

Learning Outcomes based Curriculum Framework

(LOCF)

For B.Sc. Mathematics

Undergraduate Programme

From Academic year 2021-22

Vision & Mission

Mission:

Equip the student with knowledge and skills of their chosen vocation, inculcate values.

Provide them opportunities for all, round growth and prepare them for life.

Vision:

- To equip the students with advanced knowledge and skills in their chosen vocation.
- To provide value-based education and opportunities to students.
- To help them to face challenges in life.
- To nurture a scientific attitude, temperament and culture among the students.
- To continually review, develop and renew the approach to build India of the founder's

dream.

Goals and Objectives:

- To build a strong Academia-Industry bridge.
- To provide flexibility in the courses offered and proactively adapt to the changing needs of students and the society.
- To establish a centre for multidisciplinary activities.
- To mould individuals who would nurture the cultural heritage of our country and contribute to the betterment of the society.

Board of studies in Mathematics

Undergraduate and Post graduate

	Name	Designation	Institute/Industry
He	ead of the Department		
1	Subhash Krishnan	Chairperson	K.J. Somaiya College of
			Science and Commerce
Su	bject Expert nominated t	y Vice-Chancellor	
1	Dr. Ravi Rao	Professor (retired)	TIFR
Su	bject experts		
1	Dr. Chandrasekhar	Professor	UCLA, Los Angeles
	Khare		
2	Dr. Jyotshana Prajapat	Professor	University of Mumbai
3	Mrs. Urmilla Pillai	Associate Professor	CHM College
4	Mr. JaiPrakash Sutar	Associate Professor	Vaze-Kelkar College
		(retired)	
5	Mr. Nimesh G. Punjani	Assistant Professor	Lala Lajpatrai College
Re	epresentative from Indust	ry/corporate sector/allied are	ea
1	Mrs. Rashmi R. Shilvant	Jr. College lecturer	K.J. Somaiya College of
			Science and Commerce
N	1eritorious Alumnus		
1	Mrs. Rashmi R. Shilvant	Jr. College lecturer	K.J. Somaiya College of
			Science and Commerce
Fa	culty of the specialisation		
1	Mrs. Sudha Agrawal	Associate Professor	K.J. Somaiya College of
			Science and Commerce
2	Dr. (Mrs.) Deema		
	Dr. (Mrs.) Reema	Associate Professor	K.J. Somaiya College of
	Khanna	Associate Professor	K.J. Somaiya College of Science and Commerce
3	Khanna Mr. Makarand	Associate Professor Assistant Professor	K.J. Somaiya College of Science and Commerce K.J. Somaiya College of
3	Mr. Makarand Niphadkar	Associate Professor Assistant Professor	K.J. Somaiya College of Science and Commerce K.J. Somaiya College of Science and Commerce
3	Mr. Makarand Niphadkar Mr. Prabhat Kumar	Assistant Professor Assistant Professor	K.J. Somaiya College of Science and Commerce K.J. Somaiya College of Science and Commerce K.J. Somaiya College of

Foreword

Autonomy reflects efforts for excellence in academic performances, capability of self-governance and enhancement in the quality of education. In the year 2012, the UGC and University of Mumbai conferred the Autonomous Status to KJ Somaiya College of Science and Commerce. Post this recognition and having several accolades to our credit, we made significant changes to our existing syllabito reflect the changing business, industrial and social needs. A holistic education that provides opportunities to gain and share knowledge, experiment and develop beyond curriculum, is offered at our college.

Autonomous college carries a prestigious image for the students and the teachers and we have made a collaborative attempt to maintain a high level of quality in the standard of education that we impart.

Structured feedback obtained from the students, alumni and the experts from the industry and the changes suggested by them were duly incorporated in the syllabi. The Board of Studies constituted for each department meets to carry out in depth discussions about different aspects of the curriculum taking into cognizance the recent trends in the discipline.

The IQAC team has facilitated the conduct of a number of workshops and seminars to equip the faculty with the necessary skill set to frame the syllabi and competencies to deliver the same. Training was also provided to employ innovative evaluation methods pertaining to higher cognitive levels of revised Bloom's taxonomy. This ensured the attainment of the learning outcomes enlisted in the syllabus. Audits are conducted to critically review the practices undertaken in teaching, learning and evaluation. Innovative learning methodologies such as project-based learning, experiential learning and flip- class learning practiced by a committed fleet of faculty, supported by several hands have been our unique outstanding propositions. All efforts have been made to nurture the academic ambitions as well as the skills in co-curricular activities of the most important stakeholder i. e. student.

With sincere gratitude, I acknowledge the constant support and guidance extended by Shri Samir Somaiya, President- Somaiya Vidyavihar, and all the esteemed members of the Governing board and Academic council of the college. I also would like to

acknowledge the Heads of the Departments and all the faculty members for their meticulous approach, commitment and significant contribution towards this endeavour for academic excellence.

Dr. Pradnya Prabhu Principal

Acknowledgement

At the outset, I would like to thank our, Principal Dr. Pradnya Prabhu for her guidance and support during the curriculum restructuring process. I am also grateful to all the esteemed members of the Board of Studies, for their constructive suggestions and contributions.

Above all, I am deeply indebted to all the young and vibrant colleagues in the Department of Mathematics for the long and arduous work they have put in during the compiling of the restructured syllabus.

Mr. Subhash Krishnan Chairperson Board of Studies in Mathematics

Table of Contents

Sr. No.	Contents	Page number
	Preamble	1
1	Introduction	1
2	Learning outcome-based approach to Curriculum	2
	Planning	
	2.1 Nature and extent of B.Sc. Mathematics	2
	2.2 Aim of programme	3
3	Graduate attributes in Mathematics	3
4	Qualification descriptors	4
5	Programme Learning Outcomes (PLOs)	6
	5.1 Course Mapping	6
		0
6	Structure of B.Sc. Mathematics Programme	9
	6.1 Course Content	10
	6.2 Credit distribution	14
	6.3 semester schedule	16
	6.4 Course Learning Objectives	19
7	Detailed B.Sc. Mathematics Syllabus	20
	F.Y.B.Sc Mathematics	
8	Teaching Learning Process	56
9	Assessment Methods	57
10	Programme and Course Code Format	62

Preamble

Mathematics is universally accepted as the queen of all sciences. This fact has been confirmed with the advances made in Science and Technology. Mathematics has become an imperative prerequisite for all the branches of science such as Physics, Statistics, Computer Science, Biology etc. This revised syllabus in Mathematics, B.Sc. Programme aims at catering to the needs of the learner in all these branches. Learners who have completed High School (Science) with Mathematics as one of the courses are eligible to take this programme. In High School the focus is on comprehending different tools to solve a problem whereas in the B.Sc. Mathematics programme emphasis will not only be to generate tools to solve but also to prove rigorously, when one can apply them, what condition will be required to be applied to obtain a desired output.

1. Introduction

One of the significant reforms in the undergraduate education is to introduce the Learning Outcome-based Curriculum Framework (LOCF) which makes it learnercentric, interactive and outcome-oriented with well-defined aims, objectives and goals to achieve. Outcome based learning is the principal end of pedagogical transactions in higher education in today's world in the light of exponential changes brought about in science and technology, especially in mathematics, and the prevalent utilitarian world view of the society. The learning outcomes are attained by learners through skills acquired during a programme of study. Programme learning outcomes will include subject-specific skills and generic skills, including transferable global skills and competencies. It would also focus on knowledge and skills that prepare learners for further study, employment, and citizenship. They help ensure comparability of learning levels and academic standards across colleges/universities and provide a broad picture of the level of competence of graduates.

Key outcomes underpinning curriculum planning and development. The LOCF in Mathematics desires the courses of mathematics for B.Sc. with Mathematics as a subject, based on the expected learning outcomes and academic standards which are necessary for the graduates after completing these programmes. The following points were kept in mind while framing the syllabi.

- 1. Learners' attributes
- 2. Qualification descriptors
- 3. Programme learning outcomes

- 4. Course learning outcomes
- 5. Necessity of having elective courses
- 6. Applications of mathematics
- 7. Employability in IT, Finance and other sectors.

2. Learning Outcome based Curriculum Framework

The Bachelor's degree in B.Sc. with Mathematics as a subject, is awarded to the learners on the basis of knowledge, understanding, skills, attitudes, values and academic achievements sought to be acquired by learners at the end of these programmes. Hence, the learning outcomes of mathematics for these courses are aimed at facilitating the learners to acquire these attributes.

Syllabi of mathematics is framed in such a way that it may lead to all round development and delivery of complete curriculum planning. Hence, it provides specific guidelines to the learners to acquire sufficient knowledge during this programme. The objectives of LOCF (Mathematics) are to prepare the syllabi having standard level of study. It is also aimed at prescribing standard norms for teaching-learning process and examination pattern. Hence, the programme has been chalked out in such manner that there is scope of flexibility and innovation in:

- 1. Modifications of prescribed syllabi.
- 2. Teaching-learning methodology.
- 3. Assessment technique of learners and knowledge levels.
- 4. Learning outcomes of courses.
- 5. Inclusion of new elective courses subject to availability of experts

2.1 Nature and extent of B.Sc. Mathematics

Mathematics is the study of quantity, structure, space and change. It has very broad scope in science, engineering and social sciences. The key areas of study in mathematics are:

- 1. Calculus
- 2. Algebra
- 3. Geometry
- 4. Ordinary Differential Equations
- 5. Analysis
- 6. Combinatorics
- 7. Financial Mathematics

Degree programme in Mathematics covers topics from Calculus (one variable and multi variable), Algebra, Linear Algebra, Analysis (Real analysis, Complex analysis and Topology of Metric spaces), Number theory, Numerical methods, Ordinary differential equations, Combinatorics, Financial Mathematics, Fourier analysis, Operation research, programming languages such as C programming, Java programming, Python programming and use of Mathematical software such as Maple, Sage, LaTeX, etc. The depth and breadth of study of individual topics depend on the nature and devotion of learners in specific mathematics programmes. As a part of effort to enhance employability of mathematics graduates, the courses have been designed to include learning experiences, which offer them opportunities in various sectors of human activities. In this context, the experience of the project work in the areas of applications of Mathematics has a key role.

2.2 Aim of Bachelor's degree Programme

The overall aims of B.Sc. with Mathematics as a subject are to:

- 1. Create deep interest in learning mathematics.
- 2. Develop broad and balanced knowledge and understanding of definitions, concepts, principles and theorems.
- 3. Familiarize the learners with suitable tools of mathematical analysis to handle issues and problems in mathematics and related sciences.
- 4. Enhance the ability of learners to apply the knowledge and skills acquired by them during the programme to solve specific theoretical and applied problems in mathematics.
- 5. Provide learners sufficient knowledge and skills enabling them to undertake further studies in mathematics and its allied areas on multiple disciplines concerned with mathematics.
- 6. Encourage the learners to develop a range of generic skills helpful in employment, internships and social activities.

3. Graduate Attributes in Mathematics

Attributes expected from the graduates of B.Sc. Mathematics Programme are: GA 1: **Problem solving skills:** Proficient in analytical, quantitative and technical skills required for problem solving.

3

GA 2: Enquiry based learning: Trained to apply a rigorous, critical and logical approach to enquiry

GA 3: Critical Thinking: Adept in Critical evaluation of the knowledge gained in the advanced fields of Mathematics, IT, Data Science, Machine learning and Management.

GA 4: Interdisciplinary Approach: Implementing the knowledge of Mathematics in Environmental and Socio-economic domains of the society.

GA 5: Communication Skills: Communicate mathematics and interact effectively, clearly and precisely to an audience of peers and faculty.

GA 6: **Social Responsibility:** Socially a responsible citizen and help others to comprehend, assimilate and disseminate principles of mathematics and its applications.

GA7. Cognitive Ability: Help others in hypothetical reasoning, logical thinking, explanation, abstractions, and theories.

4. Qualification descriptors

Upon successful completion of the programme, students receive B.Sc. degree in the mathematics. B.Sc. Mathematics graduates of this department are expected to demonstrate the extensive knowledge of various concepts of Mathematics and its application thus contribute in research, development, teaching, government and public sectors. This programme will establish a foundation for student to further pursue higher studies in Mathematics. The list below provides a synoptic overview of possible employment areas provided by an undergraduate training in Mathematics.

The list below provides a synoptic overview of possible career paths provided by an undergraduate training in Mathematics:

- 1. Software engineer
- 2. Data Scientist
- 3. Data Analyst
- 4. Meteorologist
- 5. Teaching
- 6. Financial Manager/ trader
- 7. Actuary
- 8. Investment Analyst

4

- 9. Research Scientist
- **10.** Game Designer

Job Roles for B.Sc. Mathematics graduate:

After graduation one can seek a professional career as:

- 1. Developer Use mathematical formulas and models to develop platforms for other areas.
- 2. Manager Apply mathematical theories and techniques to solve practical problems in business, engineering, the sciences, or other fields
- 3. Analyst Develop mathematical or statistical models to analyse data
- 4. Information officer Interpret data and report conclusions from their analyses
- 5. Use data analysis to support and improve business decisions
- 6. Researcher -
 - Applied Mathematician Applied mathematicians use theories and techniques, such as mathematical modelling, to solve practical problems. These mathematicians typically work with individuals in other occupations to solve these problems. For example, they may work with chemists and materials scientists and chemical engineers to analyse the effectiveness of new drugs. Other applied mathematicians may work with industrial designers to study the aerodynamic characteristics of new automobiles.
 - Theoretical mathematicians Theoretical mathematicians do research to identify unexplained issues in mathematics and resolve them. They are primarily concerned with exploring new areas and relationships of mathematical theories to increase knowledge and understanding about the field. Although some may not consider the practical use of their findings, the knowledge they develop can be an important part of many scientific and engineering achievements.

Higher Education options for B.Sc. Mathematics graduate:

- 1. M.Sc. in Mathematics/Computer Science/ Information Technology
- 2. MBA
- 3. MCA
- 4. B. Ed.
- 5. Masters in Data Science

- 6. M. Phil.
- 7. Ph.D.
- 8. Postdoctoral

The learners who complete three years of full-time study of an undergraduate programme of study will be awarded a Bachelor's degree in Mathematics.

5. Programme Learning Outcomes

After the successful completion of modules in different courses of B.Sc. Mathematics, the learner will be able to:

- PLO I Emphasize basic concepts of Mathematics in various situations.
- PLO II Apply rigorous treatment to the concepts of Mathematics.
- PLO III Create mathematical models/games through experiential learning.
- **PLO IV** Formulate mathematical models to obtain feasible solutions to realworld problems amenable to mathematical analysis.
- **PLOV** Write programs proficiently in languages like C, Java, R, Python to implement various concepts of Mathematics.
- PLO VI Explore different Mathematical software tools for self-learning.

Semester	PLO	I	II	III	IV	V	VI
	Course						
I	CC I						
	CC II						
	AECC I						
	FC*						
	SEC I						
	STP 1						
	SEC II						
	BCE **						
II	CC I						
	CC II	\checkmark	\checkmark	\checkmark			
	AECC I						
	FC*						

5.1 Course Mapping

	SEC I						
	STP2						
	SEC II						
	ICH1***						
Ш	CC I						\checkmark
	CC II				\checkmark		
	CC III						
	AECC I						
	FC*						
	SEC I						
	STP3						
	SEC II						
	ICH2***						
IV	CC I				\checkmark		
	CC II						
	CC III						
	AECC I						
	FC*						
	SEC I						
	STP4						
	SEC II						
	ICH3***						
			~	√	1		
ř			N N	√ √	1		
		, √			, √		
					1		
	DSE I			,	,		
	DSE II						
	DSE III						
	DSE IV						
	AECC I						
		1	1	1	1	1	1

	EVS						
	SEC I						
	SEC II						
VI	CC I	V					
	CC II	\checkmark		\checkmark			
	CC III						
	CC IV	\checkmark	\checkmark	\checkmark			
	DSE I	V					
	DSE II	\checkmark				\checkmark	
	DSE III					\checkmark	\checkmark
	DSE IV	\checkmark				\checkmark	\checkmark
	AECC I						
	EVS						
	SEC I				\checkmark		\checkmark
	SEC II				\checkmark		\checkmark
	SEC I				$\overline{\mathbf{v}}$		$\overline{\mathbf{v}}$
	SEC II						

* FC = Foundation Course

** BCE = Basic communication in English

*** ICH = Indian Cultural Heritage (Value Education)

Structure of B.Sc. Mathematics programme

The curriculum frame work is designed around the choice-based credit system (CBCS). The programme consists of three years and six semesters (two semesters per year). To acquire a degree in B.Sc. Mathematics a learner must study:

- 1. Core Courses (CC):
- a) A course which is required to be opted by a candidate as a core course.
- b) There are eighteen Core courses (CC), two each, in semesters I and II; three each in semesters III and IV and four each in semesters V and VI (for 6 units).
- c) Each Core Courses is compulsory.
- d) Each CC is comprised of 2 credits for theory ie. 30 hours; 3 lectures of each 50 min per week and 1 credit for practical of two hour per week in every semester.
- e) The purpose of fixing core papers is to ensure that the institution follows a minimum common curriculum so as to adhere to common minimum standard with other universities/institutions.
- f) The course designed under this category aims to cover the basics that a student is expected to imbibe in that particular discipline.

2. Ability Enhancement Compulsory Courses (AECC)

- a) There are six AECC courses. Student must take one Ability Enhancement Compulsory Courses (AECC) in semesters I-VI.
- b) The AECC courses offered are:

AECC 1- Foundation Course (2 credits) (Semester 1-IV),

AECC 2-Environmental Science (2 credits) (Semester V and VI).

3. Skill Enhancement Course (SEC):

- a) They are designed to provide skill-based knowledge and contain both lab/hands on training/field work.
- b) The main purpose of these courses is to provide life skills in hands on mode to increase employability.
- c) There are twelve skill enhancement courses offered. Each student is supposed to take two in Sem I-IV (Sports Training Programme, Basic Communication in English and Indian Cultural Heritage) of 1 credit each. There are four discipline-related skill enhancement courses (SEC), two offered in each

semester V and semester VI each of 2 credit. The student is supposed to choose one SEC in Semester V and VI.

4. Discipline Specific Elective Courses (DSE):

- a) Elective courses offered under the main discipline subject of study.
- b) There are eight discipline specific elective courses (DSE), four in each semesters V and VI. The student is supposed to choose two out of four in each semester V and VI.
- c) Each DSE theory course is of 2 credits i.e. 30 hours; 3 lectures of each 50 min per week and 1 credit for practical of two hour per week in every semester.
- d) Research Project is offered as an option for the student to choose in lieu of a regular DSE course

5. Generic Elective Course (GE)

- a) Students can opt for one interdisciplinary Generic Elective Course (GE) in each of the semester V and VI.
- b) Generic elective courses are offered in cognate disciplines by different departments in the college.
- c) Credits for these courses are granted as additional credits.

Sr. No	Semester	Course number	Course Code	Course title	
Core C	ourse (CC)				
1	I	CC I	21USIMTCCIANL	Real Analysis – I	
2		CC II	21USIMTCC2DIS	Discrete Mathematics	
3		CC P	2IUSIMTCCP	Mathematics Practical	
4	II	CC I	2IUS2MTCCICAL	Calculus – I	
5		CC II	2IUS2MTCC2ALG	Algebra – I	
6		CC P	21US2MTCCP	Mathematics Practical	
7	III	CC I	22US3MTCCIANL	Real Analysis – II	
8		CC II	22US3MTCC2LIN	Linear Algebra – I	
9		CC III		Elective course: (anyone)	
			22US3MTCC3COM	Enumerative	
			22US3MTCC4GRA	Combinatorics	

6.1 Content

				Graph Theory		
10		CC P	22US3MTCCP	Mathematics Practical		
11	IV	CC I	22US4MTCCIODE	Ordinary Differential		
				Equation		
12		CC II	22US4MTCC2LIN	Linear Algebra – II		
13		CC III		Elective course: (anyone)		
			22US4MTCC3NUM	Numerical Method		
			22US4MTCC4FIN			
				Financial Mathematics		
14	N (Mathematics Practical		
15	V		23US5MTCCIDIF	Multivariate Differential		
16		CC II	23US5MTCC2ALG	Algebra – II		
17		ССРТ	23US5MTCCPI	Mathematics Practical –		
				Calculus and Algebra		
18		CC III	23US5MTCC3ANL	Analysis – I		
19		CC IV	23US5MTCC4NTC	Number Theory and		
				Cryptography		
20		CC P II	23US5MTCCP2	Mathematics Practical –		
				Analysis and Number Theory		
21	VI	CC I	23US6MTCCIINT	Multivariate Integral Calculus		
22		CC II	23US6MTCC2ALG	Algebra – III		
23		CC P I	23US6MTCCPI	Mathematics Practical –		
				Calculus and Algebra		
24		CC III	23US6MTCC3ANL	Analysis II		
25		CC IV	23US6MTCC4CAN	Complex Analysis		
26		CC P II	23US6MTCCP2	Mathematics Practical –		
				Metric Topology and		
				Complex Analysis		
		Disci	ipline Specific Electives	s (DSE)		
1	V	DSE I	23US5MTDSIACP	Algorithm and C		
				programming		
2		DSE II	23US5MTDS2AGT	Advance graph Theory		
3		DSE III	23US5MTDS3OPRI	Operation Research – I		
4		DSE IV	23US5MTDS4SNC	Swayam / NPTEL Course		

5		DSE P	23US5MTDSP3	DSE Practical
6	VI	DSE I	23US6MTDSIAJP	Java programming
7		DSE II	23US6MTDS2OPR2	Operation Research – II
8		DSE III	23US6MTDS3GTC	Game Theory
9		DSE IV	23US6MTDS4SNC	Swayam / NPTEL Course
10		DSE P	23US6MTDSP3	DSE Practical
	Skill Enhand	cement Co	ourses (SEC)	
1	I	SEC I	21USISEISTPI	Sports Training Programme
				Level I
2		sec II	21USISE2BCE	Basic Communication in
				English
3	II	SEC I	21US2SEISTP2	Sports Training Programme
				Level II
4		sec II	21US2SE2ICHI	Indian cultural Heritage Level
				I (value education)
5	III	SEC I	22US3SEISTP3	Sports Training Programme
				Level III
6		sec II	22US3SE2ICH2	Indian cultural Heritage Level
				II (value education)
7	IV	SEC I	22US4SEISTP4	Sports Training Programme
				Level IV
8		SEC II	22US4SE2ICH3	Indian cultural Heritage Level
	N (III (value education)
9	V	SEC I	23US5MTSEIMAXI	Maxima - I
10		SEC II	23US5MTSE2SAGI	Sage - I
11		SEC III	23US5MTSE3MAPI	Maple - I
12		SEC IV	23US5MTSE4LATT	Lalex - I
13	> //	SEC V	23US5MTSE5SQL	SQL
14	VI	SEC I	23US6MISEIMAX2	/viaxima-II
15				Same II
1)				Sage - II
16			23US6/WITSE3/MAP2	
10				
Ið		SEC V	23USONITSE3PLSQL	PL/SQL

Sometyee TRUST

Ability	Ability Enhancement Compulsory Course (AECC)								
1	I AECC I		21USIAEIFOC	Foundation Course					
2	II AECC I		2IUS2AEIFOC	Foundation Course					
3	III	AECC I	22US3AEIFOC	Foundation Course					
4	IV	AECC I	22US4AE1FOC	Foundation Course					
5	V	AECC I	23US5AEIEVS	Environmental Science					
6	VI	AECC I	23US6AEIEVS	Environmental Science					

Semester	Course	Course title		Credits	
	number		Theory	Practical	Total
I	CC I	Real Analysis – I	2	1	3
	CC II	Discrete Mathematics	2	1	3
	AECC I	Foundation Course	2	-	2
	SEC I	Sports Training	1	-	1
		Programme Level I			
	SEC II	Basic Communication in	1	-	1
		English			
II	CC I	Calculus – I	2	1	3
	CC II	Algebra – I	2	1	3
	AECC I	Foundation Course	2	-	2
	SEC I	Sports Training	1	-	1
		Programme Level II			
	SEC II	Indian cultural Heritage	1	-	1
		Level I (value education)			
III	CC I	Real Analysis – II	2	1	3
	CC II	Linear Algebra – I	2	1	3
	CC III	Elective course: (anyone)	2	1	3
		1.Enumerative			
		Combinatorics			
		2.Graph Theory			
	AECC I	Foundation Course	2	-	2
	SEC I	Sports Training	1	-	1
		Programme Level III			
	SEC II	Indian cultural Heritage	1	-	1
		Level II (value education)			
IV	CC I	Ordinary Differential	2	1	3
		Equations			
	CC II	Linear Algebra – II	2	1	3
	CC III	Elective course: (anyone)	2	1	3
		1.Numerical Method			
		2.Financial Mathematics			

6.2 Credit distribution for B.Sc. Mathematics

	AECC I	Foundation Course	2	-	2
	SEC I	Sports Training Programme Level IV	1	-	1
	SEC II	Indian cultural Heritage Level III (value education)	1	-	1
V	CC I	Multivariate Differential Calculus	2	1	3
	CC II	Algebra – II	2	1	3
	CC III	Analysis – I	2	1	3
	CC IV	Number Theory and Cryptography	2	1	3
	DSE I/II	 A. Algorithm and C programming B. Swayam / NPTEL Course 	2	1	3
	DSE III/IV	C. Operation Research – I D. Advance graph Theory	2	1	3
	AECC I	Environmental science	1	-	1
	SEC I/II	A. Maxima -I B. Sage -I C. Maple -I D. LaTeX -I E. SQL		2	2
VI	CC I	Multivariate Integral Calculus	2	1	3
	CC II	Algebra – III	2	1	3
	CC III	Analysis II	2	1	3
	CC IV	Complex Analysis	2	1	3
	DSE I/II	A. Java programming B. Swayam / NPTEL Course	2	1	3

DSE III/IV	C. Operation	2	1	3
	Research – II			
	D. Game Theory			
AECC I	Environmental science	1	-	1
AECC I	Environmental science	1		1
SEC I/II	A. Maxima -2		2	2
	B. Sage -2			
	C. Maple -2			
	D. LaTeX -2			
	e. pl/sql			

6.3 Semester Schedule

Semester	Core Course number	Core Course (CC) title	Discipline Specific Electives (DSE)	Generic Elective Course (GE)	Skill Enhancem ent Course (SEC)	Ability Enhancement Compulsory Course (AECC)
Ι	CC I	Real Analysis – I	-	-	1]Sports Training	Foundation Course
	CC II	Discrete Mathematics	-	-	Programm e Level I 2]Basic Communic ation in English	
II	CC I	Calculus – I	-	-	1] Sports	Foundation
	CC II	Algebra – I		_	Training Programm e Level II 2] Indian cultural Heritage Level I	Course

					(Value	
					Education)	
III	CC I	Real Analysis	-	-	1] Sports	Foundation
		– II			Training	Course
	CC II	Linear	-	-	Programm	
		Algebra – I			e Level III	
	CC III	Elective	-	-	2] Indian	
		course:			cultural	
		(anyone)			Heritage	
		1.Enumerative			Level II	
		Combinatori			(Value	
		CS			Education)	
		2.Graph				
		Theory				
IV	CC I	Ordinary	-	-	1] Sports	Foundation
		Differential			Training	Course
		Equation			Programm	
	CC II	Linear	-	-	e Level IV	
		Algebra – II			2] Indian	
	CC III	Elective	-	-	cultural	
		course:			Heritage	
		(anyone)			Level III	
		1.Numerical			(Value	
		Method			Education)	
		2.Financial				
		Mathematics				
V	CC I	Multivariate	DSE I/II	GE	SEC I/II	Environment
		Differential	and			al Science
		Calculus	DSE III/IV			
	CC II	Algebra – II				
	CC III	Analysis – I				
	CC IV	Number				
		Theory and				
		Cryptograph				
		У				

K J Somaiya College of Science & Commerce
Autonomous (Affiliated to University of Mumbai)

VI	CC I	Multivariate	DSE I/II	GE	sec I/ II	Environment
		Integral	and			al Science
		Calculus	DSE III/IV			
	CC II	Algebra – III				
	CC III	Analysis II				
	CC IV	Complex				
		Analysis				

6.4 Course Learning Objectives

The three-year undergraduate Mathematics programme is designed to familiarize and strengthen students with core Mathematics concepts and rigorously prove results in Mathematics. The objective of structured syllabus in Mathematics is to make the concepts and basics of Mathematics clear and interesting to students and also to ensure the development of vertical growth in the subject. The idea behind this is to enable students to develop analytical skills and critical thinking.

It is our attempt that students achieve this objective through systematic reading and class lectures and through feedback on their written work-assignments, project/research papers, presentations, discussions, debates, etc. our intention is to enable students to formulate cogent arguments, presenting the necessary evidence to establish these, based on a training in Mathematics.

7. Detailed B.Sc. Mathematics Syllabus

F. Y. B.Sc. Syllabus with effect from the Academic year 2021–2022

Syllabus –	F. \	'. B.Sc.	Mathematics
------------	------	----------	-------------

Cours	Course	Course	Credit	Hr.	Periods	Module	Lectures	Ex	aminatio	n
e No.	Title	Code	S		(50 min)		per module (50 minutes)	Internal Marks	External Marks	Total Marks
SEMES	TER I									
Core c	ourses THEC	ORY								
I	Real	2IUSIMTI	2	30	36	4	12	40	60	100
	Analysis –									
	I									
II	Discrete	2IUSIMT2	2	30	36	4	12	40	60	100
	Mathem									
	atics									
Core c	ourses PRAC	TICAL		•						
	Mathem	2IUSIMTC	2	75	90			40	60	100
	atics	Cr								
	Practical									
SEMES	TER II									
Core c	ourses THEC	ORY								
I	Calculus	21US2MT1	2	30	36	4	12	40	60	100
	– I									
II	Algebra –	21US2MT2	2	30	36	4	12	40	60	100
	1									
Core c	Core courses PRACTICAL									
	Mathem	2IUS2MT	2	75	90			40	60	100
	atics	ССР								
	Practical									

F.Y. B. Sc. (Mathematics) SEMESTER I Core Course- I COURSE TITLE: Real Analysis - I COURSE CODE: 21USIMTCCIANL CREDITS - O2]

Course Learn	ning Outcomes			
After the suc	ccessful completion of the Course, the learner will be able to:			
CLO Pro	ve analytical properties of real numbers.			
1:				
CLO Pro	ve results on convergence of sequence			
2:				
CLO Pro	ve results on sub sequences and Cauchy sequences in R.			
3:				
CLO Pro	ve or disprove convergence of series using different tests.			
4:				
CLO App	bly results proved in various situations in mathematics and real	I–		
5: woi	rld.			
Module 1	Real Numbers and their basic properties.	[11L]		
Learning Ob	jectives			
The module	is intended to:			
1. Learn the	e basic properties of real numbers			
2. Develop	tools for future use			
Learning Ou	tcomes			
After the suc	ccessful completion of the module, the learner will be able to:			
1. Distinguis	h between bounded / unbounded sets and intervals			
2. Apply co	ncept of neighbourhood			
3. Use the t	cools developed effectively in understanding the arguments, a	nd		
solving problems				
1.1	Axioms on <i>R</i> , the set of real numbers with respect to [1	L]		
	addition and multiplication.			
	Commutative, associative and distributive properties of			
	the operations of addition and multiplication.			
	Existence and uniqueness of the additive identity, and			
	the multiplicative identity.			

Autonomous (Affiliated to University of Mumbai)

	Existence and uniqueness of additive inverse of every	
	real number and multiplicative inverse of every non	
	zero real number.	
	Existence of R^+ , the set of positive real numbers as a	
	maximal subset of real numbers which contains 1 and is	
	closed for addition as well as multiplication.	
	Order axioms and law of trichotomy. The order	
	relation \leq and its properties w.r.t. addition and	
	multiplication.	
	(To be introduced in class, questions to be asked only	
	for Internal)	
	This is a self-study submodule	
1.2	Absolute value function and its properties. Triangle	[1.5L]
	inequality. Its consequence: $ x - y \le x - y $.	
1.3	Basic inequalities arising out of non-negativity of	[2L]
	square of a real number such as	
	Cauchy Schwartz Inequality for real numbers using	
	Euclidean norm.	
	Arithmetic and Geometric means of a finite set of real	
	numbers and A.M. \geq G.M. inequality.	
1.4	Intervals in \mathbb{R} . Concept of infinity (∞). Open and	[O.5L]
	closed intervals, bounded and unbounded intervals.	
	ε -neighborhood of a point in \mathbb{R} . Deleted ε -	
	neighborhood of a point. Hausdorff property of \mathbb{R} .	
1.5	Upper bound and lower bound of a subset of \mathbb{R} .	[3L]
	Least upper bound property of \mathbb{R} .	
	Supremum (lub) and infimum (glb) of a non-empty	
	subset of ℝ.	
	Characterization of lub and glb in terms of ε .	
	Effect of translation and multiplication of every	
	element by a non-zero scalar in case of a bounded	
	subset of \mathbb{R} . Lub and Glb of sum of two non-empty	
	bounded subset of \mathbb{R}	
1.6	Archimedean property of real numbers.	[3L]

	Its equivalence with the Density theorem for rational	
	numbers	
	Density theorem for irrational numbers.	
Reference boo	uks	
R.G. Bart and Son	tle and D. R Sherbert; Introduction to Real Analysis <i>;</i> John Wiley as (Asia) P.Ltd	
• R. R. Go	ldberg: Methods of Real Analysis: Oxford and IBH.	
Ajit Kum	nar, S. Kumaresan; A Basic Course in Real Analysis; CRC Press.	
Ghorpace	de, Sudhir R., Limaye, Balmohan V.; A Course in Calculus and Rea	
Analysis;	; Springer.	
,		
Additional Refe	erence books:	
• H. Antor	n, I. Bivens and S. Davis; Calculus; John Wiley and Sons, Inc.	
• G.B. Tho	omas and R.L. Finney; Calculus; Pearson Education.	
• T. M. Ap	postol; Calculus (Vol. I); John Wiley and Sons (Asia) P. Ltd.	
• W. Rud	in; Principles of mathematical Analysis; Tata McGraw- Hill	
Educatio	on.	
• Maron;	Calculus of one variable.	
• Shanti N	Jarayan and Raisinghania; Elements of Real Analysis; S. Chand	
Module 2	Sequence of Real numbers [9L]	
Learning Object	ctives	
The aim of the	e module is to:	
1. Understand t	the meaning of a sequence	
2. Understand	the concept of limit of a sequence	
3. Enable the le	earner to solve problems using definitions and develop the theo	ory
to reduce the	complexity of definition	
4. Apply the LL	JB property to monotonic bounded sequences	
5. Obtain e, thr	rough a sequence	
Learning Outco	omes	
The learner wil	Il be able to:	
The learner wil 1. Use of seque	II be able to: ntial approach for solving problems	

Some T R U S

K J Somaiya College of Science & Commerce
Autonomous (Affiliated to University of Mumbai)

2.1	Sequence of real numbers, ε – n ₀ definition,	[4L]
	limit of a sequence, Uniqueness of Limit.	
	Bounded Sequence, Convergent sequence is	
	bounded.	
	Algebra of convergent sequences (Self-Study)	
	Standard examples such as a ⁿ , a ^{1/n} , n ^{1/n} , (n!) ^{1/n} .	
	The number <i>e</i> as a limit of a sequence.	
2.2	monotonic sequences, every monotone	[5L]
	bounded sequence is convergent. Examples of	
	sequence of rational numbers converging to	
	$\sqrt{a}, a \in R,$	
	Standard examples such as a^n , $a^{1/n}$, $n^{1/n}$, $(n!)^{1/n}$.	
	The definition of number <i>e</i> as a limit of a	
	sequence.	
	Every real number can be expressed as a limit	
	of a sequence of rational numbers and also as	
	limit of sequence of irrational numbers.	

Reference books

- R.G. Bartle and D. R Sherbert; Introduction to Real Analysis; John Wiley and Sons (Asia) P.Ltd.
- R. R. Goldberg; Methods of Real Analysis; Oxford and IBH.
- Ajit Kumar, S. Kumaresan; A Basic Course in Real Analysis; CRC Press.
- Ghorpade, Sudhir R., Limaye, Balmohan V.; A Course in Calculus and Real Analysis; Springer.

Additional Reference books:

- H. Anton, I. Bivens and S. Davis; Calculus; John Wiley and Sons, Inc.
- G.B. Thomas and R.L. Finney; Calculus; Pearson Education.
- T. M. Apostol; Calculus (Vol. I); John Wiley and Sons (Asia) P. Ltd.
- W. Rudin; Principles of mathematical Analysis; Tata McGraw- Hill Education.
- Maron; Calculus of one variable.
- Shanti Narayan and Raisinghania; Elements of Real Analysis; S. Chand

Module 3	Subsequences and [9L]	
	Cauchy Sequences	
	over R	
Learning Objective	es	
The aim of the mo	odule is to:	
1. Understand the	fact that for a convergent sequence, all subsequence	s give the
same limit		
2. Study of limit su	perior and limit inferior which allows to analyze the	behavior
of a sequence		
3. Explore Cauchy	sequence as an alternative definition to convergent s	sequence
Learning Outcome	es	
The learner will be	e able to:	
1. Judge whether t	he sequence is Cauchy	
2. Compute limit s	uperior and limit inferior	
3. Solve problems	based on subsequences.	
3.1	Subsequence of a sequence. Convergence of a	[4L]
	sequence implies convergence of its subsequence	
	but not conversely. Convergence of $(x_{2n}), (x_{2n-1})$	
	to the same limit p implies convergence of (x_n)	
	to <i>p</i> .	
	Every bounded sequence has a convergent	
	subsequence.	
3.2	Definition of a Cauchy sequence. Every convergent	[5L]
	sequence is Cauchy (Self-Study). Every Cauchy	
	sequence is bounded. If a subsequence of a	
	Cauchy sequence is convergent then the sequence	
	itself is convergent. Every Cauchy sequence of real	
	numbers is convergent. Completeness of R.	
Reference books		1
• R.G. Bartle	and D. R Sherbert; Introduction to Real Analysis; John	ı Wiley
and Sons (A	Asia) P.Ltd.	

- R. R. Goldberg; Methods of Real Analysis; Oxford and IBH.
- Ajit Kumar, S. Kumaresan; A Basic Course in Real Analysis; CRC Press.

• Ghorpade, Sudhir R., Limaye, Balmohan V.; A Course in Calculus and Real Analysis; Springer.

Additional Reference books:

- H. Anton, I. Bivens and S. Davis; Calculus; John Wiley and Sons, Inc.
- G.B. Thomas and R.L. Finney; Calculus; Pearson Education.
- T. M. Apostol; Calculus (Vol. I); John Wiley and Sons (Asia) P. Ltd.
- W. Rudin; Principles of mathematical Analysis; Tata McGraw- Hill Education.Maron;
- Calculus of one variable.
- Shanti Narayan and Raisinghania; Elements of Real Analysis; S. Chand

Module 4	Series of real	[7L]					
	numbers						
Learning Objective	es						
The aim of the mo	odule is to:						
1. Understand that	a sequence can be	written as a series and vice ver	sa				
2. Prove the summ	ability of series in t	erms of sequences of partial su	ms for simple				
examples							
3. Expose the learn	ner to use various te	ests of convergence and recogr	nize the				
appropriate tests v	which can be applie	d for particular problems					
4. Appreciate the i	importance of Geo	metric series and p-series in sol	ving				
problems on comp	oarison test						
5. Understand that	these tests are not	z exhaustive					
Learning Outcome	es						
The learner will be	able to:						
1. Analyse the given	n problem with app	propriate choice of test					
4.1	Series of real number	ers. Terms of a series and	[3L]				
I	oartial sums.						
5	Summability / Convergence of a real series in						
terms of convergence of its partial sums.							
Convergence of series implies convergence of n th							
term to zero, and converse is false. Simple							
	examples of conver	gent series and					

	divergent series without involving tests.	
	Sum of two convergent series is convergent. If	
	every term of a convergent series is multiplied by	
	a constant, then the resultant series is	
	convergent. Term wise product of two	
	convergent series does not result into a	
	convergent series.	
4.2	Geometric series. It converges if and only if the	[2L]
	common ratio lies in (-1,1).	
	Series of nonnegative terms. Cauchy's	
	condensation test. P-series converges if and only	
	if p >1.	
	Comparison test in simple form.	
4.3	Alternating series and Leibnitz' test.	[2L]
	Absolute convergence and conditional	
	convergence. Absolute convergence implies	
	conditional convergence and converse is false.	
	Ratio test and root test (Statement only) and	
	problems based on these tests.	

Reference books

- R.G. Bartle and D. R Sherbert; Introduction to Real Analysis; John Wiley and Sons (Asia) P.Ltd.
- R. R. Goldberg; Methods of Real Analysis; Oxford and IBH.
- Ajit Kumar, S. Kumaresan; A Basic Course in Real Analysis; CRC Press.
- Ghorpade, Sudhir R., Limaye, Balmohan V.; A Course in Calculus and Real Analysis; Springer.

Additional Reference books:

- H. Anton, I. Bivens and S. Davis; Calculus; John Wiley and Sons, Inc.
- G.B. Thomas and R.L. Finney; Calculus; Pearson Education.
- T. M. Apostol; Calculus (Vol. I); John Wiley and Sons (Asia) P. Ltd.
- W. Rudin; Principles of mathematical Analysis; Tata McGraw- Hill Education.

- Maron; Calculus of one variable.
- Shanti Narayan and Raisinghania; Elements of Real Analysis; S. Chand

Question Paper Template

F.Y. B. Sc. (Mathematics) SEMESTER I Core Course- I COURSE TITLE: Real Analysis - I COURSE CODE: 2IUSIMTCCIANL CREDITS - O2]

Module	Remembering/ Knowledge	Understandin g	Applyin g	Analysin g	Evaluatin g	Creatin g	Total marks
I	2	8	5	5	-	-	20
II	2	8	5	-	-	5	20
111	2	8	5	-	5	-	20
IV	2	8	5	5	-	-	20
Total marks per objective	8	32	20	10	5	5	80
% Weightage	10%	40%	25%	12.5%	6.25%	6.25%	100

F.Y. B. Sc. (MATHEMATICS) SEMESTER I

Core Course-II

COURSE TITLE: Discrete Mathematics

COURSE CODE: 21USIMTCC2DIS CREDITS - O2]

Course Learning Outcomes

After the	After the successful completion of the Course, the learner will be able to:					
CLO 1:	CLO 1: Classify various types of relations					
CLO	Classify various	s types of fund	ctions.			
2:						
CLO	Prove results o	f induction, b	inomial theoren	n, divisibility, GC	CD and	
3:	LCM.					
CLO	Prove properti	es of prime n	umbers.			
4:						
CLO	Apply results p	roved and co	ncepts learnt to	solve problems	s and to	
5:	construct the	set of integers	s and set of ratio	onal numbers, fi	nding	
	maximal, minin	nal element u	ısing Zorn's lemı	ma.		
	Module 1		Sets and	[9]	L]	
			relations			
Learning) Objectives					
The lear	ner should be a	ble to:				
1. Identi	fy reflexive, syn	nmetric, anti-s	symmetric, trans	itive, equivalen	ce relations	
and also	give examples	and counter e	examples for the	e same		
2. Const	truct equivalence	ce classes and	analyze the con	struction of int	egers from	
natural i	numbers and th	e set of ratior	nal numbers fror	n the set of inte	egers	
through	equivalence cla	asses				
3. Apply	Zorn's Lemma	to simple part	ially ordered set	ts		
Learning) Outcomes					
At the end of the module the learner will be able to						
1. Distinguish between various types of relations and illustrate them as well						
2. Construct integers from natural numbers and the set of rational numbers from						
the set of integers						
3. Apply their knowledge of partially ordered sets, totally ordered sets and						
obtain t	he maximal and	l minimal elen	nent			
	1.1	Review of:			[1]]	

	Union and intersection of sets.	
	Complement of a subset. Power set of a	
	finite set. Distributive properties of sets.	
	De-Morgan's law.	
	Difference and symmetric difference of	
	sets.	
	Cartesian product of sets.	
	(Questions to be asked only in internal for	
	maximum 5 marks)	
	(Self-Study Submodule)	
1.2	Definition and examples of relations.	[3L]
	Reflexive, symmetric, anti-symmetric,	
	transitive equivalence relations. Examples.	
	Equivalence class and partitions of sets.	
	Equivalence relations induce partitions and	
	any partition of a set induces an	
	equivalence relation on the set.	
1.3	Construction of integers from the set of	[2L]
	natural numbers through equivalence	
	classes.	
	Construction of the set of rational numbers	
	from the set of integers through	
	equivalence classes.	
1.4	Partially ordered set, totally ordered set,	[3L]
	maximal and minimal element of a set with	
	a given property.	
	Zorn's Lemma (only Statement) and its	
	simple applications.	

References:

- Discrete Mathematics by Norman L. Biggs, Clarendon Press.
- Elementary Number theory by David Burton Seventh Edition, McGraw Hill Education (India) Pvt Ltd.

Additional References:

• Introduction to theory of numbers by Niven and S. Zuckerman, Wiley Eastern.

Somanya TRUST

A survey of Modern Algebra by G. Birkoff and S. Maclane Mac Milan						
Modul	e 2	Functions	[9L]			
Learning Objectives						
The learners should	l be able to					
(1) Analyse function	s and identify inject	tive, surjective and	d bijective func	tions		
(2) Apply this know	ledge to composite	e of functions				
(3) Comprehend b	nary operations and	d identify finite, co	ountable and in	finite sets.		
Learning Outcome	S					
At the end of the I	nodule the learner	will be able to				
1. Classify relations	as functions and no	n-functions				
2. Differentiate var	ious types of function	ons				
3. Illustrate binary	operations, finite, co	ountable and infin	ite sets			
2.1	Definition of a fun	ction.		[3L]		
	Domain, co-doma	in and the range	of a function			
	with examples of s	special functions s	such as			
	constant, identity,	inclusion, project	ion, floor			
	and ceiling function	ons.				
	Injective, surjective	e and bijective fui	nctions.			
2.2	Composition of fu	nctions. Compos	site of	[3L]		
	bijective function	is bijective but co	nverse is not			
	true. If gof is bijec	tive then f is injec	tive and g is			
	surjective.					
	Invertible function	ns and the inverse	of a function.			
	If f is bijective th	en its inverse is al	so a bijective			
	function. D	Direct and inverse	image.			
2.3	Binary operations,	simple examples.		[3L]		
	Finite and infinite	sets, Countable se	ets, cardinality			
	0	f set, power set.				
References:						
Discrete Ma	thematics by Norm	an L. Biggs, Clare	ndon Press.			
• Elementary Number theory by David Burton Seventh Edition, McGraw Hill						
Education (India) Pvt Ltd.						

Additional References:

Introduction to theory of numbers by Niven and S. Zuckerman, Wiley Eastern.						
• A survey of Modern Algebra by G. Birkoff and S. Maclane Mac Milan						
	Module 3	Natural numbers and	[9L]			
		Integers				
	Objectives					
The learn	her will be able to					
I. Apply t	the well ordering princi	ple to prove the principles of in	duction			
2. Prove	the Binomial Theorem	using Pascal's identity and apply	it to const	ruct		
the Pasca	al's triangle		•••••			
3. Study	the divisibility propertie	es of integers and prove the Div	Ision Algori	itnm		
and its a	pplications	or wing the fuelidean Algerith				
4. Calcu	ate the GCD of 2 integ	jers using the Euclidean Algoritr	im			
Learning	Ouccomes ad of the module, the l	earner will be able to				
At the er	a of the module, the f	the First and Second Principles of	finduction			
1. Prove v	anous identities using i	lacrithm by finding the CCD	n inductior	1		
2. Demonstrate the Euclidean Algorithm by finding the GCD						
).1	There is no natural nu	imbor botwoon 1 and 2	Jel.	[4L]		
	First and second princ	sinle of mathematical induction				
	Pascal's identity					
	Binomial theorem and	d simple consequences. Pascal's t	rianglo			
30	Definition and elemen	tary properties of divisibility in	7	[5]]		
).2	Division Algorithm and	d applications	Δ.	Uц		
	Division Algorithm and applications.					
	including C C D, of two integers 'a' and 'b' (not both zero) can					
	be expressed as $ma + nb$					
	Proof of the lemma 'lf	$f_a = ba + r$ then GCD (a, b) = (h), r)'			
	Euclidean Algorithm.		.,.,			
	Euclid's Lemma.					
Referenc	i i i i i i i i i i i i i i i i i i i		I			
• D	iscrete Mathematics by	/ Norman L. Biggs, Clarendon Pr	ess.			
• Elementary Number theory by David Burton Seventh Edition. McGraw Hill						

Education (India) Pvt Ltd.

- Introduction to theory of numbers by Niven and S. Zuckerman, Wiley Eastern.
- A survey of Modern Algebra by G. Birkoff and S. Maclane Mac Milan

Module 4 Prime numbers and linear						
	Diophantine equation					
Learning Objectives						
The learner should be able	to					
1. Appreciate the proofs of Unique Factorization Theorem						
2. Apply the properties of	prime numbers to prove the infiniten	less of the set of				
primes and special type of	primes					
3. Identify linear Diophanti	ne equations					
4. Solve linear Diophantine	equations					
Learning Outcomes						
At the end of the module	the learner will be able to					
1. Prove the unique factorize	ation theorem and the results that t	he set of primes is				
infinite and the set of prim	es of the type 4n – 1, 6n-1 etc. is infin	ite				
2. Solve linear Diophantine equations						
4.1	Prime numbers and its basic propertie	es. [5L]				
	Unique Factorization Theorem.					
	The set of primes is infinite.					
	The set of primes of the type 4n -	- 1 is				
	infinite and other such example	S.				
4.2	inear Diophantine equation $ax + by$	r = c [4L]				
-	The linear Diophantine equation ax \cdot	+				
	$by = c$ has solution if and only if $d \mid$	С,				
	where $d = GCD(a, b)$.					
	f x_0 , y_0 is any particular solution ther	n any				
5	olution of the given Diophantine eq	uation				
i	s given by $x = x_0 + (\frac{b}{d})t$ and $y = y$	·o —				
	$(\frac{a}{d})t$, for varying t.					
	Solving simple examples.					
References:						

• Discrete Mathematics by Norman L. Biggs, Clarendon Press.

• Elementary Number theory by David Burton Seventh Edition, McGraw Hill Education (India) Pvt Ltd.

Additional References:

- Introduction to theory of numbers by Niven and S. Zuckerman, Wiley Eastern.
- A survey of Modern Algebra by G. Birkoff and S. Maclane Mac Milan

Question paper Template

F.Y. B. Sc. (Mathematics) SEMESTER I Core Course- II COURSE TITLE: Discrete Mathematics COURSE CODE: 21USIMTCC2DIS [CREDITS - O2]

Module	Remembering/ Knowledge	Understandin g	Applyin g	Analysin g	Evaluatin g	Creatin g	Total marks
I	2	8	10	-	-	-	20
Ш	2	8	10	-	-	-	20
II	2	10	3	5	-	-	20
IV	2	5	8	5	-	-	20
Total marks per objective	8	31	31	10	-	-	80
% Weightage	10%	38.75%	38.75%	12.5%	-	-	100

F. Y. B. Sc. (Mathematics) SEMESTER I - Practical COURSE CODE: 21USIMTCCP Credit- O2

Learning Objectives and Outcomes
Learning Objectives
The Practical is intended to:
1. Solve problems based on the concepts learnt
2. Apply the concepts in various situation
Learning Outcomes
After the successful completion of the practical, the learner will be able to:
1. Solve problems
2. Apply the results proved
3. Generate examples and counter examples
Core Course I Real Analysis-I
1. Real Numbers and their basic properties.
2. Sequence of Real numbers
3. Sub sequences and Cauchy Sequences over R
4. Series of real numbers
Core Course II Discrete Mathematics
5. Sets and relations
6. Functions
7. Natural numbers and Integers
8. Prime numbers and linear Diophantine equation
References Course I:
R.G. Bartle and D. R Sherbert; Introduction to Real Analysis; John Wiley
and Sons (Asia) P.Ltd.
R. R. Goldberg; Methods of Real Analysis; Oxford and IBH.
Ajit Kumar, S. Kumaresan; A Basic Course in Real Analysis; CRC Press.

• Ghorpade, Sudhir R., Limaye, Balmohan V.; A Course in Calculus and Real Analysis; Springer.

Additional Reference books:

- H. Anton, I. Bivens and S. Davis; Calculus; John Wiley and Sons, Inc.
- G.B. Thomas and R.L. Finney; Calculus; Pearson Education.
- T. M. Apostol; Calculus (Vol. I); John Wiley and Sons (Asia) P. Ltd.
- W. Rudin; Principles of mathematical Analysis; Tata McGraw- Hill Education.
- Maron; Calculus of one variable.
- Shanti Narayan and Raisinghania; Elements of Real Analysis; S. Chand

References Course II:

- Discrete Mathematics by Norman L. Biggs, Clarendon Press.
- Elementary Number theory by David Burton Seventh Edition, McGraw Hill Education (India) Pvt Ltd.

Additional References:

- Introduction to theory of numbers by Niven and S. Zuckerman, Wiley Eastern.
- A survey of Modern Algebra by G. Birkoff and S. Maclane Mac Milan

Question Paper Template

F.Y. B. Sc. (Mathematics) SEMESTER I Core Course- II COURSE TITLE Mathematics Practical COURSE CODE: 2IUSIMTCCP [CREDITS - O2]

Module	Remembering/ Knowledge	Understandin g	Applying	Analysin g	Evaluatin g	Creatin g	Total marks
Ι	5 (journal)	12	13 (includes viva)	8	8	4	50

II	5 (journal)	12	13 (includes viva)	8	8	4	50
Total marks per objective	10	24	26	16	16	8	100
% Weightage	10%	24%	26%	16%	16%	8%	100

F.Y. B. Sc. (Mathematics) SEMESTER II Core Course- I COURSE TITLE: Calculus -1 COURSE CODE: 21US2MTCCICAL[CREDITS - O2]

Course Learning Outcomes						
After	After the successful completion of the Course, the learner will be able to:					
CLO	CLO 1: Understand properties of functions by observing their behaviour					
	through grap	ohs of the function.				
CLO	2: Prove various	s results of limits and continu	uity using the $\varepsilon - \delta$			
	definition, se	quences and their propertie	S.			
CLO	3: Prove Chain	rule, inverse function theore	m, Leibnitz theorem and			
	Mean value t	cheorem.				
CLO	4: Apply Taylor	's theorem to generate serie	es of standard functions,			
	to calculate a	approximations and to optin	nise.			
CLO	5: Apply results	proved, concepts defined to	o solve problems.			
CLO) 6: Classify functions as to the number of times it is differentiable.					
Module 1 Graphs of real [6L]						
	Module 1	Graphs of real	[6L]			
	Module 1	Graphs of real valued functions	[6L]			
	Module 1	Graphs of real valued functions of one variable	[6L]			
	Module 1	Graphs of real valued functions of one variable	[6L]			
Learni	Module 1	Graphs of real valued functions of one variable	[6L]			
Learni The ai	Module 1 ing Objectives im of the module is	Graphs of real valued functions of one variable	[6L]			
Learni The ai 1.	Module 1 ing Objectives im of the module is Plot graph of a rea	Graphs of real valued functions of one variable to: I valued function	[6L]			
Learni The ai 1. 2.	Module 1 ing Objectives im of the module is Plot graph of a real Observe the increa	Graphs of real valued functions of one variable to: I valued function sing and decreasing nature of	[6L] of graph of a function			
Learni The ai 1. 2. 3.	Module 1 ing Objectives im of the module is Plot graph of a real Observe the increa Observe the conca	Graphs of real valued functions of one variable to: I valued function sing and decreasing nature of vity of graph of a function	[6L] of graph of a function			
Learni The ai 1. 2. 3. 4.	Module 1 ing Objectives im of the module is Plot graph of a real Observe the increa Observe the conca Find the asymptote	Graphs of real valued functions of one variable to: I valued function sing and decreasing nature of vity of graph of a function es of a function	[6L] of graph of a function			
Learni The ai 1. 2. 3. 4. 5.	Module 1 ing Objectives im of the module is Plot graph of a real Observe the increa Observe the conca Find the asymptote Observe effect of n	Graphs of real valued functions of one variable to: I valued function sing and decreasing nature of vity of graph of a function es of a function nultiplicity of roots of function	[6L] of graph of a function ons on its graph			
Learni The ai 1. 2. 3. 4. 5.	Module 1 ing Objectives im of the module is Plot graph of a real Observe the increa Observe the conca Find the asymptote Observe effect of n	Graphs of real valued functions of one variable to: I valued function sing and decreasing nature of vity of graph of a function es of a function nultiplicity of roots of function	[6L] of graph of a function ons on its graph			

Somanya TRUST

K J Somalya College of Science & Commerce	
Autonomous (Affiliated to University of Mumbai)	

Learni	ing Outcomes					
Learn	er will be able to:					
1.	Plot graphs of real valued functions					
2.	Identify various properties of function through graph such as increasing,					
	decreasing nature, cor	ncavity				
3.	Find horizontal and vertical asymptotes of a function if it has any					
4.	Construct a function	having a particular horizontal and vert	ical			
	asymptote					
5.	Deduce whether multi	plicity of a root of a polynomial is eve	n or odd			
	from its graph					
	1.1	Real valued functions of one	[2L]			
		variable.				
		Representation of such a function				
		by its graph.				
		Observing the increasing,				
		decreasing nature, local extrema				
		and global extrema, concavity of				
		the graph and asymptotes.				
	1.2	Examples including linear	[2L]			
		functions, Absolute value function,				
		polynomial function of degree 2				
		and higher degrees.				
		Observation that number of roots				
		is less or equal to the degree of				
		the polynomial, observations w.r.t.				
		degree of polynomial and number				
		of extrema, number of points of				
		inflection.				
		Graphs of trigonometric				
		functions, inverse trigonometric				
		functions, exponential function				
		and logarithmic function. Floor				
		function and ceiling function.				

1.3	Characteristic function of a set,	[2L]
	Dirichlet's function.	
	Effect of shifting the origin,	
	composing with reflection,	
	expansion or contraction along X-	
	axis or Y-axis, observing graph of	
	inverse function as reflection of	
	graph of given function along the	
	line y=x. Observing graph of	
	function $f\left(\frac{1}{x}\right)$ from the graph of	
	f(x).	
	Graphs of $y = \sin \sin \frac{1}{x}$, x	
	$sin sin \frac{1}{x}$, $x^2 sin sin \frac{1}{x}$ etc	

Reference books

- R.G. Bartle and D. R Sherbert; Introduction to Real Analysis; John Wiley and Sons (Asia) P.Ltd.
- R. R. Goldberg; Methods of Real Analysis; Oxford and IBH.
- Ajit Kumar, S. Kumaresan; A Basic Course in Real Analysis; CRC Press.
- Ghorpade, Sudhir R., Limaye, Balmohan V.; A Course in Calculus and Real Analysis; Springer.

Additional Reference books:

- H. Anton, I. Bivens and S. Davis; Calculus; John Wiley and Sons, Inc.
- G.B. Thomas and R.L. Finney; Calculus; Pearson Education.
- T. M. Apostol; Calculus (Vol. I); John Wiley and Sons (Asia) P. Ltd.
- W. Rudin; Principles of mathematical Analysis; Tata McGraw- Hill Education.
- Maron; Calculus of one variable.
- Shanti Narayan and Raisinghania; Elements of Real Analysis; S. Chand

Module 2	Limits and continuity of real	[9L]
	valued functions of one	
	variable	

Sometinger TRUST

Learn	ing Objectives					
The a	im of the module i	s to:				
1.	1. Understand the $\varepsilon - \delta$ definition of limit and continuity					
2.	Comprehend the	equivalence of $\varepsilon - \delta$ definition of continuity v	with the			
	sequential continu	uity (
3.	Study algebra of I	imits and continuity				
4.	Obtain limit of a f	unction at a point				
Learn	ing Outcomes					
Learn	er will be able to:					
1.	Use $\varepsilon - \delta$ definition	on as well definition in terms of sequences to	find limit			
	of a function					
2.	Use $\varepsilon - \delta$ definition	on of continuity as well as sequential continuit	y to prove			
	the continuity or	discontinuity of a function at a given point				
3.	Find left-hand an	d right-hand limit of a function				
4.	Construct function	ns having discontinuity at desired points				
	2.1	Definition of limit of a function at a point	[2L]			
		in terms of ε - δ and sequence.				
		Equivalence of both the definition.				
		Uniqueness of limit. (Self-Study)				
		Boundedness of a function having limit in				
		a neighbourhood.				
		Concept of two sided and one-sided limits.				
		Infinite limit and limit at infinity.				
	2.2	Sum rule, scalar multiplication, product	[3L]			
		rule and division rule. Sandwich theorem.				
		Computations of limits using rules.				
		Nonexistence of limit of functions such as				
		$sin sin \frac{1}{x}$				
		Discussion on the three limits:				
		$\frac{sinsin x}{e^{x-1}} \cdot \frac{e^{x-1}}{e^{x-1}} \cdot \frac{\log \log (1+x)}{e^{x-1}}$				
		x x x x (Self-Study submodule)				
	2.3	sequential continuity. Continuity of a	[4L]			
		function at a point in terms of limits.				
		Continuity of a function over an interval.				
	over a set.					

41

Definition of continuity of a function at a	
point in terms of ε and δ .	
Algebra of continuous functions.	
Discontinuity of function such as $sin\frac{1}{x}$ at	
the origin, step function etc	
Polynomial functions are continuous.	
Function such as $ x $, $x x $, $xsin\frac{1}{x}$, $x^2sin\frac{1}{x}$ etc	
are continuous	
Removable and irremovable	
discontinuities.	
Functions having finite number of	
discontinuities in an interval.	
Functions having infinite number of	
discontinuities in an interval.	
A function which is discontinuous	
everywhere.	
A function which is continuous only at a	
point.	
Composition of continuous functions and	
taking a limit inside a continuous function.	
Composite of continuous functions is	
continuous but converse is not true.	
Two important properties of Continuous	
functions:	
Intermediate value property and	
Continuous function on a closed and	
bounded interval attains it maximum value	
and minimum value. (Without proof)	

Reference books

- R.G. Bartle and D. R Sherbert; Introduction to Real Analysis; John Wiley and Sons (Asia) P.Ltd.
- R. R. Goldberg; Methods of Real Analysis; Oxford and IBH.
- Ajit Kumar, S. Kumaresan; A Basic Course in Real Analysis; CRC Press.

• Ghorpade, Sudhir R., Limaye, Balmohan V.; A Course in Calculus and Real Analysis; Springer.

Additional Reference books:

- H. Anton, I. Bivens and S. Davis; Calculus; John Wiley and Sons, Inc.
- G.B. Thomas and R.L. Finney; Calculus; Pearson Education.
- T. M. Apostol; Calculus (Vol. I); John Wiley and Sons (Asia) P. Ltd.
- W. Rudin; Principles of mathematical Analysis; Tata McGraw- Hill Education.
- Maron; Calculus of one variable.
- Shanti Narayan and Raisinghania; Elements of Real Analysis; S. Chand

Mod	lule 3	Differentiability of real valued functions of	[9L]	
		one variable		
Learning (Objectives			
The aim o	f the modul	le is to:		
I. Def	ine differen	tiability of a function at a point		
2. Stud	dy geometri	ical interpretation of derivative		
3. Stu	dy algebra c	of differentiation		
4. Pro	ve chain rul	e and inverse function theorem		
5. Finc	d Higher dei	rivatives of a function		
6. Use	e Leibnitz rul	le of differentiation to find higher order derivat	zives	
7. Stud	dy mean val	lue theorems (Rolle's and Lagrange's)		
Learning C	Dutcomes			
Learner wi	ill be able to):		
1. Finc	d derivative	of a function		
2. App	oly Leibnitz ı	rule to find higher derivatives of a function		
3. Solv	ve problems	on implicit differentiation		
4. Cor	nstruct exan	nples which are not differentiable at desired po	ints	
5. Cale	culate deriv	ative of inverse of a function at a given point		
6. Cor	nstruct funct	tions which are differentiable n times but not n	+1 times a	at a
роіі	nt			
7. Solv	ve problems	based on Rolle's and Lagrange's mean value the	eorem	
3.1	Definition o	of differentiability of a real valued function of or	ne [3 1	L]
	variable at a	a point in terms of a limit.		

	Differentiability of a function over an interval or a set.	
	Geometrical interpretation and derivative as a linear	
	approximation in a neighbourhood of the point.	
	Derivative as rate of change and Leibnitz notation.	
3.2	Differentiability implies continuity but not converse.	[3L]
	Differentiability does not imply continuity over an interval.	
	Algebra of derivatives.	
	Chain rule of differentiation.	
	Computation of derivative of inverse function.	
	Implicit differentiation (problems only)	
3.3	Rolle's Mean Value Theorem	[3L]
	Lagrange's Mean Value Theorem.	
	Higher order derivatives and Leibnitz' rule.	
	Function that are n times differentiable but not	
	differentiable beyond n th order.	
Reference	e books	1
• R.0	G. Bartle and D. R Sherbert; Introduction to Real Analysis; John V	Viley
an	d Sons (Asia) P.Ltd.	
• R.	R. Goldberg; Methods of Real Analysis; Oxford and IBH.	
• A	jit Kumar, S. Kumaresan; A Basic Course in Real Analysis; CRC Pre	ess.
• Gł	norpade, Sudhir R., Limaye, Balmohan V.; A Course in Calculus ar	nd Real
Ar	nalysis; Springer.	
Addition	al Deference back	
T ACICILION		

- H. Anton, I. Bivens and S. Davis; Calculus; John Wiley and Sons, Inc
- G.B. Thomas and R.L. Finney; Calculus; Pearson Education.
- T. M. Apostol; Calculus (Vol. I); John Wiley and Sons (Asia) P. Ltd.
- W. Rudin; Principles of mathematical Analysis; Tata McGraw-Hill Education
- Maron; Calculus of one variable.
- Shanti Narayan and Raisinghania; Elements of Real Analysis; S. Chand

Module 4

Applications of derivatives

[12L]

Somanya

Learn	ing Objectives					
The a	im of the module is to:					
1.	1. Obtain Taylor's polynomial and Taylor's series of a function about a point					
2.	Compute radius of convergence of a power series					
3.	3. Determine increasing and decreasing nature of a function using derivative					
4.	4. Determine concavity of a function using second derivative					
5.	Find extrema of a function using second and higher derivative test					
6.	Calculate limits using L'Hospital rule					
7.	Discuss real life problems based on application of derivative					
Learn	ing Outcomes					
Learn	er will be able to:					
1.	Find Taylor's polynomial and Taylor's series of a function about a give	ven				
	point					
2.	Find radius of convergence of a function					
3.	Decide about increasing and decreasing nature of a function					
4.	Find point of inflection of a function					
5.	Find points of extrema of a function					
6.	Solve problems based on L'Hospital rule					
7.	Formulate word problems and solve them					
4.1	Taylor's theorem in Lagrange's remainder form (without proof).	[6L]				
	Taylor polynomial of n th order and Taylor's series about a point.					
	Approximation of a n times differentiable function using Taylor's					
	theorem.					
4.2	Increasing and decreasing functions. Concavity in terms of	[6L]				
	second derivative. Point of inflexion.					
	Local extreme values.					
	Second derivative test and its extension to test using higher					
	order derivatives (without proof).					
	L'Hospital's Rule (without proof)					
	Curve sketching (only for practical)					
Refer	ence books					
	R.C. Bartle and D. R. Sherbert: Introduction to Real Analysis: John W/	'ilev				

- R.G. Bartle and D. R Sherbert; Introduction to Real Analysis; John Wiley and Sons (Asia) P.Ltd.
- R. R. Goldberg; Methods of Real Analysis; Oxford and IBH.

- Ajit Kumar, S. Kumaresan; A Basic Course in Real Analysis; CRC Press.
- Ghorpade, Sudhir R., Limaye, Balmohan V.; A Course in Calculus and Real Analysis; Springer.

Additional Reference books:

- H. Anton, I. Bivens and S. Davis; Calculus; John Wiley and Sons, Inc.
- G.B. Thomas and R.L. Finney; Calculus; Pearson Education.
- T. M. Apostol; Calculus (Vol. I); John Wiley and Sons (Asia) P. Ltd.
- W. Rudin; Principles of mathematical Analysis; Tata McGraw- Hill Edu cation.
- Maron; Calculus of one variable.
- Shanti Narayan and Raisinghania; Elements of Real Analysis; S. Chand

Question Paper Template

F.Y. B. Sc. (Mathematics) SEMESTER II Core Course- I COURSE TITLE: Calculus -1 COURSE CODE: 21US2MTCCICAL [CREDITS - O2]

Module	Remembering/ Knowledge	Understandin g	Applyin g	Analysin g	Evaluatin g	Creatin g	Total marks
I	2	8	3	3	-	-	16
II	2	8	5	-	-	5	20
III	2	8	5	-	5	-	20
IV	2	8	7	7	-	-	24
Total marks per objective	8	32	20	10	5	5	80
% Weightage	10%	40%	25%	12.5%	6.25%	6.25%	100

47

F.Y. B. Sc. (MATHEMATICS) SEMESTER II Core Course- II COURSE TITLE: Algebra - 1 COURSE CODE: 2IUS2MTCC2ALG [CREDITS - O2]

Со	urse Learning Outcomes				
After the successful completion	After the successful completion of the Course, the learner will be able to:				
CLO 1: Prove properties of congruences and Construct Z_n , U(n).					
CLO 2: Apply division alg	orithm and Rational root theorem to	discuss			
irreducibility and	roots of a polynomial.				
CLO 3: Apply algebraic p	properties of the set of Complex numb	ers to find			
the nth roots of a	a complex number and other related p	roblems.			
CLO 4: Verify group axic	oms and associated properties on subgr	oups.			
CLO 5: Apply principles,	results and definitions to solve problem	18.			
Module 1	Congruences	9L]			
Learning Objectives	· · ·				
The learner should be able to					
1. Apply the properties of c	ongruence equations to solve example	S			
2. Apply various theorems re	elated to congruence to solve problem	15			
Learning Outcomes					
At the end of the module, the	e learner will be able to				
1. Use Euler's theorem an	d other results as tools to prove the di	visibility			
tests and other results					
2. Relate the knowledge of	of equivalence relations to introduce of	$f Z_n$			
1.1	Congruence: Definition and	[3L]			
	elementary properties, simple				
examples using algebraic properties.					
1.2Euler phi-function (Totient) and[3L]					
examples.					
Fermat's little Theorem. Solving					
	simple problems using these				
	theorems.				
	Euler's theorem (statement only)				

	wisons theorem. simple problems.				
	Decimal representation of an				
	Integer,				
	Divisibility test for 3, 9 and 11, finding				
	last digit.				
1.3	Introduction to Z_n , $U(n)$ addition	[3L]			
	and multiplication in Z_n ,				
	multiplicative inverse in Z_n				
	(Whenever it exists). Set of units in				
	Zn				
	(U(n))				
	Solving equation in Z_n , $U(n)$				
References:					
Discrete Mathematics	by Norman L. Biggs, Clarendon Press.				
Elementary Number th	neory by David Burton Seventh Edition,	McGraw Hill			
Education (India) Pvt L	td.				
complex numbers fro	m A to Z by Dorin Andrica				
• University Algebra by	N. S. Gopalkrishnan, New Age Internatio	onal Ltd.			
Additional References:					
Introduction to theory	of numbers by Niven and S. Zuckerma	n, Wiley			
Eastern.					
• A first course in Abstract Algebra by I. B. Fraleigh					
Contemporary Abstrac	t Algebra by J. Gallian				
A survey of Modern Al	lgebra by G. Birkoff and S. Maclane Ma	c Milan			
Complex variables and	Application by Brown and Churchill M	cGraw Hill.			
Module 2	Polynomials	[9L]			
Learning Objectives	·				
The learners should be able to:					
1. Use various tools to find roots of a polynomial					
2. Check if a polynomial is irreducible.					
Learning Outcomes					
At the end of the module the learner will be able to:					
1. Determine whether a polynomial has a rational root					
2 Differentiate reducibility of a polynomial over one set to another					

2. Differentiate reducibility of a polynomial over one set to another

2.1	Polynomials in one variable with real	[3L]			
	coefficients.				
	Degree, leading coefficient and monic				
	polynomial.				
	Division Algorithm (without proof).				
	G.C.D of two polynomials (Euclidean method)				
2.2	Root and factor of a polynomial,	[3L]			
	multiplicity of a root,				
	Remainder Theorem,				
	Factor Theorem.				
	Rational root theorem. Factorization over Q				
2.3	Irreducible polynomial, Eisenstein's criteria	[3L]			
	(without proof).				
	Number of real roots of nth degree				
	polynomial is at most n.				
	Reciprocal polynomial,				
	Repeated root of a polynomial is also a root				
	of its derivative.				
	Relation between the roots and the				
	coefficients of a polynomial. Examples.				
References:					
• Discrete Math	ematics by Norman L. Biggs, Clarendon Press.				
 Elementary Nu 	umber theory by David Burton Seventh Edition, $\mathcal N$	AcGraw Hill			
Education (India) Pvt Ltd.					
 complex numl 	 complex numbers from A to Z by Dorin Andrica 				
• University Algebra by N. S. Gopalkrishnan, New Age International Ltd.					
Additional References:					
 Introduction to theory of numbers by Niven and S. Zuckerman, Wiley 					
Eastern.					
• A first course in Abstract Algebra by J. B. Fraleigh					
Contemporary Abstract Algebra by J. Gallian					
• A survey of Modern Algebra by G. Birkoff and S. Maclane Mac Milan					

Complex variables and Application by Brown and Churchill McGraw Hill.

Complex numbers

[9L]

Autonomous (Affiliated to University of Mumbai)

Learnin	g Objec	tives				
TI	he learne	er should be able to				
1. D	etermine	e polar representation of a complex number				
2. A	ppreciat	e the fact that an only linear polynomials are irreducib	le over			
СС	omplex r	number field C				
3. A	pply the	concepts learnt to establish various properties				
Learnin	g Outco	mes				
A	t the end	d of the module, the learner is well equipped to				
1. Pr	rove pro	perties of complex number field				
2. Fi	nd n th ro	oots of any complex number				
3. A	pply Fun	damental theorem of Algebra				
3	5.1	Review of a complex number,	[2L]			
		Polar representation.				
		Argand diagram.				
		Conjugate and its properties.				
3	.2	Fundamental theorem of algebra (only statement).	[7L]			
		Complex roots of a Real Polynomial occur in				
		conjugate pairs.				
		Factorization of a real polynomial as a product of				
	linear and quadratic polynomials over R. Odd					
	degree polynomial has a real root.					
		De-Moivre's Theorem.				
		Roots of unity, primitive n th roots of unity and				
		associated properties.				
		Roots of a complex number.				
Referer	nces:	· · · · · · · · · · · · · · · · · · ·				

- Discrete Mathematics by Norman L. Biggs, Clarendon Press.
- Elementary Number theory by David Burton Seventh Edition, McGraw Hill Education (India) Pvt Ltd.
- complex numbers from A to Z by Dorin Andrica
- University Algebra by N. S. Gopalkrishnan, New Age International Ltd.

Additional References:

- Introduction to theory of numbers by Niven and S. Zuckerman, Wiley Eastern.
- A first course in Abstract Algebra by J. B. Fraleigh

Autonomous (Affiliated to University of Mumbai)

Con	temporary Abstract Algebra by J. Gallian				
• A su	 A survey of Modern Algebra by G. Birkoff and S. Maclane Mac Milan 				
• Con	nplex variables and Application by Brown and Churchill McGrav	v Hill.			
Module	e 4 Groups	[9L]			
Learning C	bjectives				
The learne	r should be able to				
1. Use	the knowledge acquired so far to test various group axioms				
2 . App	ly the various properties of a group and its elements to solve				
prot	blems				
Learning C	Outcomes				
At the end	of the module, the learner will be able to				
1. Dete	ermine whether the given set forms a group under the indicate	d			
ope	ration				
2. Veri	fy other properties in the given group				
4.1	Group; definition and simple examples like ℚ, ℝ under	[2L]			
	addition, the group of nth roots of unity.				
	The group Z_n under addition. Verification of Z_n^* being a				
	group under multiplication.				
	Abelian and non-abelian groups.				
	Order of a group, order of elements of a group.				
4.2	Subgroup, Necessary and sufficient condition for a subset to	[2L]			
	be a subgroup.				
	Testing whether xHx ⁻¹ = H for a given x in the group G and				
	H < G.				
4.3	Permutation group:	[2L]			
	Permutations on n symbols.				
	The group S_n under composition and $o(S_n) = n!$				
	Cycles and transpositions, representations of a permutation				
	as a product of disjoint cycles, and as product of				
	transposition (only through examples).				
	Listing permutations in the group S ₃ , S ₄ etc.				
	Sign of a permutation, odd and even permutations				
	(Statement only).				
	A _n , the alternating subgroup of S _n .				

	The group D_n of symmetry of a regular polygon for n=3 & 4.		
4.4	Partition of a positive integer, its relation to decomposition	[2L]	
	of a permutation as product of disjoint cycles,		
	Conjugate of an element in a group.		
4.5	Solving equations in a group.	[1L]	
References	:		
• Disc	rete Mathematics by Norman L. Biggs, Clarendon Press.		
• Elen	nentary Number theory by David Burton Seventh Edition, McGr	aw Hill	
Educ	cation (India) Pvt Ltd.		
• com	plex numbers from A to Z by Dorin Andrica		
• Uni	• University Algebra by N. S. Gopalkrishnan, New Age International Ltd.		
Additional	References:		
• Intro	oduction to theory of numbers by Niven and S. Zuckerman, Wile	ey	
Easte	ern.		
• A fir	st course in Abstract Algebra by J. B. Fraleigh		
Contemporary Abstract Algebra by J. Gallian			
• A su	rvey of Modern Algebra by G. Birkoff and S. Maclane Mac Mila	in	
• Corr	plex variables and Application by Brown and Churchill McGraw	v Hill.	

Question Paper Template F.Y. B. Sc. (Mathematics) SEMESTER II Core Course- II COURSE TITLE: Algebra - I COURSE CODE: 21US2MTCC2ALG[CREDITS - O2]

Module	Remembering/ Knowledge	Understandin g	Applyin g	Analysin g	Evaluatin g	Creatin g	Total marks
I	2	8	10	-	-	-	20
II	2	8	10	-	-	-	20
III	2	10	3	5	-	-	20

IV	2	5	8	5	-	-	20
Total marks per objective	8	31	31	10	-	-	80
% Weightage	10%	38.75%	38.75%	12.5%	-	-	100

F. Y. B. Sc. (Mathematics) SEMESTER II - Practical COURSE CODE: 21US2MTCCP Credit- O2

Learning Objectives and Outcomes

Learning Objectives

The practical is intended to

- 1. Learn Problem solving skills
- 2. Apply results proved
- 3. Create examples and counter examples

Learning Outcomes

After the successful completion of the practical, the learner will be able to:

- 1. Solve problems based on the concepts learnt
- 2. Apply results proved
- 3. Generate examples and counter examples
 - Core Course I

Calculus - I

- 1. Graphs of real valued functions of one variable
- 2. Limits and continuity of real valued functions of one variable
- 3. Differentiability of real valued functions of one variable
- 4. Applications of derivatives. Curve sketching.

Core Course II		Organic preparation
5. 6. 7.	Congruences Polynomials Complex Numbers	

8. Group theory

References course I:

- R.G. Bartle and D. R Sherbert; Introduction to Real Analysis; John Wiley and Sons (Asia) P.Ltd.
- R. R. Goldberg; Methods of Real Analysis; Oxford and IBH.
- Ajit Kumar, S. Kumaresan; A Basic Course in Real Analysis; CRC Press.
- Ghorpade, Sudhir R., Limaye, Balmohan V.; A Course in Calculus and Real Analysis; Springer.

Additional Reference books:

- H. Anton, I. Bivens and S. Davis; *Calculus*; John Wiley and Sons, Inc.
- G.B. Thomas and R.L. Finney; *Calculus*; Pearson Education.
- T. M. Apostol; *Calculus* (Vol. I); John Wiley and Sons (Asia) P. Ltd.
- W. Rudin; Principles of mathematical Analysis; Tata McGraw- Hill Education.
- Maron; Calculus of one variable.
- Shanti Narayan and Raisinghania; Elements of Real Analysis; S. Chand

References course II:

- Discrete Mathematics by Norman L. Biggs, Clarendon Press.
- Elementary Number theory by David Burton Seventh Edition, McGraw Hill Education (India) Pvt Ltd.
- complex numbers from A to Z by Dorin Andrica
- University Algebra by N. S. Gopalkrishnan, New Age International Ltd.

Additional References:

- Introduction to theory of numbers by Niven and S. Zuckerman, Wiley Eastern.
- A first course in Abstract Algebra by J. B. Fraleigh
- Contemporary Abstract Algebra by J. Gallian
- A survey of Modern Algebra by G. Birkoff and S. Maclane Mac Milan
- Complex variables and Application by Brown and Churchill McGraw Hill.

Question Paper Template

F.Y. B. Sc. (Mathematics) SEMESTER I Core Course- II COURSE TITLE Mathematics Practical COURSE CODE: 21USIMTCCP [CREDITS - 02]

Module	Remembering/ Knowledge	Understandin g	Applying	Analysin g	Evaluatin g	Creatin g	Total marks
Ι	5 (journal)	12	13 (includes viva)	8	8	4	50
II	5 (journal)	12	13 (includes viva)	8	8	4	50
Total marks per objective	10	24	26	16	16	8	100
% Weightage	10%	24%	26%	16%	16%	8%	100

8. Teaching learning process

The pedagogic methods adopted, involve direct lectures, tutorial discussions, as well as technology- supported presentations. We believe that education is interactive and all sessions between students and teachers are based upon reciprocity and respect.

1) The lectures (of fifty minutes duration) are delivered to one whole class at a time systematically deal with the themes of the syllabus. This constitutes the core of the teaching- learning process. The students are provided with bibliographic references and encouraged to go through at least some readings so that they could be more interactive and ask more relevant questions in the class. This also helps obtain knowledge beyond the boundaries of the syllabi.

2) Wherever needed, teachers use audio-video based technology devices (e. g. power point, YouTube videos) to make their presentations more effective. Some courses require that students see a documentary or feature film and course themes

are structured so that discussions of these will further nuance the critical engagement of students with ideas introduced in their textual materials.

3) Remedial coaching, bridge courses are adopted to enhance the scope of learning for the learners. Remedial sessions are conducted to offer assistance on certain advanced topics. Bridge courses facilitate to develop a concrete basis for the topics to be learnt in the coming academic year.

4) There will be a blend of online and offline teaching and learning.

9. Assessment Methods

Evaluation Pattern: Theory

- Assessments are divided into two parts: Continuous Internal Assessment (CIA) & Semester End Examination.
- The Semester End Examination shall be conducted by the college at the end of each semester.
- Semester End Examination (external) (60 M)- Duration:
 2 hours Paper Pattern

Guidelines about conduct of Projects/Case Study.

Projects/ Case Study/ Book Review:

Conduct and Evaluation: A learner can submit a project/ Case Study/ do a Book review. The project should be 1O-page typed pages in an A4 size paper with font size of 12. The topic of project should be selected in consultation of the teacher. Maximum marks allotted for this is 2O and the remaining 2O marks are from tests and other activities.

The topic can be of expository / historical survey / interdisciplinary nature and the material covered in the project / case study should go beyond the scope of the syllabus. The learner must clearly mention the sources (Book / on-line) used for the project/ case study. The use of Mathematical software is encouraged. The project should be done under the supervision of a faculty in a college/ university or an institution.

The following Marking scheme is suggested for evaluation of projects / case study:

30% marks for exposition20% marks for literature20% marks for Scope10% marks for originality20% marks for presentation.

Continuous evaluation:

Internal evaluation (40%):

- 1. There will be 4O marks continuous evaluation.
- 2. A learner can be assigned projects/book review, this will be evaluated out of 20 marks.
- 3. The project / book review will be under the guidance of the mentor allotted to the learners by the head of the department.
- 4. There will be regular tests which can be of the form quiz/ descriptive test/ objective test/ group discussion presentation etc.
- 5. Each test will be marked out of 20 marks.
- 6. The total score obtained in all of the above will finally be averaged to 40 marks.
- 7. A learner should secure at least 40% marks to be eligible to get a passing grade (The learner needs to secure minimum of 16 marks out of 40 to pass the internal for each theory course).
- 8. A learner who has failed to secure a passing grade /absent for any reason in the internal evaluation will have to give test out of 40 marks, consisting of Questions based on the entire syllabus.
- 9. All tests will be averaged to 25 marks, other activities averaged to 15 marks.

Semester end Examination (60%):

At the end of the semester there will be a semester end exam carrying a maximum of 60 marks.

1. There will be 4 Questions one from each Module. Each question will carry 15 marks unless otherwise stated in the syllabus (with option, maximum of 25 marks). The question paper will cover the whole syllabus in such a way that

a learner will need to have understood each topic well to have secured 80% and above and an average learner can at least secure a passing grade.

2. A learner should secure at least 40% marks to be eligible to get a passing grade (The learner needs to secure minimum of 24 marks out of 60 to pass the semester end examination for each theory course).

Practical examination

- 3. Practical Examination out of IOO marks will be conducted based on the theory courses.
- 4. 40% evaluation will be based on continuous evaluation and balance 60% will be Semester end examination.
- 5. Certified Journal will be part of internal evaluation.
- 6. Internal evaluation will be based on experiential learning such as preparing Mathematical model/ Games/quizzes, Applying Concepts learnt in other areas of mathematics or other Sciences, Presentations.
- 7. Contribution during Cooperative/Participative learning will be evaluated during regular practical. No prior intimation will be given.
- 8. Semester end examination of the Practical examination will be descriptive and will be based on the entire syllabus of both theory courses.

Distribution of marks for practical examination out of 100. (Corresponding modification for exam conducted out of 150 marks)

Mathematical Subject

	Course 1	Course 2	Total	
	Internal Continu	lous		
	Assessment	Assessment		
Objective	6	6	12	
questions	0	0	12	
Journal	5	5	IO	
Viva	5	5	10	

Modelling	4	4	8
Total	20	20	40
	Semester end desc problem solvii	criptive ng	
Comprehension type	6	6	12
Application type	8	8	16
Analysis type	8	8	16
Evaluation/Creati ng type	8	8	16
Total	30	30	60

For Computer programming courses			
	Internal Continu Assessment	SUOL	
Project			20%
Making modifications/writing the required statements as per constraints given/new. (Includes viva)		15%	
Journal			5%
Total			40
	Semester end practical exa		mination
			Marks
Writing programs (3 programs)	Applying it to mathematical		
	Concepts learnt (creating		25%
	kind)		
	Understanding type		10%
	Applying type		100/

Compiling and execution	5%	
Correcting errors and	10%	
obtaining output		
Total	60	

Examination for unsuccessful learners (Termed as ATKT examination)

- 9. Internal examination will be a test conducted out of 40 marks based on the entire syllabus. It will be written test/ online test as per the situation. Details of the pattern etc will be uploaded in the noticeboard section of our website kjssc.somaiya.edu
- 10. Semester Exam will have the same paper pattern as the regular exam. (Subject to change.)
- 11. Internal Component of the Practical Examination (40%) will be objective based examination. This will include journal marks (only Certified Journal will be eligible for marks)
- 12. Notice regarding syllabus will be uploaded in the noticeboard section in our website.

IO. Programme and Course Code Format

The course is coded according to following criteria:

- 1. First two numbers in each course code indicates year of implementation of syllabus (21- year of implementation is 2O21-22)
- 2. Third letter 'U' designates undergraduate
- 3. Fourth letter 'S' designate Science discipline and the digit followed is for semester number (S1 1st Semester)
- 4. Letter 'MT' is for Mathematics discipline (MT-Mathematics) This forms the programme code 2IUSIMT. For the further course codes programme code is amended as follows
- To designate the semester, add the digit (1-6) after S in the programme code. (Eg: 2IUSIMT- for semester I)
 For the further course codes, addition to the programme code should be done as per the following instructions.
- 6. To represent core courses (CC) followed by course number digit (1/2/3/4) and three lettered code representing the title of the course.
- 7. For Ability enhancement course code, (AE) alphabets followed by a digit (1/2) followed by 'FOC'- Foundation course, 'EVS'-Environmental science are used.
- 8. For Skill enhancement courses code (SE) followed by digits (1/2/3) followed by letters 'STP'-Sports training programme, BCE-Basic Communication in English 'ICH'-Indian cultural heritage, followed by digits (1/2/3) representing the levels

are used. In case of subject related SEC, (SE) followed by digits (1/2/3) followed by a three lettered code representing the title of the course are used.

- 9. For Discipline specific elective course (DS) of Semester V and VI, (DS) followed by digits (1/2/3/4) followed by a three lettered code representing the title of the course are used.
- 10. 'P' followed by digit indicates practical course number. (Practical course number will be added for semesters only where there is more than one course.