1	Coastal Processes and Landforms: Morphology of [6L]
	a wave, Dominant influences on Coastal landforms,
	Sea level changes. Erosional landforms of the coast:
	wave-cut platforms, cliffs, marine terraces.

	Depositional landforms of the coast: beaches berm,	
	longshore drift	
3.2	Karst Processes and Landforms: Limestone Solution	[6L]
	and erosion rates Surface landforms: Minor solution	
	sculpture, Enclosed depressions. Caves and springs	
	Landforms controlled by Faults and Folds	

References:

- Huggett, R. J. (2016), Fundamentals of geomorphology. Routledge
- Vaidyanadhan, K. (2001), Introduction to Geomorphology. Journal of Geological Society of India (Online archive from Vol 1 to Vol 78), 58(1), 92-92
- Bloom, A. L. (1998), Geomorphology: a systematic analysis of late Cenozoic landforms (No. 551.79 BLO)
- King C.A.M., (1967), Techniques in Geomorphology., Edward Arnold, London

Question Paper Template

S.Y. B. Sc. (GEOLOGY) SEMESTER III

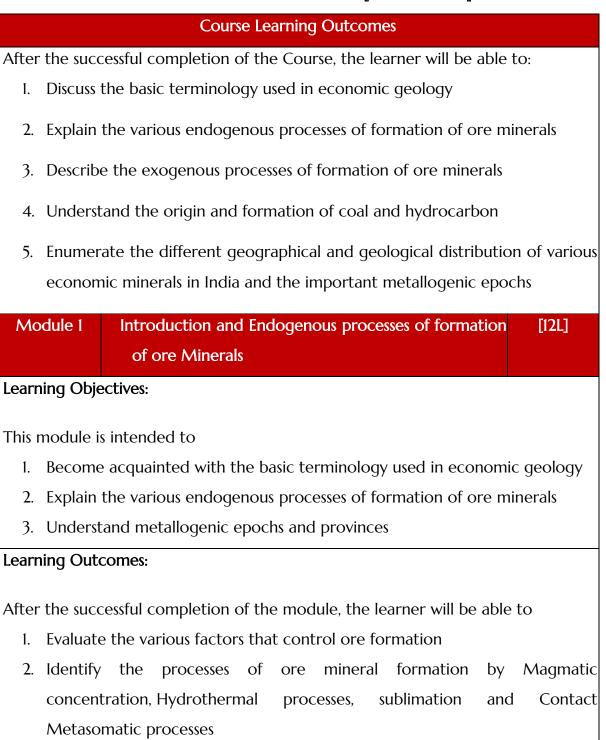
Core Course - III

COURSE TITLE: Geomorphology

COURSE CODE: 22US3GECC3GMP [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	11	O8	05	03	03		30
II	13	09	03	03	02		30
111	10	09	06	03	02		30
Total marks per objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

S.Y. B. Sc. (GEOLOGY)



SEMESTER IV

Core Course - I

COURSE TITLE: Economic Geology

COURSE CODE: 22US4GECCIEGE [CREDITS - O2]

3. Differentiate between various endogenous processes

1.1	mic minerals in India and the important metallogenic epocl Introduction: Definition of metalliferous and non	
1.1		[4L]
	metalliferous resources, ore mineral, gangue,	
	tenor of ore, industrial minerals, overburden and	
	country rock	
	Classification of economically important	
	metalliferous and non-metalliferous mineral	
	resources. Stratabound and Stratiform ore	
	deposits. Structural and stratigraphic controls on	
	mineralization, metallogenic epochs and	
	provinces	
1.2	Processes of formation of mineral resources	[4L]
	Magmatic concentration (early and late	
	magmatic mineral process) Sublimation and	
	pegmatitic process. Hydrothermal processes -	
	Cavity filling mineral formation	
	and Metasomatism	
1.3	Principle, character of solution, types of openings in	[4L]
	rocks, factors affecting deposition from	
	hydrothermal solutions, wall rock alterations	
	Contact Metasomatic processes: definition, criteria	
	of replacement	
	orreplacement	

& Sons

• Evans A.M. (1993), Ore geology and Industrial minerals, Blackwell Science

Autonomous (Affiliated to University of Mumbai)

Prasad U CBS, Indi	J. (2000), Economic Geology – Economic Mineral Depo ia	osits, 2nd ed.,
Module 2	Exogenous processes of Formation of Ore Minerals	[12L]
Learning Obje	ctives:	
This module is	intended to	
1. Explain t	he various exogenous processes of formation of ore mir	nerals
2. Learn t	he factors that affect the formation of ore minerals by	/ exogenous
processe	25	
Learning Outc	omes:	
	essful completion of the module, the learner will be able the processes of ore mineral formation by see	
metamo	rphism, Evaporation processes, Residual	mineral
	on Mechanical concentration, Oxidation and Solution and enrichment	d Supergene
2. Different	tiate between the various exogenous processes	
	the various factors that affect the ore for ous processes	mation by
2.1	Mineral resources from sedimentation and	[4L]
r	netamorphism	
	Evaporation processes: brief account of non-metallic	
	mineral resources of ocean water, lake water,	
	ground water and hot springs	
2.2	Residual mineral formation: conditions favouring formation of residual resources	[4L]
<u> </u>		

Somanja TRUST

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

	Mechanical concentration: principles and processes of	
	formation of placers (eluvial, alluvial, beach and	
	eolian)	
	2.3 Oxidation and Solution: in the zone of oxidation, ore	[4L]
	formations in the zone of oxidation	
	Supergene sulphide enrichment: requirements	
	for supergenesulphide deposition, recognition of	
	sulphide enrichment	
	Gossans and cappings: role of iron gossans, limonite	
	and false gossans	
Pofor	rences:	
Refei		
•	Jensen M.R. and Bateman A.M. (1981), Economic mineral deposits	, John Wile
	and Sons	
٠	Evans A.M. (1993), Ore geology and Industrial minerals, Blackwell	Science.
•	Prasad U. (2000), Economic Geology - Economic Mineral Depo	sits, 2nd ed
	CBS, India	
Mo	dule 3 Introduction and distribution of Economic minerals in	[12L]
	India	
Loor		
	ning Objectives:	
	module is intended to	
1.	Understand the origin and formation of coal	
2.	Learn the formation, association and Indian distribution of ma	ajor metalli
	ore minerals	,
3.	Learn the formation, association and Indian distribution of	major non
	metallic ore minerals	
Loar	ning Outcomes	
regil	ning Outcomes:	
After	• the successful completion of the module, the learner will be able	• to

- 1. Evaluate coal formation and its various varieties
- 2. Label coaliferous and petroliferous basins of India
- 3. Enumerate the different geographical and geological distribution of major metallic ore minerals in India
- 4. Enumerate the different geographical and geological distribution of major non-metallic ore minerals in India

3.1	Introduction to coal and its origin. Introduction to	[4L]
	hydrocarbon: its origin and migration. Coaliferous	
	and Petroliferous basins of India	
3.2	Formation, association and Indian distribution of major	[4L]
	metallic ore minerals	
3.3	Formation, association and Indian distribution of	[4L]
	major non-metallic ore minerals	
References:	· · · · · · · · · · · · · · · · · · ·	
• Prasac	d U. (2000), Economic Geology – Economic Mineral Dep	oosits, 2nd

ed., CBS, India

Question Paper Template S.Y. B. Sc. (GEOLOGY) SEMESTER IV Core Course - I COURSE TITLE: Economic Geology COURSE CODE: 22US4GECCIEGE [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	11	O8	05	03	03		30
II	13	09	03	03	02		30
III	10	09	06	03	02		30
Total marks per objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100

S.Y. B. Sc. (GEOLOGY)

SEMESTER IV

Core Course - II

COURSE TITLE: Optical Mineralogy and Systematic Mineralogy

COURSE CODE: 22US4GECC2OPM [CREDITS - O2]

Course Learning Outcomes

After the successful completion of the Course, the learner will be able to:

- 1. Describe the different parts of a petrological microscope and its use in mineral identification
- 2. Explain the optical and physical properties of minerals in hand specimen
- 3. Identify the minerals in thin sections based on their different optical properties
- 4. Enumerate the physical and optical properties of Silica, feldspar, feldspathoid and mica mineral groups
- 5. Know the conditions of formation, origin and occurrence for Silica, feldspar, feldspathoid and mica mineral groups
- 6. Enumerate the physical and optical properties of Olivine, Pyroxene, Amphibole. and Garnet mineral groups
- 7. Know the conditions of formation, origin and occurrence for Olivine, Pyroxene, Amphibole and Garnet mineral groups

Module 1 Optical properties of minerals [12L] Learning Objectives: Image: Comparison of the second sec

2. Study the optical properties of minerals

2	1.1 1.0		· 1	•					1:00
3.	Identify	the	minerais	In	thin-sections	Dased	on	their	different
	optical	р	roperties						
Learn	ning Outo	comes	S:						
After	the succ	cessful	completion	۱ of t	he module, the	e learner	will be	e able t	0
1.	Underst	and a	nd explain [†]	the d	lifferent optica	l propert	ies		
2.	Explain	the w	orking of Po	olariz	ing microscope	5			
3.	To utiliz	e and	l apply these	e prir	nciples and cor	cepts to	identi	fy and	distinguish
	mineral	5							
	1.1	1	Nature and	beha	avior of light:	Non-pol	arised	and	[6L]
					Refraction and	•			[]
		[Double re	fract	ion, Nicol	prism a	nd l	Filter	
		F	oolaroid, Iso	otrop	oic and Anisotro	opic subs	tances	5	
		Pola	rizing Micr	oscop	pe: Its Construc	ction and	Work	ing	
	1.2	Opt	ical charact	teristi	ics: Relief, Bec	ke's test,	Twin	kling,	[6L]
		F	Pleochroism	, Bire	fringence, Pc	larizatior	n col	ours,	
		1	Newton's sc	ale,	Extinction and	l Extincti	on a	ngle,	
		ŀ	Anomalous	pola	arization colo	ours, Uni	axial	and	
		E	Biaxial mine	erals,	Optical indi	catrix, In	terfer	ence	
		f	igures, Op ^t	tic si	ign, Sign of e	elongatio	n, Us	e of	
		(Quartz wec	lge, N	∕lica plate and	Gypsum	plate		
Rofor	ences							I	

References:

- Read H.H. (Rev. ed. C.D. Gribble) (1988), Rutley's Elements of Mineralogy (27TH Edition), CBS Publications
- Perkins Dexter (2011), Mineralogy (International Edition), Pearson Education
- Kerr, B.F., (1995) Optical Mineralogy 5th Ed. McGraw Hill, New York
- Deer, Howie and Zussman (1996) Introduction to Rock forming Minerals, Pearson

Module 2	Systematic Mineralogy - I	[12L]
Learning Obje	ectives:	
This module is	s intended to	
1. Underst	and the properties of different mineral groups and	enumerate
the	different minerals belonging to each group	
2. Know tł	ne conditions of formation for different mineral groups	
Learning Outo	comes:	
1. Explain group 2. Explain	cessful completion of the module, the learner will be able the basic mineralogy of Silica, Feldspar, Feldspathaoid the condition of formation, stability relationships, occu the mineral groups	d and Mica
2.1	Stability Relationships: Condition of formation, Crystallography, Physical and optical properties, Composition and structure, Diagnostic Features, Occurrence and Uses	
	a) Silica Group	[4L]
	b) Feldspar Group	[4L]
	c) Feldspathoid Group and Mica Group	[4L]
References		

References:

- Rogers A.F. and Kerr P.F. (1942), Optical Mineralogy (2nd Edition), McGraw-Hill Co. Inc., New York
- Shelly David (1985), Optical Mineralogy (2nd Edition), Elsevier
- Deer W.A., Howie A.H. and Zussman J. (1992), An introduction to rock forming minerals, Longman Scientific and Technical

Autonomous (Affiliated to University of Mumbai)

Module 3	Systematic Mineralogy - II	[12L]
Learning Obj	ectives:	
The module i	s intended to	
1. Underst	tand the properties of different mineral groups and enu	merate th
differer	it minerals belonging to each group	
2. Know t	he conditions of formation for different mineral groups	
Learning Out	comes:	
After the suce	cessful completion of the module, the learner will be able	to
I. Explain	the basic mineralogy of Amphibole Group, Pyroxene Gro	oup, Olivir
Group,	Garnet Group and Zeolite Group	
2. Underst	tand and explain the condition of formation, stability re	elationship
occurre	ences and uses of the mineral groups	
3.1	Stability Relationships: Condition of formation,	
	Crystallography, Physical and optical properties,	
	Composition and structure, Diagnostic Features,	
	Occurrence and Uses	
	a) Amphibole Group	[4L]
	b) Pyroxene Group	[4L]
	c) Olivine Group, Garnet Group and Zeolite Group	[4L]

- Rogers A.F. and Kerr P.F. (1942), Optical Mineralogy (2nd Edition), McGraw-Hill Co. Inc., New York
- Shelly David (1985), Optical Mineralogy (2nd Edition), Elsevier •
- Kerr, B.F., (1995) Optical Mineralogy 5th Ed. McGraw Hill, New York •

• Deer, Howie and Zussman (1996) Introduction to Rock forming Minerals, Pearson

Question Paper Template

S.Y. B. Sc. (GEOLOGY) SEMESTER IV

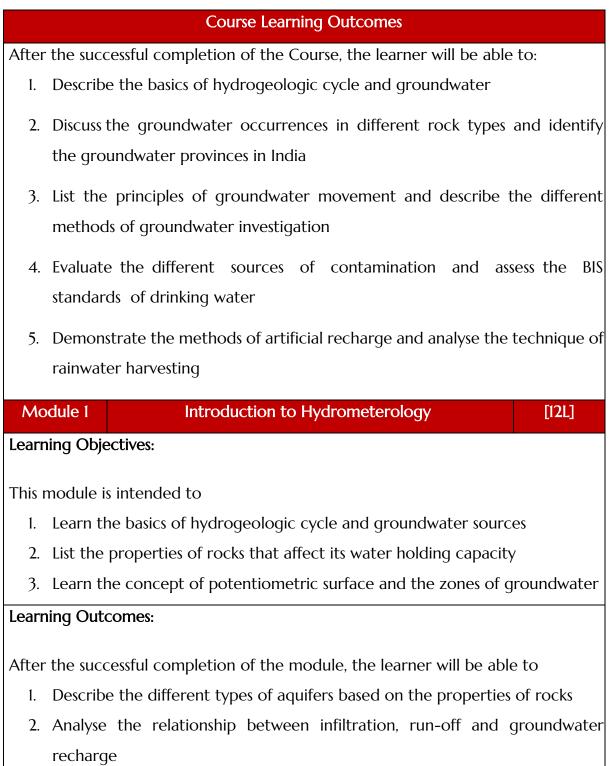
Core Course - II

COURSE TITLE: Optical Mineralogy and Systematic

Mineralogy

COURSE CODE: 22US4GECC2OPM [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	11	O8	05	03	03		30
II	13	09	03	03	02		30
	10	09	06	03	02		30
Total marks per objective	34	26	14	09	07		90
% Weightage	38	29	16	10	07		100



S.Y. B. Sc. (GEOLOGY) SEMESTER IV

Core Course - III

COURSE TITLE: Geohydrology

COURSE CODE: 22US4GECC3GHY [CREDITS - O2]

	e hydrographs of run-off and infiltration to det ge potential	ermine the
1.1	Ground Water: Definition, Hydrogeologic cycle and groundwater sources: Precipitation, Evapo- transportation and Phreatophytes. Runoff and Hydrograph Components. Measuring run-off and evapo-transpiration, Infiltration	[4L]
1.2	Subsurface movement of water. Zones of groundwater. Concept of water table and potentiometric surface. Discharge of groundwater	[4L]
1.3	Occurrence of groundwater. Rock properties affecting groundwater. Types of aquifers. Geological formations as aquifers	[4L]
	D.K. (1980), Groundwater Hydrology, 2nd ed. John Wiley C. W. (2018), Applied hydrogeology. Waveland Press	
Module 2	Groundwater movement and Investigation	[I2L]
Learning Obj		

This module is intended to

- 1. Familiarize with the principles of groundwater movement
- 2. Learn Darcy's Law
- 3. Describe the different methods of groundwater investigation

Learning Outcomes:

After the successful completion of the module, the learner will be able to

1. Explain the concept of storativity and transmissivity and use them to asses the properties of an aquifer

	a			
2. Design	a flow-net based on dataset of water table levels in a region			
3. List a	and describe the techniques involved in surface and			
subsurfa	ace investigation of groundwater			
2.1	Ground water movement: Concept of storativity [4L]			
	and transmissivity. Darcy's Law. Groundwater flow-			
	lines and flow-nets			
2.2	Construction of well. Concept of drawdown and [4L]			
	cone of depression, pumping test			
2.3	Ground water exploration techniques: Geophysical [4L]			
	surveys and well logging			
References:				
• Todd D	9.K. (1980), Groundwater Hydrology, 2nd ed. John Wiley			
- Cottor	() (2018) Applied by dreaded any) (avaland Dread			
• Fetter, C. W. (2018), Applied hydrogeology. Waveland Press				
• Karanth, K. R. (1987), Ground water assessment: development and				
management. Tata McGraw-Hill Education				
• Raghunath, H. M. (1987), Groundwater Wiley Eastern Ltd. New Delhi, India				
Module 3	Groundwater contamination and pollution [12L]			
Learning Obj	ectives:			
The module i	s intended to			
1. Name and describe the physical and chemical properties of water				
2. List the BIS standards of drinking water and assess the local water quality				
3. Demonstrate the methods of artificial recharge				
Learning Out	comes:			
After the successful completion of the module, the learner will be able to				
1. Evaluate the severity of different sources of contamination				

2. Explain and design techniques of rainwater harvesting				
3. Describe the ways of wastewater reuse				
3.1	Physical and chemical properties of water, BIS standards of drinking water. Groundwater contamination	[4L]		
3.2	Sea water intrusion in coastal aquifer, groundwater pollution	[4L]		
3.3	Artificial recharge of ground water: Concept, methods, water spreading. Roof top rain water harvesting. Wastewater reuse. Recharge mounds. Induced Recharge	[4L]		
 References: Todd D.K. (1980), Groundwater Hydrology, 2nd ed. John Wiley 				
• Fetter, C. W. (2018), Applied hydrogeology. Waveland Press				

• Bouwer H. (1978), Groundwater Hydrology., McGraw-Hill

Question Paper Template S.Y. B. Sc. (GEOLOGY) SEMESTER IV Core Course - III COURSE TITLE: Geohydrology COURSE CODE: 22US4GECC3GHY [CREDITS - O2]

Module	Remembering/ Knowledge	Understanding	Applying	Analysing	Evaluating	Creating	Total marks
I	11	O8	05	03	03		30
II	13	09	03	03	02		30
III	10	09	06	03	02		30
Total marks per objective	34	26	14	09	07		90
% Weightage	38	29	16	IO	07		100

S. Y. B. Sc. (Geology)

Semester III - Practical

Course I - 22US3GECCIP	Principles of Stratigraphy and Palaeontology
Learning Objectives:	

The practical is intended to

1. Identify morphological and evolutionary characteristics of different fossils groups and determine their geological distribution

Learning Outcomes:

After the successful completion of the practical, the learner will be able to:

- 1. Analyse the morphology of different fossils and classify them into respective evolutionary groups
- 2. List the geological distribution for species belonging to major groups

Identification (morphology, classification, geological distribution) and study of evolutionary trends of: Lamellibranchs, Cephalopods, Trilobites and Brachiopods. Identification of microfossils (morphology and geological distribution): Foraminifera, Ostracods and Radiolarians

Identification of plant fossils

Biozonation: Biostratigraphy, age determination and stratigraphic correlation

Paleontological problems: Trilobite moulting, Cephalopod growth curve

Course II - 22US3GECC2P

Crystallography

Learning Objectives:

The practical is intended to

1. Comprehend the characteristic symmetry of point groups and the relationship between crystal form, symmetry and symmetry notation of crystal systems

Learning Outcomes:

After the successful completion of the practical, the learner will be able to:

- 1. Analyse the crystal form and morphology to determine its characteristic symmetry
- 2. Distinguish between different forms of crystals and formulate the Hermann-Mauguin symbols of cubic, tetragonal and hexagonal systems

Study of Symmetry:

i. Symmetry elements of 32 classes of symmetry

ii. Stereographic projections of Symmetry elements of 32 classes of symmetry

Study of all possible forms of crystals belonging to 7 systems:

i. CUBIC SYSTEM

ii. TETRAGONAL SYSTEM

iii. HEXAGONAL SYSTEM

iv. TRIGONAL SYSTEM

v. ORTHORHOMBIC SYSTEM

vi. MONOCLINIC SYSTEM

vii.TRICLINIC SYSTEM

Study of Twin-axis, Twin plane and composition plane of different types of Twin crystals:

Simple contact twinning: Spinel, Rutile, Aragonite, Gypsum, Augite, Orthoclase (Baveno, Manebach, Carlsbad)

Simple penetration twinning: Staurolite, Augite, Orthoclase Carlsbad-partially penetrant.

Multiple contact twinning: Albite

Multiple penetration twinning: Fluorite, Diamond (Star), Chrysoberyl (Wheel)

Multiple cyclic twinning: Aragonite, Chrysoberyl (Wheel)

Determination of interfacial angle using Goniometer

Course III - 22US3GECC3P

Geomorphology

Learning Objectives:

The practical is intended to

 Familiarise with the geomorphic landforms formed by different endogenic and exogenic processes and compute the rate of processes bringing about the change

Learning Outcomes:

After the successful completion of the practical, the learner will be able to:

- 1. Identify the individual landforms and the overall landscape on a toposheet or map and determine their causative mechanisms and processes
- 2. Compute the change in exogenic processes with respect to time and their effect on the geomorphic landscape

Toposheet reading

Measurement of areas enclosed within curves

Topographic Profiles, Projected Profiles, Superimposed Profiles and Spur Profiles

Longitudinal and cross valley profiles. Drainage basin analysis – Linear aspects Hypsometric analysis, watershed delineation

Map symbols, Color codes, Types of drainage

Problems on dynamic topography, coastal stabilization, Fluvial dynamics

Identification of geomorphic features on different types of maps and toposheets

Flood hydrographs

Semester IV - Practical

Course I - 22US4GECCIP

Economic Geology

Learning Objectives:

The practical is intended to

 Distinguish between different metallic and non-metallic economic minerals based on their physical and optical properties and indicate their geographical distribution

Learning Outcomes:

After the successful completion of the practical, the learner will be able to:

- 1. Utilise the physical properties of samples to identify and distinguish between various economic minerals
- 2. Indicate the geographical distribution of economic minerals across the state and country and name the important mines where the mineral is obtained

Identification with the help of physical properties, chemical composition and origin

Indian occurrences and geographical distribution of the following Metallic and Non-Metallic economic minerals:

Limestone, Baryte, Bauxite, Magnesite, Mica, Coal, Biotite, Calcite, Dolomite, Fluorite, Garnet, Kyanite, Magnesite, Muscovite, Serpentine, Talc, Tourmaline.

Barytes, Bauxite, Chalcopyrite, Chromite, Cuprite, Galena, Graphite, Gypsum, Hematite, Ilmenite, Limonite, Magnetite, Malachite, Psilomelane, Pyrite, Pyrolusite, Sphalerite, Stibnite

Geographical distribution of petroliferous basins of India

Geographic distribution of important mines of India

Geographic distribution of important minerals of Maharashtra

Course II - 22US4GECC2P

Optical Mineralogy and Systematic Mineralogy

Learning Objectives:

The practical is intended to

1. Use a petrological microscope to correctly identify thin-sections of different mineral groups under polarised light and crossed nicols

Learning Outcomes:

After the successful completion of the practical, the learner will be able to:

- 1. Identify the parts of and correctly use a petrological microscope
- 2. Determine the optical properties of mineral thin-sections and use them to identify the mineral group that it belongs to and indicate its condition of formation, stability relationship and occurrence

Study of physical and optical characters, mode of formation and occurrence of Silicates and Non-Silicates minerals

Study of physical properties, mode of occurrence and conditions of origin of the following secondary minerals:

Quartz (Rock crystal), Amethyst, Calcite (Rhombohedral, Scalenohedral & Nailhead spar), Stilbite, Scolecite, Mesolite, Chabazite, Laumontite, Apophyllite, (Prismatic & Pyramidal), Gyrolite and Okenite

Identification of plagioclase composition under the microscope

Course III - 22US4GECC3P

Geohydrology

Learning Objectives:

The practical is intended to

 Comprehend the conditions responsible for controlling the rate of flow of groundwater in different types of aquifers and interpret flow-nets to determine its flow direction and rate

Learning Outcomes:

After the successful completion of the practical, the learner will be able to:

1. Generate flow-nets and interpret them to assess the direction of groundwater flow

2. Use simple equations to calculate the quality, volume of a groundwater aquifer and determine the rate of flow of water through it

BIS standards of drinking water

Water bearing properties of rocks

Construction of Flow nets

Delineation of watershed

Measurement of runoff

Streams - effluent and influent

Calculation of rainwater harvesting

Ground water provinces in India and Maharashtra

Preparation of groundwater contour maps, perched aquifer and problems related

to groundwater geology