

SYLLABUS FOR SEM I & II Program: B.Sc. Course: Physics

From

Academic year 2023-24

1

Board of studies in Physics

Undergraduate and Post graduate

	Name	Designation	Institute/Industry					
		Head of the Departmen	t					
1	Dr. Deepak More	Chairman	K. J. Somaiya college of science and commerce					
	Subject	Expert nominated by Vice	-Chancellor					
1	Dr. Anita Kanwar	Principal	VES college, Chembur					
		Subject experts						
1 2	Dr. Nigvendra Sharma Dr Dinesh Kala	Head of the Department Head of the Department	Maharashtra College of Arts, Science & amp; Commerce G N Khalsa College of Arts, Science & amp; Commerce					
3	Dr. Paresh Joshi	Chairman, BASE	HBCSE					
	Representative from Industry/corporate sector/allied area							
1	R.	Director –	Tej Control System PVT					
	Venkataraman	Vision & amp;	LTD. Thane 400064					
		Robotics						
		Meritorious Alumnus						
1	Vikrant Jadhav	Start-up	Panacea Intech PVT LTD					
2								
	Two exper	rts from other than the par	ent University					
1	Raghunath	Associate	Department of Physics,					
	Chelakkot	Professor	IITB, Mumbai					
2	R. R. Deshmukh	Professor	Department of physics,					
			ICT, Mumbai					
		Faculty of the specialisati	on					
1	Dr. Deepak More	Associate Professor	K. J. Somaiya college					
2	Dr. Geeta Nair	Associate Professor	K. J. Somaiya college					
			of science and commence					

3	Mr. A M Shaker	Associate Professor	K. J. Somaiya college
			of science and commerce
4	Dr. Jitendra Pendharkar	Associate Professor	K. J. Somaiya college
			of science and commerce
5	Dr. Smita Survase	Associate Professor	K. J. Somaiya college
			of science and commerce
6	Mr. Anshul Gupta	Assistant Professor	K. J. Somaiya college
			of science and commerce
7	Mr. Deepak Jalla	Assistant Professor	K. J. Somaiya college
			of science and commerce
8	Mr. Amit More	Assistant Professor	K. J. Somaiya college
			of science and commerce
9	Dr. Pallavi Raote	Assistant Professor	K. J. Somaiya college
			of science and commerce
10	Mr. Ketankumar	Assistant Professor	K. J. Somaiya college
	Gayakwad		of science and commerce
11	Dr. Rucha Naik	Assistant Professor	K. J. Somaiya college
			of science and commerce
12	Dr. Shruti Barve	Assistant Professor	K. J. Somaiya college
			of science and commerce
13	Mr. Ranjit Yadav	Assistant Professor	K. J. Somaiya college
			of science and commerce

Somanyan TRUST

K J Somaiya College of Science & Commerce Autonomous (Affiliated to University of Mumbai)

Acknowledgement

At the outset, I would like to thank our, Principal Dr. Pradnya Prabhu for her guidance and support during the curriculum restructuring process. I am also grateful to all the esteemed members of the Board of Studies, for their constructive suggestions and contributions.

Above all, I am deeply indebted to all the young and vibrant colleagues in the Department of Physics for the long and arduous work they have put in during the compiling of the restructured syllabus.

Dr. Deepak More Chairperson Board of Studies in Physics

Graduate Attributes

After the successful completion of modules in different courses of B.Sc. PHYSICS, the learner will be able to:

GA 1: Apply physics concepts and acquired skill sets to novel and unknown problems in order to establish an effective approach or strategy for dealing with them.

GA 2: Explore and derive quantitative data in the realms of physics.

GA 3: Collect, analyze, and interpret scientific data in the realms of physics using modern experimental apparatus and research methods.

GA 4: Develop Psycho-motive, analytical, observation skills through lab work

GA 5: Approach any real life problem with proper assumption, logic and constraints.

GA 6: Prepare for jobs, career development, and lifelong learning in Physics, by using acquired ICT skills, physics practical skills, and mathematical skills.

Programme Learning outcomes

After the successful completion of modules in different courses of B.Sc. physics the learner will be able to:

PLO I: Apply principles of physics on various physical phenomenon.

PLO II: Calculate physical parameters from the available data.

PLO III: Analyse and interpret the data in various forms (numerical/graphical)

PLO IV: Development of Psycho-motive, analytical, observation skills through lab work.

PLO V: Approach any real life problem with proper assumption, logic and constraints.

PLO VI: Compete and succeed in various qualifying examinations in various related fields. (Higher education/software/industry)

Content

Sr.No	Semester	Course	Course Code	Course title
		number		
			Core Course (CC)	
1	Ι	CC I	23US1PHCC1MNP	MODERN AND NUCLEAR
				PHYSICS
2		CC II	23US1PHCC2BEL	BASIC ELECTRONICS
1	II	CC I	23US1PHCC1THE	HEAT ENGINES AND THIRD
				LAW OF THERMODYNAMICS
2		CCII	23US1PHCC2MEC	MECHANICS AND WAVES
			Open Electives	(OE)
1	Ι	OE I	23US1PHOE1EAM	INTRODUCTION TO ENERGY
				AUDIT AND MANAGEMENT
2		OE II	23US1PHOE2BWD	BASICS OF WEB DESIGNING
3		OE III	23US1PHOE3FES	FUTURE ENERGY SOURCES
4		OE IV	23US1PHOE4IA	INTRODUCTORY
				ASTRONOMY
5		OE V	23US1PHOE5PH	PHOTOGRAPHY

Detailed B.Sc. Physics Syllabus

F. Y. B.Sc. Syllabus with effect from the Academic year 2023-24

Syllabus - F. Y. B.Sc. Physics

Cour	Course Title	Course Code	Cre Mod Lectures Examination		xamination				
se No.			dits	Hour	ule	per module (60 minutes)	Internal Marks	External Marks	Total Marks
SEME	STER I								
Core c	ourses THEOR	Y							
Ι	MODERN AND NUCLEAR PHYSICS	23US1PHCC1MNP	2	30	2	15	40	60	100
II	BASIC ELECTRONI CS	23US1PHCC2BEL	2	30	2	15	40	60	100
Core Course PRACTICAL									
CCPI	PRACTICAL	23US1PHCCP	2	60			40	60	100

SEM	SEMESTER II									
Core	Core courses THEORY									
Ι	HEAT ENGINES AND THIRD LAW OF THERMO DYNAMI CS	23US6PHCC1CLM	2	30	2	15	40	60	100	
II	MECHANI CS AND WAVES	23US6PHCC2ELE	2	30	2	15	40	60	100	
Core	Core Course PRACTICAL									
ССРІ	PRACTIC AL1	23US2PHCCP	2	60			40	60	100	

F.Y. B. Sc. (Physics) SEMESTER I

Core Course- I COURSE TITLE: MODERN AND NUCLEAR PHYSICS COURSE CODE: 23US1PHCC1MNP [CREDITS - 02]

	Course Learning Objective						
After the su	After the successful completion of the Course, the learner will be able to:						
1. Understand the concept of waves and particles and their properties.							
2. Discuss the production and application of X- rays							
3. Exp	lain the working of nuclear reactors.						
4. Des	cribe the various properties of nucleus.						
5. Solv	re numerical based on the topics						
Module 1	Particle Properties of Waves	[15Hr]					
Learning (Dbjectives:						
The module	is intended to						
1. Exp 2. Stuc	lain production and applications of X rays. ly the various particle properties of waves.						
Learning (Outcomes:						
After the su	ccessful completion of the course, the learner will be able to						
1. Und	erstand x rays and its applications.						
2. Exp	lain various particle properties of waves.						
1.1	Black body radiation (no derivation), ultraviolet catastrophe Photoelectric effect, Compton Effect, Pair production and annihilation, gravitational red shift. AB :2.2, 2.3,2.7,2.8	[5 Hr]					
	Problem solving session	[2 Hr]					
1.2	Discovery of X-ray, X-ray production, characteristic x-ray spectra, applications of X-ray, X-ray diffraction AB :2.5,2.6	[6 Hr]					
	Problem solving session	[2 Hr]					

	 References: 1 Arthur Beiser, Concepts of Modern Physics Sixth Edition, McGraw-Hill Publications. 2. Stephen T. Thornton and Andrew Rex ,Modern Physics for scientists and Engineers 4th Edition 	
Module 2	Waves Properties of Particle and Nuclear Physics	[15 Hr]
Learning C	Dbjectives:	
The module	is intended to	
1. Exp	lain the various nuclear properties	
2. Dese	cribe the working of nuclear reactors	
3. Und	erstand the various wave properties of matter.	
Learning C	Dutcomes:	
After the su	ccessful completion of the course, the learner will be able to	
1. Dese	cribe the working of nuclear reactors	
2. Exp	lain various wave properties of matter	
2.1	De Broglie Waves, Davisson Germer Experiment, Heisenberg's Uncertainty Principle	[2 Hr]
	AB: 3.1, 3.5, 3.7,3.8	
	Problem solving session	[2 Hr]
2.2	Nuclear Physics Nuclear properties (size, charge, density, mass, magnetic moment) Binding energy of nuclei	[3 Hr]
	SB: 4.1.3-4.1.5, 5.2 Neutron induced fission, Asymmetrical fission, emission of delayed neutrons, energy released in fission of U235, Fission chain reaction, neutron cycle in thermal nuclear reactor, nuclear reactor	[5 Hr]
	Ref: SB: 6.2,6.3,6.4,6.6,6.7,6.8,6.9 Problem solving session	[3 Hr]
	References:	
	 Arthur Beiser, Concepts of Modern Physics Sixth Edition, McGraw-Hill Publications 	
	2) S.B.Patel, Nuclear Physics, an introduction, 2 nd edition, New	

Age International, Pvt Ltd.

Additional Reference

 Nuclear Physics by Irving Kaplan, Second Edition, Addison Wesley Publication

F.Y. B. Sc. (Physics) SEMESTER I

Core Course- II COURSE TITLE: BASIC ELECTRONICS COURSE CODE: 23US1PHCC2BEL [CREDITS - 02]

Course Learning Objective After the successful completion of the Course, the learner will be able to: 1. Familiarize with diode circuits and applications 2. Apply concepts of number systems 3. Apply the concept of Digital Logic Families with circuit implementation 4. Analyze and design logic circuits 5. Solve numerical based on the topics Module 1 **Diode and Number System** [15 Hr] Learning Objectives: The module is intended to 1. Explain basic terms related with diodes. 2. Study the characteristics and applications of Zener Diode. 3. Demonstrate the ability to convert from one number system to another. **Learning Outcomes:** After the successful completion of the course, the learner will be able to

1. Ana	lyze and measures parameters in basic diode circuits							
2. Des	 Design a voltage stabilizer circuit 							
 Convert the numbers from one system to another. Trues of diada biasing (register). Bridge registifier ringle factor Trues of [15] Hell 								
1.1	Types of diode biasing (review), Bridge rectifier-ripple factor-Types of	[5 Hr]						
	filter circuits-Zener diode-Zener diode as a voltage stabilizer-solving							
	Zener diode circuits.							
	Problem solving sessions	[3 Hr]						
	Reference: PRINCIPLES OF ELECTRONICS V.K.Mehta, Rohit							
	MehtaS. CHAND & COMPANY LTD (6.1,6.6,6.8,6.9,6.10, 6.13							
	,6.14, 6.15, 6.18, 6.21,6.25,6.27)							
1.2	Binary number system- Decimal to binary conversion- Binary to	[5 Hr]						
	decimal conversion-octal number system-hexadecimal number system-							
binary coded decimal code (BCD)-binary addition and binary								
	subtraction using 2's complement.							
	Problem solving sessions	[2 Hr]						
	Refeence: PRINCIPLES OF ELECTRONICS V.K.Mehta, Rohit							
	MehtaS. CHAND & COMPANY LTD (26.3,26.5,26.6,26.7, 26.8,							
	26.9)							
	RP Jain Modern digital electronics (2.4,2.5,2.6)							
Module 2	Digital Electronics	[15Hr]						
Learning (Objectives:							
The module	e is intended to							
1. Stu	ty the logic gates AND. NOT, and OR, including their symbols and truth ta	bles						
2. Lea	rn how logic gates are used in carrying out computation							
3. Des	ign a logical circuit, combining logic gates to solve a problem							
Learning (Learning Outcomes:							
After the su	accessful completion of the course, the learner will be able to							
1. Eva	luate the output of two or more AND, OR, NOT, NAND, NOR, or XC	OR gates						
con	nected together							
	2. Use Karnaugh map (K-map) technique for Boolean algebraic simplification							

2	Logic gates-	Three ba	sic logic g	ates, com	bination o	of basic logic	gates-	[10
	NAND as U	BB-Ex-O	R gate-Boo	lean theo	orems-De	Morgans the	orems-	Hr]
	combination	al logic	circuits-dev	veloping	logic cir	cuit from B	oolean	
	expressions-SOP-POS, Half adder, Karnaugh Maps							
	Problem solv	ving sessi	ons					
	Reference:	PRINCIP	LES OF	ELECTR	RONICS	V.K.Mehta,	Rohit	[5 Hr]
	Mehta	S.	CHAND	&	COM	IPANY	LTD	
	(26.10,26.11	,26.12,26	.13,26.14,2	26.15,	26.16,	26.17,	26.21,	
	26.22,26.24,	26.25,26	.26, 26.28,	26.29, 26	5.30,26.32)		
	RP Jain Moo	lern digita	al electronio	cs (5.3,5.4	4,5.5)			

F.Y. BSc. (PHYSICS) SEMESTER I

COURSE TITLE: LAB COURSE I

COURSE CODE: 23US1PHCCP Credit- 02

Course Learning Objective

After the successful completion of the Course, the learner will be able to:

- 1. Handle measuring instruments.
- 2. Identify various electronic components and to connect them.
- 3. Use graphical representation to determine physical quantities.
- 4. Verify the truth table of ICs and laws

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Demonstrate their practical skills.
- 2. Use apparatus with ease.
- 3. Correlate their physics theory concepts through practical.
- 4. Estimate errors in the measurements

PRACTICAL I

	1	Helmholtz Resonator					
	2	To study of the I-V characteristics of Zener diode.					
	3	Spectrometer (A)					

	4	To verify the truth tables of all logic gates	
	5	To determine the Planck's constant using LEDs	
	6	EX-OR gate (Half Adder & Full Adder)	
	7	De-Morgan's Theorem	
	8	NAND as Universal Building block	
	9	NOR as Universal Building block	
	10	To study full wave Bridge Rectifier	
	11	Viscosity by Poiseuille's law method	
		Skill Experiments	
	1	Use of Vernier Callipers, Micrometre Screw Gauge and Travelling Microscope	
	2	Graph plotting (Exponential, Straight line with intercept, Resonance curve etc.	
\blacktriangleright	Mini seme is mu	mum of 8 experiments from both the Courses should be complet ester. All the skill experiments are to be reported in journal. Cert ust to be eligible to appear for the semester end practical examin	ed in first ified journal ation
Refere	nces:		

FYBSc Sem II syllabus Physics paper – I COURSE TITLE: Thermodynamics COURSE CODE: [CREDITS - 02] Total contact hours : 30

Course Learning Objective

After the successful completion of the Course, the learner will be able to:

- 1. Understand and solve problems involving the concept heat, Path function, process, heat engine, Carnot's cycle and efficiency.
- 2. Understand and solve problems involving laws of thermodynamics, phase change, Triple point, latent heat, petrol engine and diesel engine.
- 3. Understand the concept of entropy in the context of second and third law of thermodynamics.

Module 1

First & second Law of thermodynamics

[15Hr]

Learning Objectives:

The module is intended to

- 1. present a comprehensive and rigorous treatment of classical thermodynamics.
- 2. lay the groundwork for subsequent studies in such fields as fluid mechanics, heat transfer and to prepare the students to effectively use thermodynamics in physics
- 3. Develop an intuitive understanding of thermodynamics by emphasizing the physics and physical arguments.
- 4. Apply second law to general reversible processes and cycles

Learning Outcome:

After the successful completion of the module, the learner will be able to:

- 1. Explain the basic concepts of thermodynamics like system, properties, path functions, first law of thermodynamics and temperature measurement.
- 2. Understand Carnot Cycle to use for further applications.
- 3. State and prove the equivalence of two statements of second law of thermodynamics.
- 4. Define reversible process and state the propositions regarding efficiency of Carnot cycle.

	Concept of heat, The first law, Non adiabatic processes and Heat is a	[3Hr]
1.1	path function, Internal energy,	
	Ref. BS: 4.3,4.5,.4.6, 4.7,4.8.4.10, 4.13	

1.2	Reversible and irreversible process, Heat engines, definition of efficiency, Carnot's ideal heat engine, Carnot's cycle, effective way to increase efficiency, Carnot's engines and refrigerator, coefficient of performance and related problems. Ref. BS: 4.20 To 4.29, 6.11	[7Hr]	
1.3	1.3 Second law of thermodynamics, Carnot's theorem, Phase Change, Triple point of water, Latent heat, Clapeyron's latent heat equation using Carnot's cycle and its applications. Ref : 4.28,4.29, 6.11,16,23,		
Module	Heat engines and Third Law of thermodynamics	[15	
2		Hr]	
Learning	Objectives:		
The modu	le is intended to derstand working of different heat engines		
2. Ca	lculate theoretical efficiencies of heat engines.		
3. Ur	iderstand latent heat and its applications.		
4. Ur	4. Understand the concept of entropy as a state function.		
5. Ur	nderstand the role of entropy in reversible and irreversible processes.		
6. In	roduce the concept of negative temperature.		
 Learning Outcome: After the successful completion of the module, the learner will be able to: Evaluate the feasibility of a thermodynamic cycle using the second law of thermodynamics for understanding, applying, analysing heat engines. Evaluate entropy changes for reversible and irreversible processes and use entropy as a state variable Give different statements of the third law Prove the unattainability of absolute zero 			
2.1	Heat engine : Otto engine, petrol engine, diesel engine, Related	[3 Hr]	
	problems. 4.30 TO 4.33		
2.2	Concept of entropy, change in entropy in adiabatic process, change	[4 Hr]	
	in entropy in reversible cycle, Principle of increase of entropy,		
	Change in entropy in irreversible process.		
	BS : 5.1 to 5.6		
2.3	T-S diagram, Physical significance of Entropy, Entropy of a perfect	[4 Hr]	
	gas, Keivin's merinouynamic scale of temperature, (Omit alternative method using Carnot cycle), the size of a degree. Zero of absolute		
	scale Identity of a perfect gas scale and absolute scale		
	scale, identity of a perfect gas scale and absolute scale.		

Somanyan TRUST

[15Hr]

K J Somaiya	College of	SC	ience & Co	ommerce
Autonomous	(Affiliated	tol	University	of Mumbai)

	BS: 5.7 to 5.9, 5.11 to 5.13			
2.4	Third law of thermodynamics, Zero point energy, Negativetemperatures (not possible), Heat death of the universeBS: 5.15 To 5.18	[4 Hr]		
References:				
	1. BS : Brij Lal, Subrahmanyam, Hemne (S. Chand (Revised Multicoloured			
Ed. 2007)Heat, Thermodynamics and statistical Physics-				

Additional References:

- 1. Yunus A Cengel; Michael A Boles, Thermodynamics: An Engineering Approach by Mcgreq Hill Publication
- 2. M W Zemansky and R H Dittman, Heat and Thermodynamics, McGraw Hill.
- 3. D K Chakrabarti, Theory and Experiments on Thermal Physics, (2006 Ed) Central book

FYBSc Sem II syllabus Physics paper – II COURSE TITLE: Mechanics and Waves COURSE CODE: [CREDITS - 02] Total contact hours : 30

Course Learning Objective

After the successful completion of the Course, the learner will be able to:

- 1. Apply the principle of superposition to two perpendicular SHMs
- 2. Understand the Physics of the compound pendulum
- 3. Apply the wave equation to derive velocity of waves in medium
- 4. Understand how ultrasound is produced and it's applications
- 5. Understand and apply the principles of acoustics

Module 1

Mechanics

Learning Objectives:

The module is intended to

- 1. Lay the groundwork for Classical Mechanics
- 2. Apply Newtonian dynamics to complicated systems such as compound pendulums
- 3. Be able to apply conservation laws to a system of particles

Learning Outcome:

After the successful completion of the module, the learner will be able to:

1. Elucidate the basic principles of mechanics			
 Apply mechanics to a system of particles Solve a wide variety of problems in mechanics 			
5. 50	Composition of two SHM: (Only for review: Definition of SHM and	[3 Hr]	
11	composition of two SHM. (Only for fevrew. Definition of SHM and		
1.1	composition of two parallel SHW s of same period.) Composition of		
	two perpendicular S H M s naving the same period and period in the		
	ratio 1:2, Types of Lissajous figures.	[1 Hr]	
	Problem solving		
	Ref: SPP:2.4.1, 2.4.3, 2.4.		
1.2	Mechanics of a system of particles: Centre of mass of a system of	[4 Hr]	
	particles, Linear momentum of a system of particles and its		
	conservation. Angular momentum of a system of particles and its		
	conservation (only statement). Rocket motion (neglecting gravity)		
	(derivation up to maximum velocity and only final expression for		
	distance travelled)		
	Problem solving	[2 Hr]	
	Ref: TM: 9.2, 9.3, 9.4, 9.11		
1.3	Compound pendulum: Expression for period, maximum and minimum	[3 Hr]	
	time period centers of suspension and oscillations reversible		
	compound pendulum compound pendulum and simple pendulum- a		
	relative study torsion pendulum-measurements of rigidity modulus		
	forative study, torsion pendulum-medsurements of fightly modulus		
	Problem solving		
	Problem solving		
	Problem solving KJ: 1.2 to 1.8	[2 Hr]	
Module 2	Problem solving KJ: 1.2 to 1.8 Waves	[2 Hr] [15Hr]	
Module 2 Learn	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives:	[2 Hr] [15Hr]	
Module 2 Learn The mo	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to	[2 Hr] [15Hr]	
Module 2 Learn The mo 1.	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion	[2 Hr] [15Hr]	
Module 2 Learn The mo 1. 2.	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications	[2 Hr] [15Hr]	
Module 2 Learn The mo 1. 2. 3.	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics	[2 Hr] [15Hr]	
Module 2 Learn The mo 1. 2. 3. Learn	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics ing Outcome:	[2 Hr] [15Hr]	
Module 2 Learn The mo 1. 2. 3. Learn After t	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics ing Outcome: he successful completion of the module, the learner will be able to:	[2 Hr] [15Hr]	
Module 2 Learn The ma 1. 2. 3. Learn After t 1.	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics ing Outcome: he successful completion of the module, the learner will be able to: Solve a wide variety of numerical related to wave motions	[2 Hr] [15Hr]	
Module 2 Learn The mo 1. 2. 3. Learn After t 1. 2.	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics ing Outcome: he successful completion of the module, the learner will be able to: Solve a wide variety of numerical related to wave motions Understand how ultrasonic are produced and applied.	[2 Hr] [15Hr]	
Module 2 Learn The mo 1. 2. 3. Learn After t 1. 2. 3.	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics ing Outcome: he successful completion of the module, the learner will be able to: Solve a wide variety of numerical related to wave motions Understand how ultrasonic are produced and applied. Understand the principles behind acoustic design	[2 Hr] [15Hr]	
Module 2 Learn The mo 1. 2. 3. Learn After t 1. 2. 3.	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics ing Outcome: he successful completion of the module, the learner will be able to: Solve a wide variety of numerical related to wave motions Understand how ultrasonic are produced and applied. Understand the principles behind acoustic design	[2 Hr] [15Hr]	
Module 2 Learn The mo 1. 2. 3. Learn After t 1. 2. 3. 2.1	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics ing Outcome: he successful completion of the module, the learner will be able to: Solve a wide variety of numerical related to wave motions Understand how ultrasonic are produced and applied. Understand the principles behind acoustic design Wave motion in one dimension: General solution of wave equation,	[2 Hr] [15Hr]	
Module 2 Learn The mo 1. 2. 3. Learn After t 1. 2. 3. 2.1	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics ing Outcome: he successful completion of the module, the learner will be able to: Solve a wide variety of numerical related to wave motions Understand how ultrasonic are produced and applied. Understand the principles behind acoustic design Wave motion in one dimension: General solution of wave equation, Classification of waves, Examples of one-dimensional waves, derivation	[2 Hr] [15Hr] [3 Hr]	
Module 2 Learn The mo 1. 2. 3. Learn After t 1. 2. 3. 2.1	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics ing Outcome: he successful completion of the module, the learner will be able to: Solve a wide variety of numerical related to wave motions Understand how ultrasonic are produced and applied. Understand the principles behind acoustic design Wave motion in one dimension: General solution of wave equation, Classification of waves, Examples of one-dimensional waves, derivation of velocity of Transverse wave on string, expression of velocity of	[2 Hr] [15Hr] [3 Hr]	
Module 2 Learn The mo 1. 2. 3. Learn After t 1. 2. 3. 2.1	Problem solving KJ: 1.2 to 1.8 Waves ing Objectives: odule is intended to Give a general overview of wave motion Introduce the learner to Ultrasonic and its applications Give a brief introduction to acoustics ing Outcome: he successful completion of the module, the learner will be able to: Solve a wide variety of numerical related to wave motions Understand how ultrasonic are produced and applied. Understand the principles behind acoustic design Wave motion in one dimension: General solution of wave equation, Classification of waves, Examples of one-dimensional waves, derivation of velocity of Transverse wave on string, expression of velocity of longitudinal waves in rod.	[2 Hr] [15Hr]	

	Ref: SPP: 6.1, 6.2, 6.5, 6.5.1, 6.5.2, 6.5.3.		
2.2	Ultrasonic: Piezoelectric effect. Production of Ultrasonic waves:	[3 Hr]	
	Magnetostriction method and Piezoelectric Crystal Method. Detection.	[0]	
	Properties and applications of Ultrasonic Waves. (Formula of frequency		
	of ultrasonic waves)		
	Problem solving		
	Ref: MS: 5.1 to 5.6	[2 Hr]	
2.3	Acoustics of Buildings: Reverberation, Sabine's formula, Determination	[3 Hr]	
	Acoustics of Buildings, Sound distribution in an auditorium. Distinction	1	
	between sound and noise		
	Sound isolation – transmission loss- noise reduction – Speech privacy-	-	
	construction criteria. Noise control in specific		
	types of buildings like – auditoriums, residential buildings, hotels, school	,	
	hospitals, offices, libraries	[2 Ur]	
	Problem solving		
	Ref: MS: 5.8, 5.9, 5.10, 5.12, 5.13, 5.14, and 5.15		
Refer	ences: SPP: Fundamentals of vibration and waves – S P Puri (Tata McGraw Hill)		
2	TM: Classical Dynamics Thornton and Marian (5th Ed.) Thornson Dools		
2.	Twi. Classical Dynamics – Thornton and Marion (5th Ed.) Thomson Books.		
3.	. MS: : Properties of matter and Acoustics – R Murugeshan and K. Shivaprasath, S		
	Chand & Co. Ltd. (2005-Ed)		
4.	HP: H. S. Hans and S. P. Puri, Tata McGraw Hill (2nd ED.)		
5.	RHW:Fundamentals of Physics. Resnick, Halliday and Walker (9th Ed. 2012). Wiley.		
6.	KJ:College Physics I,Kailas R Jagdeo		

Additional references :

Moore, J.E., Design for Good Acoustics and Noise Control

F.Y. BSc. (PHYSICS) SEMESTER II

COURSE TITLE: LAB COURSE II

COURSE CODE: 23US2PHCCP Credit- 02

Course Learning Objective

After the successful completion of the Course, the learner will be able to:

- 1. Operate various mechanical instruments
- 2. Handle various optical instruments.
- 3. Use graphical representation to determine physical quantities.
- 4. Understand elastic properties of matter.

Course Learning Outcome

After the successful completion of the Course, the learner will be able to:

- 1. Develop the practical skills in physics.
- 2. Use various apparatus effectively.
- 3. Correlate physics theory concepts through practical.
- 4. Apply the concept of errors

PRACTICAL I

1	Spectrometer(µ)			
2	Lens Combination			
3	LASER Divergence			
4	LDR Characteristics			
5	Surface Tension of Biological fluid			
6	Frequency of A.C. mains			
7	Viscosity by Stoke's Method			
8	Flywheel			
9	Torsional Oscillations			
10	Bifilar Pendulum			
11	Y by vibrations			
12	Thermocouple			
Skill Experiments				
1	Spectrometer: Schuster's Method.			
2	Use of DMM.			

-TRUS т

Autonomous (Affiliated to University of Mumbai)

> Minimum of 8 experiments from both the Courses should be completed in first semester. All the skill experiments are to be reported in journal. Certified journal is must to be eligible to appear for the semester end practical examination