

Graduate Attributes In Physics

Some of the characteristic attributes of a graduate in Physics are:

- (i) Disciplinary knowledge and skills: Capable of demonstrating (i) good knowledge and understanding of major concepts, theoretical principles experimental findings in Physics and its different subfields like Astrophysics and Cosmology, Material science, Nuclear and Particle Physics, Condensed matter Physics, Atomic and Molecular Physics, Mathematical Physics, Analytical dynamics, and other related fields of study, including broader interdisciplinary subfields like Chemistry, Mathematics, Life sciences, Environmental sciences, Atmospheric Physics, Computer science, Information Technology etc. Ability to use modern instrumentation and laboratory techniques to design and perform experiments is highly desirable in almost all the fields of Physics listed above
- (ii) **Skilled communicator:** Ability to transmit complex technical information relating all areas in Physics in a clear and concise manner in writing and oral ability to present complex and technical concepts in a simple language for better understanding
- (iii) **Critical thinker and problem solver:** Ability to employ critical thinking and efficient problem solving skills in all the basic areas of Physics.
- (iv) **Sense of inquiry:** Capability for asking relevant/appropriate questions relating to the issues and problems in the field of Physics, and planning, executing and reporting the results of a theoretical or experimental investigation.
- (v) Skilled project manager: Capable of identifying/mobilizing appropriate resources required for a project, and manage a project through to completion, while observing responsible and ethical scientific conduct; and safety and laboratory hygiene regulations and practices.
- (vi) Digitally Efficient: Capable of using computers for simulation studies in Physics and computation and appropriate software for numerical and statistical analysis of data, and employing modern e-library search tools, various websites of the renowned Physics labs in various countries to locate, retrieve, and evaluate Physics information.
- (vii) **Ethical awareness / reasoning:** The graduate should be capable of demonstrating ability to think and analyze rationally with modern and scientific outlook and identify ethical issues related to one's work.
- (viii) **National and international perspective:** The graduates should be able to develop a national as well as international perspective for their career in the chosen field of the academic activities. They should prepare themselves during their most formative years for their appropriate role in contributing towards the national development and projecting our national priorities at the international level pertaining to their field of interest and future expertise.
- (ix) **Lifelong learners:** Capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development and reskilling in all areas of Physics.

Preamble

The systematic and planned curricula from these courses shall motivate and encourage learners to understand basic concepts of Physics.

This is a revised part of the undergraduate programme (Six Semesters) in Physics, to be taught in Semester V & VI from the academic year 2020-21 onwards. Developing Curriculum that is progressive and purposeful to create positive improvement in the education system is the logic behind this revision.

In each Semester, courses are devoted to core Physics, catering to Mechanics, Thermodynamics, Optics, Electrodynamics, Quantum Mechanics, Mathematical Physics and Digital and Analog Electronics. These have been tailored to fit in with the existing F.Y.B.Sc syllabus (Semester I and Semester II) & SYBSC (Semester III & IV) in terms of continuity and to ensure delivery of quality content to the learner.

The elective in first semester offers interdisciplinary application- oriented topics. It will be offered as a choice to all learners across various combinations. This course will seek to foster a spirit of multidisciplinary approach in learning.

Course Objectives:

Upon completion of the course, students should have acquired the following knowledge and skills:

- 1. A thorough quantitative and conceptual understanding of the core areas of physics, including mechanics, , thermodynamics, quantum mechanics, electronics at a level compatible with graduate programs in physics at peer institutions.
- 2. The ability to analyse and interpret quantitative results, both in the core areas of physics and interdisciplinary areas.
- 3. The ability to use contemporary experimental apparatus and analysis tools to acquire, analyse and interpret scientific data.
- 4. The ability to apply the principles of physics to solve new and unfamiliar problems.
- 5. The ability to communicate scientific results effectively in presentations or posters.
- 6. Develop analytical abilities towards real world problems.
- 7. To familiarize with current and recent scientific and technological developments

Syllabus fo	or Semester V
-------------	---------------

Course	Course	Course	Credits	Hours	Periods	No.of	Ex	kaminat	ion
No	Title	Code			(50 min)	lec	Int	Ext	Tot
Core Co	ourses								
		20US5PHSP1	02	30	36	12	20	30	50
	Stat.	Unit 1	Descripti	on of a sy	ystem				
1	Phy.	Unit 2	Thermal	and Adia	batic Intera	ctions			
		Unit 3	Statistica	l Mechan	ics				
		20US5PHSS	02	30	36	12	20	30	50
	Solid	P2							
2	State	Unit 1	Electrica	l properti	es of metals	5			•
	Physics	Unit 2	Modern of	optics					
		Unit 3	Conducti	on in sem	niconductor	S			
		20US5PHAP	02	30	36	12	20	30	50
		3							
3	Atomic	Unit 1	Hydroger	n atom					•
	Physics	Unit 2	Spin orbi	t couplin	g & vector	atom mo	del		
		Unit 3	Interactio	on of aton	ns with "B"				
		20US5PHED	02	30	36	12	20	30	50
	Electro	4							
4	dynami	Unit 1	Electro s	tatistics					
	cs	Unit 2	Magneto	statistics					
		Unit 3	Electrom	agnetic V	Vaves				
Discipli	ne Specifi	c electives (DSE)						
		20US5PHAI1	02	30	36	12	20	30	50
	Analog	Unit 1	Transduc	ers and it	s applicatio	ons			
1	Instr.	Unit 2	Display o	levices ar	nd power su	pplies			
		Unit 3	Measurin	ng instrum	nents				
2	Digital	20US5PHDE	02	30	36	12	20	30	50
	Elect &	I2							
	Instr	Unit 1	Data Pro	cessing C	ircuits				
		Unit 2	Registers	and Cou	nters				
		Unit 3	Digital integrated circuits						
		20US5PHEC	02	30	36	12	20	30	50
	Electro	3							
3	nics	Unit 1	Introduct	tion to con	nmunicatio	n technio	ques		
	Comm.	Unit 2	Modulati	on techni	ques				
		Unit 3	Introduct	ion to am	plitude mo	dulation			

TRUST T.Y. B.Sc. Syllabus

Course	Course	Course	Credits	Hours	Periods	No.of	Ex	aminat	ion
No	Title	Code			(50 min)	lec	Int	Ext	Tot
	Renew	20US5PHRE	02	30	36	12	20	30	50
	able	4							
4	energy	Unit 1	Introduct	ion					
	harvest	Unit 2	Solar and	l wind ene	ergy source	s			
	ing	Unit 3	Non-conv	ventional	energy tech	nologies	5		
	Mathe	20US5PHM	01	15	18	09			25
1	metical	MS							
	methds	Unit 1	Matrices						
		Unit 2	Fourier a	nd Laplac	e transform	1			
Practica	1								
Core Co	urses								
	I &II	20US5PHP1	02						
	III&IV	20US5PHP2	02						
Disciplin	ne specific	elective							
1	DSE1	20US5PHAE	01	2	2.4		20	30	50
		1							
2	DSE2	20US5PHDE	01	2	2.4		20	30	50
		I2							
3	DSE3	20US5PHEC	01	2	2.4		20	30	50
		3							
4	DSE4	20US5PHRE	01	2	2.4		20	30	50
		4							

Course	Course	Course	Credits	Hours	Periods	No.of	Ex	xaminat	ion
No	Title	Code			(50 min)	lec	Int	Ext	Tot
Core Co	urses			1		1			
		20US6PHCM	02	30	36	12	20	30	50
	Classic	1							
1	al	Unit 1	Accelera	ted Frame	e				
	Mecha	Unit 2	Lagrange	e's Mecha	nics				
	nics.	Unit 3	Kinemati	cs of mov	ving fluid a	nd rigid	fluid		
		20US6PHE2	2 02 30 36 12 20 30					30	50
	Electro	Unit 1	Multivib	rators and	d timer				
2	nics	Unit 2	Different	ial Ampli	ifier				
		Unit 3	Field effe	ect transis	stors				
		20US6PHNP	02	30	36	12	20	30	50
		3							
3	Nuclea	Unit 1	Nuclear 1	eactions	and alpha d	ecay			
	r	Unit 2	Beta and	gamma d	lecay				
	Physics	Unit 3	Nuclear 1	nodels					
	Special	20US6PHSR	02	30	36	12	20	30	50
	theory	4							
4	of	Unit 1	Experimental Background						
	relativit	Unit 2	Relativistic kinematics, relativistic dynamics						
	У	Unit 3	Relativit	y and elec	tromagneti	sm			
Discipli	ne Specifi	c electives (DSE)						
		20US6PHMI	02	30	36	12	20	30	50
	μp and	1							
1	interfac	Unit 1	Basic con	ncepts of	microproce	ssor			
	ing.	Unit 2	8085 asso	embly lan	guage prog	ramming	5		
		Unit 3	Program	ming tech	niques				
2	С	20US6PHCP	02	30	36	12	20	30	50
	progra	2							
	mming	Unit 1	Introduct	ion to Co	mputers, C	Program	nming		
		Unit 2	Control Structures in C programming						
		Unit 3	Function	s and poir	nters in C p	rogramn	ning		
		20US6PHAO	02	30	36	12	20	30	50
	Applie	3							
3	d Otics	Unit 1	Light tra	nsportatio	on system. C	Geometri	cal opt	ics	
		Unit 2	Modern (Optics					
		Unit 3	Optical to	echniques	for materia	al charac	terizati	on	

TRUST T.Y. B.Sc. Syllabus

Department: Physics

Course	Course	Course	Credits	Hours	Periods	No.of	Ex	aminat	ion
No	Title	Code			(50 min)	lec	Int	Ext	Tot
	SWAY	20US6PHSW	02	30	36	12	20	30	50
	AM	4							
4		Unit 1	Introduct	ion					
		Unit 2	Solar and	l wind ene	ergy source	S			
		Unit 3	Non-conv	ventional	energy tech	nologies	5		
	Electric	20US6PHEC	01	15	18	09			25
1	al	NS							
	circuits	Unit 1	Introduct	ion to Ba	sic Electric	ity Princ	iples		
	and	Unit 2	Applicati	on and Pr	rotection of	Electric	al Circ	uit	
	networ								
	k								
	skills								
Practica	1								
Core Co	ourses								
	I &II	20US6PHP1	02	04					
	III&IV	20US6PHP2	02	04					
Discipli	ne specific	elective							
1	DSE1	20US6PHMI	01	2	2.4		20	30	50
		1							
2	DSE2	20US6PHCP	01	2	2.4		20	30	50
		2							
3	DSE3	20US6PHAO	01	2	2.4		20	30	50
		3							
4	DSE4	20US6PHSW	01	2	2.4		20	30	50
		4							

SEMESTER V

Course – I COURSE TITLE: Statistical Physics COURSE CODE: 20US5PHSP1 [CREDITS - 02]

Course outcome: This course develops concepts in classical laws of thermodynamics and their applications. It postulates statistical mechanics and statistical interpretation of thermodynamics, various canonical ensembles.

Using statistical mechanics development of MB, BE and FD formulae are established and its applications are discussed.

On completion of this course a student should be able to:

- 1. Define and discuss the concepts of microstate and macro state of a model system.
- 2. Apply the machinery of statistical mechanics to the calculation of macroscopic properties resulting from microscopic models of magnetic and crystalline systems.

Course Specific Outcome: The course is centred about a thorough understanding of the theory and methods of statistical physics and thermodynamics.

Unit I	Descript	ion of a System	Number of lectures :12					
	Learning	g Objective:						
	(i)	To describe elementary statistical Physics t	o learners					
	(ii)	To establish the statistical background of the	nermodynamics.					
	Learning	g Outcomes:	Outcomes:					
	(i)	Students understand the need to use statistic	cs to describe systems containing					
1		huge numbers of particles.						
	(ii)	Students understand the statistical	foundations of Equilibrium					
		Thermodynamics	_					
	(i)	Description of a system: Why statistical a	pproach, Particle-states, System-					
		states, Microstates and Macro states of a sy	stem.					
	(ii)	Equilibrium and Fluctuations, Irreversibili	ty, The equiprobability postulate,					
		Statistical ensemble, Number of states acce	ssible to a system, Phase space.					
	(iii)	Reversible processes. Phase space, The p	Reversible processes. Phase space, The probability of a distribution, The					
		most probable distribution						
Unit II	Therma	and adiabatic interactions	Number of lectures :12					
	Learning	g Objective:						
	(i)	To describe statistical interpretations of the	rmal interactions.					
	(ii)	To understand thermodynamically potentia	ls.					
	Learning	g Outcomes:						
	(i)	Understand & be able to apply Classic	cal Thermodynamics to simple					
		problems.						
	(ii)	Students learn how to solve thermod	lynamics problems related to					
		thermodynamical relations.						
2	(i)	Thermal interaction, Canonical distribution	, Energy fluctuations, Entropy of					
		a system in a heat bath, Helmholtz free ene	rgy.					
	(ii)	Adiabatic interaction and enthalpy, Genera	al interaction and the first law of					
		thermodynamics, Infinitesimal general inter	raction, Gibbs free energy, Phase					
		transitions						
Unit III	Statistic	al Mechanics	Number of lectures :12					
	Learning	g Objective:						
	(i)	To describe concepts of bosons and fermion	ns.					
	(ii)	To obtain statistical formulae for BE and F.	D statistics.					
	Learning	g Outcomes:						

(i)	Understand the quantum statistical physics of Fermions & Bosons Students
	understand the statistical foundations of Equilibrium Thermodynamics
(ii)	Be able to apply Fermion & Boson Statistics to various many particle
	problems
(i)	Statistical Mechanics :, Maxwell-Boltzmann statistics, Quantum Statistics :
	Bose-Einstein statistics, Black-body radiation, The Rayleigh-Jeans formula,
(ii)	The Planck radiation formula, Fermi-Dirac statistics, Comparison of results,
	Transition between states

References:

- (1) S. Lokanathan and R. S. Gambhir (2008). An introduction to Statistical and Thermal Physics; NewDelhi: Prentice Hall of India.
- (2) Arthur Beiser, Perspectives of Modern Physics; (Mc Graw Hill International).
- (3) Sinha H P (2005) Thermal and Statistical Physics. Agra: Ram Prasad and Sons.
- (4) Seth Publishers Text Book, Mumbai

SEMESTER V Course – II COURSE TITLE: Solid State Physics COURSE CODE: 20US5PH2 [CREDITS - 02]

Course outcome: The course gives an introduction to solid state physics, and will enable the student to employ classical and quantum mechanical theories needed to understand the physical properties of solids.

Course Specific Outcome: The main objective of this course is to learn about properties and their response to internal and external stimuli. This goal can be achieved by learning crystal structure, crystal binding, lattice dynamics, electron, electron distribution theories and the concept of energy bands.

Unit I	Electrica	l Properties of Metals	Number of lectures :12				
	Learning	Learning Objective:					
	(i) Describe the classical free electron theory.						
	(ii) Derive Ohm's law and Wiedemann Franz Law.						
	(iii)	Explain failure of classical free electron the	eory.				
	(iv)	Describe quantum free electron theory.					
	(v) Derive equation for Fermi energy.						
	(vi)	Explain Fermi distribution function.					

	(1111)	Explain how quantum free electron theory everyomes failures of electical		
	(vii)	Explain how quantum free electron theory overcomes failures of classical free electron theory		
	Loomina			
	(i)	Dutcomes:		
	(i) (ii)	List various electrical properties of metal. State assumptions of classical free electron theory and its success in		
	(11)	verifying Ohm's law and Wiedemann Franz law.		
	(iii)	Explain failures of classical free electron theory.		
		Define Fermi function and Fermi energy.		
	(iv) (v)	Derive equation for Energy density states.		
	(v) (vi)	Describe electrical conductivity on the basis of Quantum free electron		
	(VI)	theory.		
	(vii)	Explain success of Quantum free electron theory in overcoming failures of		
	(VII)	classical free electron theory		
1	(i)	Electrical properties of metals : Classical free electron theory of metals,		
-	(1)	Drawbacks of classical theory, Relaxation time, Collision time and mean		
		free path,		
	(ii)	Quantum theory of free electrons, FermiDirac statistics and electronic		
	(11)	distribution in solids, Density of energy states and Fermi energy,		
	(iii)	The Fermi distribution function, Heat capacity of the electron gas, Mean		
	(111)	energy of electron gas at 0 K, Electrical conductivity from quantum		
		mechanical considerations,		
	SOP : Ch	a. 6 Art : I to V, XIV to XX, XXXI		
Unit II	Modern			
		g Objective:		
	(i)	Students will be able to evaluate and analyze the electrical and optical		
		properties of solids		
	(ii)	Students will be able to analyze electron transport and energy related		
		problems by applying quantum mechanical principles		
	Learning	g Outcomes:		
	(i)	Students will be able to determine the crystal structure by analysis of XRD		
		data		
2	(ii)	Students will be able to evaluate and analyze the electrical and optical		
		properties of solids		
	(i)	Superconductivity: A survey, Mechanism of Superconductors, Effects of		
	(i)	Superconductivity: A survey, Mechanism of Superconductors, Effects of magnetic field, The Meissner effect, the penetration depth, Type I and Type		
	(i)	· · · ·		
	(i) (ii)	magnetic field, The Meissner effect, the penetration depth, Type I and Type		
		magnetic field, The Meissner effect, the penetration depth, Type I and Type II Superconductors.		
		magnetic field, The Meissner effect, the penetration depth, Type I and Type II Superconductors. Band theory of solids, The Kronig- Penney model (Omit eq. 6.184 to		
		magnetic field, The Meissner effect, the penetration depth, Type I and Type II Superconductors.Band theory of solids, The Kronig- Penney model (Omit eq. 6.184 to 6.188), Brillouin zones, Number of wave functions in a band, Motion of		

Unit III	Conduct	ion in Semiconductors	Number of lectures :12				
	Learning	rning Objective:					
	(i)	Have knowledge about the physics of semic	conductor materials.				
	(ii)	Describe various properties of semiconduct	tor materials using mathematical				
		equations.					
	(iii)	Analyse the characteristics and theories in semiconductor materials in					
		charge carriers and energy bands.					
	(iv)	Able to calculate charge carrier conc	entration and change due to				
		temperature.					
	(v)	Evaluate the charge and electric field distrib	oution in a p-n junction.				
	(vi)	Formulate the sequence of events of a p-n	junction under forward bias and				
		reverse bias.					
	Learning	g Outcomes:					
	(i)	Know the physics of semiconductor,					
	(ii)	Able to differentiate intrinsic, extrinsic sem	iconductor				
3	(iii)	Able to describe their behaviour in various	conditions.				
	(i)	Conduction in Semiconductors. Electron	ns and Holes in an Intrinsic				
		Semiconductor, Conductivity, Carrier cond	centrations, Donor and Acceptor				
		impurities, Charge densities in a Semicon	ductor, Fermi level in extrinsic				
		semiconductors, Diffusion, Carrier lifetime	e, The continuity equation, The				
		Hall effect.					
	(ii)	Semiconductor-diode Characteristics: Quali	itative theory of the p-n junction,				
		The p-n junction as a diode, Band structure	e of an open-circuit p-n junction,				
		The current components in a p-n junction of	diode, Quantitative theory of p-n				
		diode currents, The Volt-Ampere cha	aracteristics, The temperature				
		dependence of p-n characteristics, Die	ode resistance. Semiconductor				
		nanoparticle: effect on band gap energy					
	MH : Art	4.1 to 4.10; Art 5.1 to 5.8 3.					

References:

- (1) Pillai S.O (2015): Solid State Physics 7/e New Age International. (SOP)
- (2) Millman, Halkias & Satyabrata Jit (2015): Electronic Devices and Circuits 2/e : Tata McGraw Hill.
- (3) Pillai S.O(2012): Modern Physics and Solid State Physics : Problems and solutions
- (4) T. Pradeep (2007) : Nano: The essentials: Tata McGraw Hill
- (5) Solid State Physics: A. J. Dekker, Macmillan India Ltd.

SEMESTER V Course –III COURSE TITLE: Atomic Physics

COURSE CODE: 20US5PH3 [CREDITS - 02]

Course outcome:

- (1) Explain the application of quantum theory to hydrogen atom.
- (2) Understand the physical interpretation of quantum numbers.
- (3) Differentiate between the effects of change in the intensity of applied field on spectrum.
- (4) Solve problems based on operators and wave functions at atomic level.

Unit I	Hydroger	n Atom	Number of lectures :12	
	Learning	Objective:		
	(i)	Understand use of quantum mechanics at at	comic level.	
	(ii)	Derive Schrodinger equation for hydro	ogen atom in spherical polar	
		coordinate.		
	(iii)	Estimate the Eigen values of wave function	ns for different operators.	
	(iv)	Draw interference of spin concept from Ster	rn Gerlach experiment.	
	Learning	Outcomes:		
	(i)	Solve Schrodinger equation using spheric separation of variables.	cal polar coordinates by using	
	(ii)	Illustrate the physical interpretation of quar	ntum numbers.	
	(iii)	Explain the concept of probability density of	of electron in hydrogen atom for	
		various states.		
	(iv)	Describe the construction of Stern Gerlac	h experiment for demonstrating	
1		spin of electron.		
	(i) Hydrogen atom: Schrödinger's equation for Hydrogen atom, Separati			
		variables, Quantum Numbers: Total quan	ntum number, Orbital quantum	
		number, Magnetic quantum number.	Angular momentum, Electron	
		probability density (Radial part).		
	(ii)	Electron Spin: The Stern-Gerlach experime	nt	
	Ref 1.	B: 9.1 to 9.9.		
		B: 10.1, 10.3		
Unit II	Spin orbi	t coupling & Vector atom model	Number of lectures :12	
	Learning	Objective:		
	(i)	Differentiate between the symmetric and an		
	(ii)	Understand the spin orbit coupling in Hydro	-	
	(iii)	Explain the vector atom model with possibl		
	(iv)	Derive the selection rules in hydrogen spect	trum.	
	e	Outcomes:		
	(i)	List the type of particles and possible statist	• •	
	(ii)	Calculate the shift in wavelength observed	in the hydrogen spectrum due to	

K J Somaiya College of Science & Commerce

VIHAR

2		spin orbit coupling.		
-	(iii)	Explain the LS coupling and JJ coupling.		
	(iv)	Derive the expression for change in the	average value of electron and	
	$(\mathbf{I}\mathbf{v})$	frequency of light emitted in the process (B	e	
	(v)	Solve problems based on vector atom mode	- /	
	(i)	Pauli's Exclusion Principle Symmetric and		
		1 4		
	(ii)	Spin orbit coupling, Hund's Rule, Total an	ngular momentum, vector atom	
		model, L-S and j-j coupling.		
	(iii)	Origin of spectral lines, Selection rules	11.0	
TT •4 TTT		10.2, 10.6, 10.7, 10.8, 10.9. ; B : 11.1 and		
Unit III		raction with external magnetic field	Number of lectures :12	
	Learning Objective:			
	(i)	Learn basic interaction an atom with an exte	_	
	(ii)	Removal of degeneracy with respect to	o various angular momentum	
		quantum numbers.		
	(iii)	Impact of magnetic field strength on coup	ling between spin and orbit and	
		accordingly removal of degeneracies.		
	Learning	Outcomes:		
	(i)	At weak external magnetic field degeneracy	with respect to J is removed -	
		Anomalous Zeeman effect.		
	(ii)	As a special case $(S = 0)$ degeneracy w.r.t. I	L is removed – Normal Zeeman	
		Effect.		
	(iii)	At very high magnetic fields, J loses its imp	portance and degeneracy w.r.t. L	
		and S is simultaneously removed, Paschen I	Back effect.	
	(i)	Effect of Magnetic field on atoms, the	normal Zeeman Effect and its	
		explanation (Classical and Quantum), The	ne Lande g factor, Anomalous	
		Zeeman effect.		
	(ii)	Paschen-Back effect, Paschen-Back effect	ct of principal series doublet,	
		Selection rules for Paschen-Back effect.		
	Ref SA	: 9.14, 9.15, 9.16, 9.17; W : 10.7, 10.8,	10.9	

References:

- (1) B : Arthur Beiser: Perspectives of Modern Physics, McGraw Hill.
- (2) SA : H. Semat & J. R. Albright: Introduction to Atomic & Nuclear Physics,(5th Ed.) Chapman & Hall.
- (3) W : H. E. White: Introduction to Atomic Spectra: McGraw Hill.

SEMESTER V

Course –IV COURSE TITLE: Electrodynamics COURSE CODE: 20US5PH4 [CREDITS - 02]

Course Objective:

This course revises the basic concept of electrodynamics and establishes the concept of electromagnetic waves and its properties.

Course outcome:

- (1) A fundamental understanding of electrostatics, electricity, magnetism, electromagnetic induction and electrodynamics, its application and linkage to the Industry.
- (2) Interpret Maxwell's equations in matter and vacuum.
- (3) Write the equations for electric and magnetic waves in different situations for problems and solve them.
- (4) Show how reflection and transmission can be derived from electromagnetic waves.
- (5) Develop analytical and problem solving skills.

Unit I	Electros	tatics	Number of lectures :12
	Learning	g Objective:	
	(i)	State the gauss' law and Amperes law	
	(ii)	Apply the laws for finding electric and surfaces.	l magnetic fields for various
	(iii)	Derive the divergence and curl of electric a	nd magnetic field
	Learning	g Outcomes:	
	(i)	Understand Gauss's and Ampere's law in n	natter.
	(ii)	To able to analytically apply Gauss`s to sol	ve different problems.
	(iii)	Understanding and applying divergence an	nd curl to electric and magnetic
		fields. Drawing of field line for a given cha	rge and current configuration.
	(i)	Gauss' law, The divergence of E, Application	ions of Gauss' law, The curl of
		E.	
	(ii)	Introduction to potential, Comments on p	otential, Poisson's equation and
1		Laplace's equation, The potential of a local	ized charge distribution.
	(iii)	Dielectrics, Induced Dipoles, Polarizati	on, Bound charges and their
		physical interpretation, Gauss' law in pres	sence of dielectrics, A deceptive
		parallel, Susceptibility, Permittivity, Dielec	etric constant,
	DG: 2.2,	2.3, 4.1.1, 4.1.4, 4.2, 4.3, 4.4.1	
Unit II	Magneto	ostatics	Number of lectures :12
	Learning	g Objective:	
	(i)	To apprise the students regarding the conce	
	-	Maxwell equations and use them various si	tuations
	Learning	g Outcomes:	

		1 1'00 1 1
		to solve different problems.
. ,	1 I	
. ,		
(iv)	-	Maxwell's equation, boundary
	conditions.	
(i)		
(ii)	Dia-magnets Paramagnets Ferro magnets,	Magnetization, Bound currents
	and their physical interpretation, Ampere's	law in magnetized materials, A
	deceptive parallel, Magnetic susceptibility a	and permeability.
(iii)	Electrodynamics before Maxwell, Maxwel	l's correction to Ampere's law,
	Maxwell's equations, Maxwell's equations	in matter, Boundary conditions
	Electrodynamics before Maxwell, Maxwel	l's correction to Ampere's law,
	Maxwell's equations, Maxwell's equations	in matter, Boundary conditions
DG: 5.3.2	, 5.3.3, 6.1.1, 6.1.4, 6.2, 6.3, 6.4.1	
Electrom	agnetic Waves	Number of lectures :12
Learning	Objective:	
(1)	student to have a solid theoretical foundation design emission, propagation and reception	n to be able in the future to
Learning	•	
(i)	Compare continuity equation and Poynting` conservation	s theorem based on energy
(ii)	Write wave equations for electric and magnet	etic fields.
(iii)	Estimate energy and momentum in electrom	nagnetic waves
(iv)	Solve simple problems on electromagnetic v	waves in different media.
(v)	Justify why to do electrodynamics an	d show the reflection and
	transmission of electromagnetic waves in di	fferent media
(i)	The continuity equation, Poynting's theorem	n
(ii)	Electromagnetic waves in vacuum, electro	omagnetic waves in matter, the
	wave equation for E and B, Monochrom momentum in electromagnetic waves.	natic Plane waves, Energy and
(iii)	-	n and transmission of EM waves
	at normal incidence.	
	(ii) (iii) DG: 5.3.2 Electrom Learning (i) Learning (i) (ii) (iii) (iv) (v) (v) (i)	 (ii) Interpret Maxwell's equations (iii) Analyze the various boundary conditions (iv) Able to solve problems based on the conditions. (i) The Divergence and Curl of B, Applications (ii) Dia-magnets Paramagnets Ferro magnets, and their physical interpretation, Ampere's deceptive parallel, Magnetic susceptibility a (iii) Electrodynamics before Maxwell, Maxwell Maxwell's equations, Maxwell's equations Electrodynamics before Maxwell, Maxwel Maxwell's equations, Maxwell's equations DG: 5.3.2, 5.3.3, 6.1.1, 6.1.4, 6.2, 6.3, 6.4.1 Electromagnetic Waves Learning Objective: (i) To acquire the knowledge of Electromagnet student to have a solid theoretical foundation design emission , propagation and reception systems Learning Outcomes: (i) Compare continuity equation and Poynting' conservation (ii) Write wave equations for electric and magn (iii) Estimate energy and momentum in electron (iv) Solve simple problems on electromagnetic vaves in diransmission of electromagnetic waves in diransmission of electromagnetic waves in diransmission of electromagnetic waves in diransmission for E and B, Monochrom momentum in electrom agnetic waves. (ii) Electromagnetic waves in matter, Reflection

References:

- (1) DG: David J. Griffiths (3rd Ed) Introduction to Electrodynamics : Prentice Hall of India.
- (2) Electricity and magnetism: A S Mahajan, A A Rangwala Mc Graw Hill
- (3) Classical Electrodynamics: David Jackson (3rd Edition) John Wiley and Sons
- (4) Introduction to Electrodynamics: A. Z. Capria and P. V. Panat., Narosa Publishing

SEMESTER V

Course –DSE-I COURSE TITLE: Analog Electronics COURSE CODE: 20US5PHAI1 [CREDITS - 02]

Course Outcome:

- (1) Provide basic knowledge about the various sensors and data acquisition systems applied in Wireless sensor network.
- (2) To understand the concepts, working principles and key applications of linear integrated circuits.
- (3) To perform analysis of circuits based on linear integrated circuits.
- (4) To design circuits and systems for particular applications using various types of power supplies

Course Specific outcome:

- (1) Explain the basic features of oscilloscope and different types of oscilloscopes
- (2) Apply the complete knowledge of various electronics instruments/transducers to measure the physical quantities in the field of science, engineering and technology.

Unit I	Transdu	cers and its applications	Number of lectures :12
	Learning	g Objective:	
	(i)	To provide basic knowledge about the vari	ious sensors and data acquisition
		systems applied in Wireless sensor network	ζ.
	Learning	g Outcomes:	
	(i)	After successful completion of the course	student will be able to explain
		principle of operation for various sensors.	
	(ii)	Students will be able to describe function	onal blocks and applications of
		sensor in various areas	
	(i)	Introduction to Transducers.	
	(ii)	Temperature measurements, Resistance	thermometer, thermocouple &
		thermistor.	
	(iii)	Pressure & Displacement Transducers: Str	
		factor is not expected), LVDT, Capacitive t	ransducers
1	(iv)	Optical Transducers Photo -diode, photo	o transistor, Photo multiplier
		tube,	
	(v)	Transducers Applications :Automotive se	nsors, Home appliance sensors,
		Medical diagnostic sensors	
Unit II	Display	devices and Power Supplies	Number of lectures :12
	Learning	g Objective:	

	(i)	Students will try to learn about Various display device and Various types
	. .	of power supplies
	-	g Outcomes:
	(i)	Understand the fundamentals and areas of applications for the integrated
		circuits & Display devices
	(ii)	Analyse important types of power supplies
	(iii)	Demonstrate the ability to design practical circuits that perform the desired
2		operations.
_	(iv)	Understand the differences between theoretical, practical & simulated
		results in integrated circuits.
	(i)	Display devices: LED, LCD, and Seven segment LED display, BCD to
		seven segment decoder / driver.
	(ii)	Linear and switching regulatorsMonolithic linear IC voltage Regulators.
		(LM 78XX, LM 79XX, LM 317).
	(iii)	Basic and Monolithic Switching regulators (buck, boost and buck – boost)
		(Only basic Configurations)
Unit III	Measuri	ng Instruments Number of lectures :12
	Learning	0
	-	g Objective:
	(i)	g Objective: Theoretical background of cathode ray oscilloscope
	(i) (ii)	g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods
	(i) (ii) Learning	g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes:
	(i) (ii) Learning (i)	 g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument
	(i) (ii) Learning	 g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument Explain the basic features of oscilloscope and different types of
	(i) (ii) Learning (i) (ii)	 g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument Explain the basic features of oscilloscope and different types of oscilloscopes
	(i) (ii) Learning (i)	 g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument Explain the basic features of oscilloscope and different types of oscilloscopes Apply the complete knowledge of various electronics
	(i) (ii) Learning (i) (ii)	g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument Explain the basic features of oscilloscope and different types of oscilloscopes Apply the complete knowledge of various electronics instruments/transducers to measure the physical quantities in the field of
	(i) (ii) Learning (i) (ii) (iii)	g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument Explain the basic features of oscilloscope and different types of oscilloscopes Apply the complete knowledge of various electronics instruments/transducers to measure the physical quantities in the field of science, engineering and technology
	(i) (ii) Learning (i) (ii)	g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument Explain the basic features of oscilloscope and different types of oscilloscopes Apply the complete knowledge of various electronics instruments/transducers to measure the physical quantities in the field of science, engineering and technology Cathode Ray Oscilloscope: Introduction, CRO block diagram, CRT
	(i) (ii) Learning (i) (ii) (iii)	 g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument Explain the basic features of oscilloscope and different types of oscilloscopes Apply the complete knowledge of various electronics instruments/transducers to measure the physical quantities in the field of science, engineering and technology Cathode Ray Oscilloscope: Introduction, CRO block diagram, CRT connection, Vertical amplifier, Basic function of sweep generator,
	(i) (ii) Learning (i) (ii) (iii)	 g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument Explain the basic features of oscilloscope and different types of oscilloscopes Apply the complete knowledge of various electronics instruments/transducers to measure the physical quantities in the field of science, engineering and technology Cathode Ray Oscilloscope: Introduction, CRO block diagram, CRT connection, Vertical amplifier, Basic function of sweep generator, Horizontal deflection system, Triggered sweep, Trigger Pulse, Delay line.
	(i) (ii) Learning (i) (iii) (iii)	 g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument Explain the basic features of oscilloscope and different types of oscilloscopes Apply the complete knowledge of various electronics instruments/transducers to measure the physical quantities in the field of science, engineering and technology Cathode Ray Oscilloscope: Introduction, CRO block diagram, CRT connection, Vertical amplifier, Basic function of sweep generator, Horizontal deflection system, Triggered sweep, Trigger Pulse, Delay line. Dual trace CRO.
	(i) (ii) Learning (i) (ii) (iii)	 g Objective: Theoretical background of cathode ray oscilloscope Conversion of Analog signal to digital signal by various methods g Outcomes: Analyse the performance characteristics of each instrument Explain the basic features of oscilloscope and different types of oscilloscopes Apply the complete knowledge of various electronics instruments/transducers to measure the physical quantities in the field of science, engineering and technology Cathode Ray Oscilloscope: Introduction, CRO block diagram, CRT connection, Vertical amplifier, Basic function of sweep generator, Horizontal deflection system, Triggered sweep, Trigger Pulse, Delay line.

References:

- (1) D.Patranabis Sensors and Transducers 2nd edition .
- (2) Albert D. Helfrick& William D. Cooper (PHI) Edition: Modern Electronic Instrumentation & Measurement Techniques.
- (3) K: H. S. Kalsi, 2nd Edition Electronic Instrumentation by, Tata McGraw Hill.
- (4) T: G. L. Tokheim (6th Editon)Digital electronics (Tata McGraw Hill)

- (5) C & D: Coughlin & F. F. Driscoll "OPAMPs and linear integrated circuits 6th Edition), Eastern Economy Education, PHI
- (6) G R. A. Gayakwad: OPAMPs & linear integrated circuits,(4th Edition, PHI)

SEMESTER V Course –DSE-II COURSE TITLE: Digital Electronics and instrumentation COURSE CODE: 20US5PHDE [CREDITS - 02]

Course Outcome:

- (1) Develop a digital logic and apply it to solve real life problems.
- (2) Analyze, design and implement combinational logic circuits.
- (3) Classify different semiconductor memories.
- (4) Analyze, design and implement sequential logic circuits.

Unit I	Data Pro	cessing Circuits	Number of lectures :12
	Learning Objective:		
	(i)	To understand number representation an	d conversion between different
		representation in digital electronic circuits.	
	(ii)	To Analyze logic processes and imple	ement logical operations using
		combinational logic circuits.	
	(iii)	To understand characteristics of memory an	nd their classification.
	(iv)	To understand concepts of sequential circ	cuits and to Analyze sequential
		systems in terms of state machines	
	Learning	g Outcomes:	
	(i)	After successful completion of the course	student will be able to develop a
		digital logic and apply it to solve real life p	
	(ii)	Analyze, design and implement combination	onal logic circuits.
	(iii)	Study the conversion of digital data.	
1	Data proc	cessing circuits	
	(i)	Multiplexers, Demultiplexers, 1-of-16 Dec	oder, BCD-to-decimal Decoders,
		and Seven segment Decoders, Encoders.	
	(ii)	D/A conversion: Variable resistor Ne	etworks, binary ladders, D/A
		converters, D/A accuracy and resolution.	
	ML :	Art 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 ML : Art 12.	
Unit II	Registers	s and Counters	Number of lectures :12
	Learning	g Objective:	
	(i)	Students will try to learn different types of	Registers and digital counters.
	Learning	g Outcomes:	
	(i)	Develop a digital counter which will be a	ble to use for real life counting

		and	
	(ii)	learn how to shift data at appropriate location	on
	(i)	Registers: Types of registers, Serial In-se	rial Out, Serial In-Parallel Out,
		Parallel In - Serial Out, Parallel In -Para	allel Out, Applications of Shift
2		Registers	
	(ii)	Counters: Ripple Counter, Synchronous	Counters, Ring Counters, And
		Other Counters.	
	ML : Ar	t. 9.1, 9.2, 9.3, 9.4, 9.5, 9. MB : Art. 8.4, 8.5	5, 8.6, 8.7
Unit III	Digital Ir	tegrated Circuit	Number of lectures :12
	Learning	Objective:	
	(i)	Differentiate between sequential logic and c	e
	(ii)	Describe the structure and function of the se	1 1
	(iii)	Distinguish between Small Scale (SSI)	Integration and Medium Scale
		(MSI) Integration designs	
	Learning	Outcomes:	
	(i)	After completion of course student will lear	n about Design sequential logic
		circuit based on design specifications.	
	(i)	Digital Integrated Circuits: Switching Ci	ircuits, Logic families: Standard
		TTL NAND, TTL NOR, Open collector g	gates, Three state TTL devices,
	(ii)	MOS inverters, CMOS NAND and NOR	gates, CMOS characteristics

References:

- (1) ML: Malvino and Leach (6th Ed) Digital Principles and Applications (TMH).
- (2) MB : Malvino and Brown (3rd Ed) Digital Computer Electronics

SEMESTER V

Course –DSE-III COURSE TITLE: Electronics Communication COURSE CODE: 20US5PHEC [CREDITS - 02]

Unit I	Introduc	ction to Communication System	Number of lectures :12
	Learning	g Objective:	
	(i)	Define communication and explain the dif	ferent steps in communication &
		different types of communication system.	
	(ii)	Distinguish between information and mess	age.
	(iii)	Explain need for modulation.	
	(iv)	Classify electromagnetic spectrum as MF,I	HF,VHF and UHF.
	(v)	Explain different sources of noise & Calcu	late noise levels using equations

		taught in the text.		
	Learning	Outcomes:		
	(i)	Define the word information as it applies to	subject of communication.	
	(ii)	Various elements of communication system	ı.	
	(iii)	Understand the use of modulation as it appl	lies to transmission.	
	(iv)	Know about electromagnetic spectrum	and basic terminologies in	
1		communication system& different types of	communication system.	
	(v)	Understand the different sources of noise.		
	(vi)	Explain how to measure signal to noise ratio and noise figure and their		
		necessity.		
	(i)	Introduction to Communication System	: Elements of communication	
		system, need for modulation, electrom		
		applications, types of communication	n systems, classification of	
		communication system.		
	(ii)	Noise: Introduction, external noise, internal	l noise, noise figure.	
		1.2, 1.3, 1.4, 1.6, 1.7; 2.1, 2.2, 2.3, 2.4, 2.5		
Unit II	_	le modulation techniques	Number of lectures :12	
	U	Objective:		
	(i)	Know the elements of analog communication	on.	
	(ii)	Understand the theory of amplitude modula	ation techniques.	
	(iii)	Explain different approaches for the gener	ration of AM, DSBSC and SSB	
		signals.		
	U	ning Outcomes:		
	(i)			
2	(ii)	List and explain the different elements of a	-	
	(iii)	Mention different components of AM, DSB		
	(iv)	Derive the expression for peak amplitude,	, instantaneous voltage and total	
		power of AM, DSBSC and SSB wave.		
	(v)	Explain the difference between AM, DSBS		
	(vi)	Describe the AM wave generation proce	ess using analog multiplier and	
	(diode as non-linear resistor.		
	(vii)	Describe the DSBSC wave generation pro- balanced modulator.	cess using analog multiplier and	
	(viii)	Describe the SSB wave generation proce	as using analog multiplier and	
	(VIII)	frequency discrimination methods.	288 USINg analog munupher and	
	(i)	Amplitude modulation techniques: Eleme	ents of analog communication	
	(1)	Amplitude modulation (AM) techniques,	C I	
		carrier (DSBSC) technique, Single sideba		
		of AM signal, Generation of DSBSC signal	_	
	KD : 3.1.	3.2.1, 3.2.2, 3.2.3, 3.3.1, 3.3.2, 3.3.	, generation of 552 signal.	
	III ,			

Unit III	Modulat	ion Techniques	Number of lectures :12
	Learning	g Objective:	
	(i)	Describe the theory of amplitude modular	tion & generation of frequency
		modulation.	
	(ii)	Understand the difference between conti	inuous wave and pulse analog
		modulation techniques.	
	(iii)	Explain the sampling process, PAM, PWM	and PPM techniques.
	(iv)	How to demodulate pulse analog modulated	l techniques.
	Learning	g Outcomes:	
	(i)	Explain what is the effect of modulating s	ignal amplitude and modulating
		signal frequency on FM wave?.	
	(ii)	Give the differences and similarities betwee	en FM and PM.
	(iii)	Describe direct and indirect method of FM	generation and its limitations.
	(iv)	Describe the sampling process.	
	(v)	Describe the generation & demodulation of	PAM, PWM and PPM signals.
	(vi)	Make a comparison between PAM, PWM a	and PPM modulation schemes
	(i)	Angle modulation techniques: Theory of	f angle modulation techniques,
		Generation of frequency modulation (FM and	nd Direct methods)
	(ii)	Pulse modulation techniques: Introducti	ion, Pulse analog modulation
		techniques -Pulse amplitude modulation,	Pulse width modulation, Pulse
		position modulation, Demodulation of pulse	e analog modulated signals.
	KD: 4.1	, 4.3.1, 4.3.2, 5.1, 5.2	

References:

(1) KD : George Kennedy, Bernard Davis, S R M Prasanna -Electronic communication systems (6th Ed)

SEMESTER V

Course –DSE-IV COURSE TITLE: Renewable Energy harvesting COURSE CODE: 20US5PHREH4 [CREDITS - 02]

Course Outcome:

- (1) Describe sources and uses renewable and non-renewable energy.
- (2) Provide examples of common types of renewable and non-renewable resources.
- (3) Understand and explain general ways to save energy at a personal, community and global level.
- (4) Understand and explain, in general how passive solar heating, hydropower and wind power work.
- (5) Understand the benefits and disadvantages to using renewable resources.

Course Specific outcome:

(1) Although leaders in this field were aware of the importance of non-conventional sources of energy since 1970, the first Earth Summit. Even then, we have hardly achieved around 20% of power generations by renewable sources, worldwide, by today. To accelerate this process, we need to invoke more understanding about technical and social aspects of renewable energy through the education system.

Unit I	Introduction		Number of lectures :12
	Learning Objective:		
	(i) Outline and brief	description, including f	fundamentals, of the different
	renewable energy	technologies, wind, s	solar, bioenergy, hydro, and
	geothermal energy	· · · · · · · · · · · · · · · · · · ·	
	(ii) Overview of renew	vable energy technologies	and applications;
	Learning Outcomes:		
	(i) Understand the dep	pth and importance of non	conventional energy
	(ii) Correlate renewab	le energy with sustainable	development
	(i) Introduction: Form	ns of Energy, Present-day	energy use Energy devices and
	Conversions, Ener	gy problem, Environment	al impact, Limitations and side
	effects of conven	tional sources, Way tow	ards Sustainable Development
	Environmental imp	pact of renewable energy s	sources
	BO Ch 1.1 – 1.3 , AB Ch 7		
1	(ii) Different ways o	f generating renewable	energies, Solar energy, Wind
	energy, Tidal energy	gy, Wave energy, Ocean th	hermal energy conversion,
	MA Ch 18, RAI Ch 1		
	(iii) Hydroelectricity, H	Hydrogen energy, Magneto	p-hydro dynamic (MHD) power
	generation: Mater	rials, principle and adva	antages, Piezoelectric Energy
	generation, The	rmoelectric power: M	aterials, power generation,
	applications Thern	nionic generation of power	r
	RAI 11.2 – 11.5, 12.2, 12.5, 1	2.8, 13.2 - 13.5, 14.2 - 14	l.4
Unit II	Widely used non-convention	nal energy sources	Number of lectures :12
	Learning Objective:		
	(i) Describe Solar ene	ergy harvesting in detail	

TRUST T.Y. B.Sc. Syllabus

Learning Outcomes: (i) Identify strengths and weaknesses of different renewable technologies (i) Solar Energy Introduction, Solar energy collectors, Storage of solar Solar pond, Applications of Solar Energy, Solar Green House, Solar and Cooker Solar cell, Absorption Air Conditioning, Solar Photo PV models and equivalent circuits Efficiency calculations RAI 3.2, 3.7-3.8 ; ch 4, ch 5 (ii) Wind Energy Introduction and Historical Background, Desi, windmills, Wind Turbines and electrical machines required for working, power electronic interfaces and grid interconnection tope Applications of wind energy RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2 Unit III Additional non-conventional energy technologies Number of lectures (i) Enable understanding of renewable energy in the broadest terms	energy, Heater voltaic, gns of r their ologies,
 (i) Solar Energy Introduction, Solar energy collectors, Storage of solar Solar pond, Applications of Solar Energy, Solar Green House, Solar and Cooker Solar cell, Absorption Air Conditioning, Solar Photo PV models and equivalent circuits Efficiency calculations RAI 3.2, 3.7-3.8; ch 4, ch 5 (ii) Wind Energy Introduction and Historical Background, Desi windmills, Wind Turbines and electrical machines required for working, power electronic interfaces and grid interconnection top Applications of wind energy RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2 Unit III Additional non-conventional energy technologies Number of lectures 	energy, Heater voltaic, gns of r their ologies,
Solar pond, Applications of Solar Energy, Solar Green House, Solar and Cooker Solar cell, Absorption Air Conditioning, Solar Photo PV models and equivalent circuits Efficiency calculationsRAI 3.2, 3.7-3.8 ; ch 4, ch 5 (ii) Wind Energy Introduction and Historical Background, Desi windmills, Wind Turbines and electrical machines required for working, power electronic interfaces and grid interconnection tope Applications of wind energy RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2Unit IIIAdditional non-conventional energy technologiesNumber of lectures	Heater voltaic, gns of r their blogies,
2and Cooker Solar cell, Absorption Air Conditioning, Solar Photo PV models and equivalent circuits Efficiency calculations2RAI 3.2, 3.7-3.8; ch 4, ch 5(ii)Wind Energy Introduction and Historical Background, Desi windmills, Wind Turbines and electrical machines required for working, power electronic interfaces and grid interconnection topo Applications of wind energy RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2Unit IIIAdditional non-conventional energy technologiesNumber of lectures	voltaic, gns of r their ologies,
2PV models and equivalent circuits Efficiency calculationsRAI 3.2, 3.7-3.8; ch 4, ch 5(ii)Wind Energy Introduction and Historical Background, Desi windmills, Wind Turbines and electrical machines required for working, power electronic interfaces and grid interconnection tope Applications of wind energy RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2Unit IIIAdditional non-conventional energy technologiesNumber of lectures	gns of r their ologies,
RAI 3.2, 3.7-3.8 ; ch 4, ch 5(ii)Wind Energy Introduction and Historical Background, Desi windmills, Wind Turbines and electrical machines required for working, power electronic interfaces and grid interconnection tope Applications of wind energy RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2Unit IIIAdditional non-conventional energy technologiesNumber of lecturesLearning Objective:	r their ologies,
 (ii) Wind Energy Introduction and Historical Background, Design windmills, Wind Turbines and electrical machines required for working, power electronic interfaces and grid interconnection topol Applications of wind energy RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2 Unit III Additional non-conventional energy technologies Number of lectures Learning Objective: 	r their ologies,
 windmills, Wind Turbines and electrical machines required for working, power electronic interfaces and grid interconnection topologies Applications of wind energy RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2 Unit III Additional non-conventional energy technologies Number of lectures Learning Objective: 	r their ologies,
working, power electronic interfaces and grid interconnection tope Applications of wind energy RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2 Unit III Additional non-conventional energy technologies Learning Objective:	ologies,
Applications of wind energy RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2 Unit III Additional non-conventional energy technologies Learning Objective:	
RAI ch 6.2, 6.4-5, 6.7, 6.13, AB ch 2Unit IIIAdditional non-conventional energy technologiesNumber of lecturesLearning Objective:	:12
Unit IIIAdditional non-conventional energy technologiesNumber of lecturesLearning Objective:	:12
Learning Objective:	:12
(1) Enable understanding of renewable energy in the broadest terms	
(ii) Show the strengths and weaknesses of renewable energy technologie	S
Learning Outcomes:	1
(i) Provide an overview of the different renewable energy technologies a their applications	ina
their applications(ii) Explain the need of renewable energy sources in future and its potential	iolin
energy requirements of the world.	1a1 111
	power
generation, Energy and poser from ocean wave, Basic principles	1
power, Operation methods for tidal power, Advantages and limitat	
tidal power generation	
(ii) Hydro Electric Energy Components of a hydroelectric system, Turbi	nes and
generators, protection and control of the system, Advantage	
limitations	
RAI 9.2 – 9.5, AB Ch 3, Ch 4	
(iii) Geothermal Energy Geothermal Resources, Geothermal energy conv	version,
Advantages, disadvantages and applications of geothermal energies	
AB Ch 5, RAI 8.4, 8.11 – 8.13	
(iv) Energy from Biomass Design and maintenance of biogas proc	uction,
Biomass as source of energy, Advantages and disadvantages of energy	y from
biomass	
RAI 7.2-7.4, 7.22, 7.25	
(v) Chemical energy sources Fuel Cell energy, Design and princ	ple of
operation of a fuel cell, types of fuel cells, conversion efficiency and	power
output, application of fuel cells	
RAI 10.2	

References:

- (1) G. D. Rai, Non-conventional Energy Sources, New Delhi: Khanna Publishers
- (2) AB: S. A. Abbasi, (2006), 'Renewable Energy Sources and Their Environmental Impact, 4th Edition, Prentice Hall of India Ref 3 Abbasi
- (3) MA: S. E. Manahan, (2007), Environmental Science and Technology: A sustainable Approach to Green Science and Technology, 2nd Edition, Taylor and Francis Group Ref 5 Manahan
- (4) BO: Ref 1 Godfrey Boyle, (2012), Renewable Energy, Power for a sustainable future, 3rd edition, Oxford University Press and Open University.
- (5) S. P. Sukhatme, (2008), Solar Energy, New York: TMH Publication
- (6) Gilbert M. Masters, (2004), Renewable and Efficient Electric Power Systems, Wiley-IEEE Press
- (7) Bent Sorensen, (2004), Renewable energy: its physics, engineering, use, environmental impacts, economy, and planning aspects, 3rd Edition, Elsevier Academic Press Andre Brin, (1981), Energy and the Oceans, Ann Arbor Science Publishing Inc.

SEMESTER V Course –SEC COURSE TITLE: Mathematical Methods COURSE CODE: 20US5PHMM7 [CREDITS - 01]

Course Outcome:

- (1) Describe sources and uses renewable and non-renewable energy. Students will demonstrate competence with the basic ideas of linear algebra including concepts of linear systems, independence, theory of matrices, linear transformations, bases and dimension, eigenvalues, eigenvectors and Diagonalization.
- (2) Use the method of Laplace transforms to solve initial-value problems for linear differential equations with constant coefficients.
- (3) Solve a Cauchy problem for the wave or diffusion equations using the Fourier Transform.

Unit I	Matrices Nu	mber of lectures :12	
	Learning Objective:		
(i) Understand the linear equations, vector spaces, matric transformations, determinants, Matrices, etc.			
	 (ii) Learn to use Laplace transform methods to solve ((iii) Introduce the Fourier series and its application t differential equations 	1	

	Learning	Outcomes:		
	(i)	Learn the basic ideas of linear algebra i	ncluding concepts of linear	
		systems, independence, theory of matrices, line	ear transformations	
	(ii)	Use the method of Laplace transforms to sol	lve initial-value problems for	
		linear differential equations with constant coef	ficients	
	Matrices:			
	(i)	Addition and Multiplication of Matrices. Nu	ll Matrices. Diagonal, Scalar	
1		and Unit Matrices. Upper Triangular and Lowe	er-Triangular Matrices.	
	(ii)	Transpose of a Matrix. Symmetric and	Skew-Symmetric Matrices.	
		Conjugate of a Matrix. Hermitian and Skew-	Hermitian Matrices. Singular	
		and Non-Singular matrices.		
	(iii)	3. Adjoint of a Matrix. Inverse of a Matrix by	Adjoint Method. Orthogonal	
		and Unitary Matrices. Trace of a Matrix. Eig	gen-values and Eigenvectors.	
		Cayley- Hamilton Theorem. Diagonalization of Matrices		
Unit II	Fourier a	and Laplace transforms	Number of lectures :12	
	Learning	Objective:		
	(i)	Describe Solar energy harvesting in detail		
	(ii)	Give overview of Wind energy		
	Learning	Outcomes:		
	(i)	Use the method of Laplace transforms to solve	-	
	(')	1	befficients.	
	(i)	Fourier transforms: Introduction, Formal development of the complex		
	<i>(</i>)	Fourier transform,		
2	(ii)	Cosine and Sine transforms, The transforms of		
	(iii)	Laplace transforms, Laplace transform of	derivatives, inverse Laplace	
		transform and Convolution theorem.		

References:

- (1) Erwin Kreyszig (Wiley Eastern Limited, 1985) Advanced Engineering Mathematics
- (2) Charlie Harper. (P.H.I., 1995) Introduction to Mathematical Physics
- (3) B S Grewal, Khanna Publishers (2000) Higher Engineering Mathematics
- (4) H.K.Dass Mathematical Physics.

Evaluation Pattern (Theory):

For each course I, II, III and IV and DSE Course

External Evaluation – Semester End Examination [60 Marks] - Duration : 2 hours Paper Pattern

Question No.	Module	Marks with Option	Marks without Option	
Q.1 (A) Attempt any One/Two	1	08	16	
(B) Attempt Three/Four		12	16	

Q.2 (A) Attempt any One/Two	2	08	16
(B) Attempt Three/Four		12	16
Q.3 (A) Attempt any One/Two	3	08	16
(B) Attempt Three/Four		12	16

Internal Evaluation: [40 Marks]

Evaluation Type	Marks
Class Test/Online Test	25
Assignment	15
Poster Presentation	
Field Visit Report	
Simple Project	
Project +Presentation + Report writing + Viva	40
OR	
Chapter Review +Presentation + Report writing + Viva	

SEMESTER V Practicals Course-I COURSE CODE: 20US5PHP1 & 20US5PHP2

Learning Outcomes:

The T. Y. B. Sc. Syllabus integrates the regular practical work with a series of skill experiments. During the teaching and examination of Physics laboratory work, simple modifications of experimental parameters may be attempted. Attention should be given to basic skills of experimentation which include:

- (1)Understanding relevant concepts.
- (2)Planning of the experiments.
- (3)Layout and adjustments of the equipment.
- (4)Recording of observations and plotting of graphs.
- (5)Calculation of results and estimation of possible errors in the observation of results.

Regular Physics Experiments: A minimum of 8 experiments from each of the course are to be performed and reported in the journal.

Skill Experiments: Minimum 7 skills are compulsory and must be reported in the Journal. Skills will be tested during the examination through viva or Practical.

The certified journal must contain a minimum of 16 regular experiments (8 from each group), & 6 experiments from DSE (any two DSE branch) (Not more than 3experiments/DSE from any group) and 7 Skills in semester V.

A separate index and certificate in journal is must for each semester course. There will be three turns of three hours each for the examination of practical course

20US5PHP1	20US5PHP2	No.of	No.of
		credits	hours
1) Determination of "g" by Kater's	1) Mutual inductance by BG.		
pendulum.	2) Hysteresis by magnetometer		
2) Flat spiral spring (Y)	3) Maxwell's bridge		
3) Stefan's constant σ	4) Band gap of energy.		4 periods
4) Koenig's method	5) Diode as temperature sensor.		of 50
5) R.P. of grating	6) Log amplifier using OPAMP	02	minutes
6) Goniometer	7) Wien bridge oscillator		
7) Rydberg's constant	8) Hall effect		
8) Edser's A pattern	9) LM-317 as voltage regulator		
9) Diameter of lycopodium powder	10) LM 317 as current regulator		
10) Determination of e/m	11) M/C using BG		
	12) Capacitance bridge using		
	series bridge		

Skills (Minimum 7 experiments)

- (1) Estimation of errors.
- (2) Soldering advanced circuit.
- (3) Bread board circuit using IC's.
- (4) Optical Levelling of Spectrometer.
- (5) Laser beam profile.
- (6) Use of electronic balance: radius of small ball bearing.
- (7) Dual trace CRO: Phase shift measurement.
- (8) BG: C1 /C2 by comparing θ 1 / θ 2.
- (9) Designing of simple experiments

SEMESTER V Practicals Course-DSE I COURSE CODE: 20US5PHP1

- 1) Thermistor as sensor in temperature to voltage converter using OPAMP (C&D Ch.8)
- 2) Basic Instrumentation Amplifier using 3 Op Amps coupled to resistance bridge (C&D Ch.8

- 3) Study of LVDT characteristics (K Ch. 13)
- 4) Study of Load Cell / Strain Guage (K Ch. 13)
- 5) UJT Oscillator Circuit.
- 6) Adjustable Voltage Regulator using LM 317.(C&D Ch 14)
- 7) Adjustable constant Current Source using LM 317. .(C&D Ch 14)

Course-DSE 2 COURSE CODE: 20US5PHP2

Note: All the experiments should be performed on breadboard

- 1) Temperature to frequency Conversion using 555 timer. (C &D Ch. 13)
- 2) OPAMP --- D/A Converter weighted resistor / Ladder network (M & L Ch. 12)
- 3) Shift Resister
- 4) Study of 8:1 Multiplexer (74LS151) and its applications.(RPJ)
- 5) Study of1: 4 De-multiplexer (74LS155) and its applications.(RPJ)

Course-DSE 3 COURSE CODE: 20US5PHP3

- 1) Amplitude modulation and demodulation by opamps
- 2) Pulse amplitude Modulation
- 3) Pulse width modulation
- 4) Frequency Modulation and demodulation by IC 555
- 5) Balance modulator
- 6) Time division multiplexer

Course-DSE 4 COURSE CODE: 20US5PHP4

DSE 3

- 1) Study of IV characteristics of PV cell
- 2) Study the effects of series and parallel combination of PV cells with a load
- 3) Observe the Effects of Power Production from Sun with Different Angles
- 4) Developing electronic circuit as a sun tracker system
- 5) Study the effect of coloured filters on the output of PV cell
- 6) Study of IV characteristics of vertical wind turbine (lab scale)

References:

(1) H & C : Albert D. Helfrick & William D. Cooper Modern Electronic Instrumentation & Measurement Techniques (PHI)

Edition

- (2) C & D : Coughlin & F. F. Driscoll :"OPAMPs and linear integrated circuits" (6theditionPHI)
- (3) G: R.A. Gayakwad: OPAMPs and linear integrated circuits (4th edition, PHI)
- (4) M : A. P. Malvino: "Electronic Principles" (6th edition, PHI)
- (5) K : H. S. Kalsi: Electronic Instrumentation (TMH) 2nd Edition
- (6) M & L : Malvino and Leach: Digital Principle and Applications" (5th edition, TMH)
- (7) 7. RPJ : R .P. Jain: Modern Digital Electronics 3rd edition (TMH)

Evaluation pattern:

- (i) No internal evaluation in practical
- (ii) External evaluation: ---- practical examination at the end of each semester per course.

SEMESTER VI

Course – I COURSE TITLE: Classical Mechanics COURSE CODE: 20US6CM1 [CREDITS - 02]

Course outcome:

This Course Enables the Student

- (1) To distinguish between 'inertia frame of reference' and 'non-inertial frame of reference'.
- (2) To know how to impose constraints on a system in order to simplify the methods to be used in solving physics problems.
- (3) To know what central, conservative and central-conservative forces mathematically understand the conservative theorems of energy, linear momentum and angular Momentum.
- (4) To know the importance of concepts such as generalized coordinates and constrained motion.
- (5) To establish that Kepler's laws are just consequences Newton's laws of gravitation and that of motion.
- (6) To understand Poisson brackets, understand canonical transformations.
- (7) To find the linear approximation to any dynamical system near equilibrium and also know how to derive and solve the wave equation for small oscillations.

Unit I	Accelera	ted Frames	Number of lectures :12	
	Learning	Learning Objective:		
	(i)	This course enables the student to distinguis	sh between 'inertia frame of	
		reference' and 'non-inertial frame of reference'		
	Learning	g Outcomes:		
	Learners	ers will learn about		
	(i)	Central, conservative and central-conse	rvative forces mathematically	
		understand the conservative theorems of en-	ergy	
1	(ii)	Foucault pendulum theory.		
	(i)	Motion under a central force, The central for	orce inversely proportional to the	
		square of the distance, Elliptical orbits. The	Kepler problem	
	(ii)	Moving origin of co-ordinates, Rotating	co-ordinate systems, Laws of	
		motion on the rotating earth, Larmor's theorem (with proof), Foucault		
		pendulum (Qualitative discussion and problems.		
	KRS : Ar	t. 3.13 to 3.16, KRS : Art. 7.1 to 7.5		
Unit II	Lagrang	e's Mechanics	Number of lectures :12	
	Learning	g Objective:		
	(i)	The course enables the student information	about Lagrange's equations &	
		D'Alembert's principle		
	Learning Outcomes:			
_				
2	(i)			
	(ii)	Lagrange's equations using D'Alembert's principle, Examples, Systems		
		subject to constraints, Examples of sy	ystems subject to constraints,	

		Constants of motion and ignorable coordinates.			
	G : Art 1.2 – 1.6				
Unit III	Kinemat	ics of moving fluids & Rigid Body	Number of lectures :12		
	Learning	Learning Objective:			
	This course enables the student to				
	(i) Kinematics of moving fluids, ideal fluid				
	(ii) Conservation laws for fluid motion.				
	Learning	Learning Outcomes:			
	(i)				
	(i)	Kinematics of moving fluids, Equation	of motion for an ideal fluid,		
		Conservation laws for fluid motion, Steady	y flow.		
	(ii) The rotation of a Rigid body : Motion of a rigid body in space, Euler's				
		equations of motion for a rigid body, Euler	r's angles		
	KRS : A	rt. 8.6 to 8.9; KRS : Art. 11.1, 11.2, 11.4	4, 11.5		

References:

- (1) KRS : Keith R. Symon Mechanics :. (Addision Wesely) 3rd Ed.
- (2) G, Herbert Goldstein Classical Mechanics : (Narosa 2nd Ed.)
- (3) Daniel Kleppner & Robert Kolenkow. An Introduction to Mechanics :, Tata Mc Graw Hill (Indian Ed. 2007) Author, I. N. (Year). Title of book. Location: Publisher.

SEMESTER VI

Course – II COURSE TITLE: Electronics COURSE CODE: 20US6PHE2 [CREDITS - 02]

Course outcome:

The course will provide the students about the

- (1) Advance electronic Circuits as multivibrators & Timer
- (2) An important information about the optoelectronic devices.
- (3) Design Non-Sinusoidal oscillations (Square wave and ramp oscillatory circuits)
- (4) It will give the knowledge of switching circuit. .

Unit I	Multivibrators & Timer	Number of lectures :12	
	Learning Objective:		
	(i) The study of semiconductor devices electronic field.	makes the base of student in the	
	(ii) Understand Timer and multivibrators c	an be used for many applications	

SOMAIYA VIDYAVIHAR

	Learning Outcomes:	Learning Outcomes:		
	(i) Learner will gain basic knowledge about di	ifferent types of multivibrators.		
1	(ii) Timer circuit & its applications			
	(i) Transistor Multivibrators: Transistor as a s	Switch Astable, Monostable and		
	Bistable Multivibrators, Schmitt trigger.			
	(ii) 555 Timer: Block diagram, Monostable and	d Astable operation (with VCO),		
	triggered linear ramp generator.			
	MB : Art. 13.1 to 13.9, 14.1, 14.2, 14.4, 14.6, 15.6,			
	VKM : Art. 20.1 to 20.10, 21.1 to 21.6, 21.8, 21.9, 21.10.			
	VKM : Art 7.7 to 7.11			
Unit II	Differential Amplifier	Number of lectures :12		
	Learning Objective:			
	(i) Analyse the differential amplifier circuits			
	(ii) Different applications of operational amplif	fier.		
	Learning Outcomes:	^^ '.'. <u>1'0' 0 '('.l.</u> -1		
	(i) Understand the external circuit of difference of the share starighting	fferential amplifier& its ideal		
	characteristics.			
	(ii) Applications of operational amplifier.(i) Differential Amplifier using transistor: The	Differential Amplifian DC and		
2	(i) Differential Amplifier using transistor: The AC analysis of a differential amplifier, In	-		
4				
	bias, offset current and input offset voltage on output, common mode gain, CMRR.			
	(ii) Op Amp Applications Introduction, Log an	nulifier. First order Active filters,		
	Instrumentation Amplifier ,Band pass Filte	-		
	wave &Triangular wave generator using O	•		
	MB : Art 17.1 to 17.5.			
	KVR : Art. 14.5.2.1, 14.5.2.5, 14.5.2.6, 14.5.4.1.			
	MB : Art. 20.5, 20.8, 21.4, 22.7, 22.8, 23.2.			
	MH : 16.14.			
	G: 7.1, 7.2, 7.4, 7.6, 7.7, 7.8, 7.8.1, 7.9.1 & 7.9.2			
Unit III	Field effect transistors	Number of lectures :12		
	Learning Objective:			
	(i) Describe the theory of JFET,MOSFET.			
	(ii) Use the theory to develop various application	on using FET		
	(i) Understand the external circuit of Field	11 -ffact transistory and their		
3	(i) Understand the external circuit of Field	Id effect transisions and men		
3	applications. (i) Field effect transistors(JFET): Basic	ideas, Drain curve, The		
	transconductance curve, Biasing in the ohr	, , ,		
	Transconductance, JFET common source			
	multiplexer, voltage controlled resistor, Cu			
		front sourchig.		

(ii) MOSFET : Depletion and enhancement mode, MOSFET operation and characteristics, digital switching
 MB : Art. 23.7 to 23.9.
 ML : Art. 6.2, 6.4, 6.6, 6.7, 7.2 to 7.4.

References:

- (1) MB : A. P. Malvino and D.J. Bates Electronic Principles (7th Ed.) (TMH).
- (2) VKM : V. K. Mehta and Rohit Mehta Principles of Electronics . (11th Ed.). S. Chand Publications
- (3) KVR : K.V. Ramanan Functional Electronics
- (4) G: R. A. Gayakwad, (4th Edition, PHI) OPAMPs & linear integrated circuits
- (5) S. Salivahanan, N. Suresh Kumar and A. Vallavaraj. (2nd Ed.)Electronic Devices and Circuits (Tata McGraw Hill)
- (6) Millman & Taub Pulse, Digital & Switching Waveforms

SEMESTER VI Course –III

COURSE TITLE: Nuclear Physics COURSE CODE: 20US6PHNP3 [CREDITS - 02]

Course outcome:

(1) Explain the different types of nuclear reaction with relevant examples.

- (2) Derive the Q value equation of typical scattering type reaction.
- (3) Explain the Alpha decay using Gamow theory
- (4) Explain the energetic of Beta and Gamma Decay.
- (5) Explain various nuclear radiation detection techniques.
- (6) Derive Semi Empirical mass formula and will learn its applications.

Unit I	Nuclear I	Reactions & Alpha Decay	Number of lectures :12	
	Learning Objective:			
	(i)	Differentiate between types of nuclear reactions.		
	(ii)	Illustrate types of reactions with suitable examples.		
	(iii)	Derive energetic of alpha decay based on conservation principals.		
	(iv)	Derive Gamow theory of alpha decay.		
	(v)	Define range, ionization, stopping power.		
	Learning	Outcomes:		
	(i)	Solve Q values for various nuclear reaction		
	(ii)	Derive Q value for scattering type reaction based on momentum		
		conservation.		
	(iii)	Construct decay scheme for long and short	range alpha particles.	
	(iii)	ii) Construct decay scheme for long and short range alpha particles.		

	(iv)				
	(v)	(v) Explain the alpha decay paradox.			
1					
	(i)	Types of Nuclear Reactions, Balance of	f mass and energy in Nuclear		
		Reaction, the Q-equation and Solution of Q	-equation.		
	(ii)	Alpha decay: Range of alpha particles, Dis	sintegration energy, Alpha decay		
		paradox: Barrier penetration (Gamow's the	paradox: Barrier penetration (Gamow's theory of alpha decay and Geiger-		
		Nuttal law), Absorption of alpha particles: Range, Ionization and stopping			
		power			
	P : 3.1 t	o 3.5. K: 8.5, 9.5 P : 4. II. 1, 4. II. 2,	4. II. 3, 1.II.3		
	K : 13. 1	, 13.2, 13.5.			
Unit II	Beta and	l Gamma decay	Number of lectures :12		
	Learning	g Objective:			
	(i)	Explain the continuous nature of beta spect	rum & energetic of beta decay.		
	(ii)	Explain Pauli's neutrino hypothesis.			
	(iii)	Understand types of gamma decay w.			
	(iv)	Explain the Mossbauer effect.			
	Learning	g Outcomes:			
	(i)	Explain the continues and characteristic	s beta spectrum and appeared		
		contradiction in it about conservation of en-	ergy.		
2	(ii)	list the properties of neutrino.& construction neutrino.	on of assembly in the detection of		
	(iii)	Solve problems based on the energetic of beta decay.			
	(iv)	Explain Gamma decay and internal conversion.			
	(v)	Applications of Mossbauer effect.			
	(i)	Beta decay: Introduction, Continuous	beta ray spectrum-Difficulties		
		encountered in it, Pauli's neutrino hyp	othesis, Detection of neutrino,		
		Energetic of beta decay.			
	(ii)	Gamma decay: Introduction, Internal c	onversion, Nuclear isomerism,		
		Mossbauer effect.			
	P : 4.I.2	.2, 4.I.3, 4. III. 1, 4. III. 2, 4. III. 3, 4. III. 5			
	K:14.1,	14.7 G : 5.5.			
	P : 4. IV	7. 1, 4. IV. 3, 4. IV. 4, 9.4.			
Unit III	Nuclear	Models	Number of lectures :12		
	Learning	g Objective:			
	(i)	Differentiate between types nuclear radiation			
	(ii)	Explain principle of operation and con	nstruction of nuclear radiation		
		detectors			
	(iii)	Derive semi empirical mass formula.			
	(iv)	Draw mass parabolas to predict stability ag	-		
	(v)	(v) Derive stability limits against spontaneous fission.			

	Learning Outcomes:		
	(i)	Derive and apply semi-empirical mass formula to find most stable odd A	
		isobar.	
	(ii)	Describe mass parabolas to predict stability against beta decay.	
(iii) Explain the concept of mirror nuclei.(iv) Explain Nuclear radiation detectors.		Explain the concept of mirror nuclei.	
		Explain Nuclear radiation detectors.	
	(v)	Explain principle of operation of scintillation counter.	
	(i)	Nuclear radiation detectors: Proportional counter, Scintillation counter,	
	Ionization chamber, Proportional and GM counter.		
	(ii)	Liquid drop model, Weizsacher's semi-empirical mass formula, Mass	
		parabolas - Prediction of stability against beta decay for members of an	
		isobaric family, Stability limits against spontaneous fission. mirror nuclei	
	P:1.I.3		
	K : 2.8.		
	P: 5.1, 5.3, 5.4, 5.5.		

References:

- (1) AB : Arthur Beiser: Concepts of Modern Physics : (6th Ed.) (TMH).
- (2) P: S.B. Patel Nuclear Physics: (Wiley Eastern Ltd.).
- (3) K : Irving Kaplan : Nuclear Physics: (2nd Ed.) (Addison Wesley).
- (4) G : S. N. Ghoshal : Nuclear Physics : (S. Chand & Co.)
- (5) Kenneth Krane (2nd Ed.) John Wiley & Sons. Modern Physics
- (6) N Subrahmanyam, Brij Lal. Atomic & Nuclear Physics (Revised by Jivan Seshan.) S. Chand.

SEMESTER VI Course –IV COURSE TITLE: Special Theory of Relativity COURSE CODE: 20US6PHSTR4 [CREDITS - 02]

Course Objective:

This course introduces students to the concepts of special theory of relativity

Course outcome:

- (1) Explain the basics of frames of reference and Einstein's concept of space and time.
- (2) Appreciate the significance of experimental evidence to establish any theory.
- (3) Apply the various transformation equation between frames of reference.
- (4) Solve problems based on the various concept s of special theory of relativity.

Unit I	Experimental background of special theory of Number of lectures :12 relativity			
	Learning Objective:			
	Learning Outcomes:			
	(i) Understand the significance of frames of reference and Michelson Morley experiment.			
	(ii) State the postulates of special theory of relativity.			
1	(i) Galilean transformations, Attempts to locate absolute frame: Michelson- Morley experiment,			
	(ii) Attempts to preserve the concept of a preferred ether frame: Forentz fitzgerald contraction hypothesis and ether drag hypothesis,			
	(iii) Attempt to modify electrodynamics, postulates of the special theory of relativity.			
	RR: 1.1, 1.2, 1.3, 1.5 to 1.9			
Unit II	Relativistic Kinematics, Relativistic Dynamics Number of lectures :12			
	Learning Objective:			
	Learning Outcomes:			
	(i) Derive the Lorentz transformation equations.			
	(ii) Apply the transformation equations to arrive at transformation properties of momentum, energy, mass			
	Relativistic Kinematics:			
	(i) The relativity of Simultaneity,			
	(ii) Derivation of Lorentz transformation equations, length contraction, time			
2	dilation and meson experiment,			
	(iii) The relativistic addition of velocities			
	RR: 2.1 to 2.8			
	Relativistic Dynamics:			
	(iv) Mechanics and Relativity, Relativistic momentum, Alternative views of mass in relativity,			
	(v) The relativistic force law and the dynamics of a single particle, The			
	equivalence of mass and energy,			
	(vi) The transformation properties of momentum, energy and mass.			

	RR: 3.1 to 3.7				
Unit III	Relativit	y and Electromagnetism , The Geometric	Number of lectures :12		
	Representation of Space-Tim				
	Learning Objective:				
	Learning Outcomes:				
	(i)	Apply the transformation equations for electric and magnetic fields			
	(ii)	(ii) Represent the concept of simultaneity, length contraction and time dilation			
		through space time diagrams			
	Relativity and Electromagnetism				
	(i)	The interdependence of Electric and Magnetic fields, The Transformation			
		for E and B, The field of a uniformly moving point charge, Force and fields			
		near a current-carrying wire, Force between moving charges, the invariance			
		of Maxwell's equations.			
	RR: 4.1 to 4.7				
	The Geometric Representation of Space-Time:				
	(ii)	(ii) Space-Time Diagrams, Simultaneity, Length contraction and time Dilation,			
		twin paradox			
	RR: Supplementary topics A1-2, B1-3				

References:

- (1) Robert Resnick (Wiley Student Edition) Introduction to Special Relativity : Reprint 2010, New Delhi
- (2) W.W.Nortan and Company First Ed (1968)Special Relativity, A P French, MIT,

SEMESTER VI Course –DSE-I COURSE TITLE: 8085 microprocessor architecture, programming and applications COURSE CODE: 20US5PHMP1 [CREDITS - 02]

Preamble:

The aim of the course is to make students familiar to the 8085 microprocessors. This course also emphasizes on the architecture and designing programs using assembly language programming.

Course Outcome:

- (1) Describe the general architecture of a microcomputer system and architecture and organization of 8085.
- (2) Understand and classify the instruction set of 8085 microprocessor and distinguish the use of different instructions and apply it in assembly language programming.
- (3) Will be able to use advanced programming techniques.

Course Specific outcome:

- (1) To familiarize with 8085 microprocessor and learn assembly language programming
- (2)

Unit I	Basic concepts of microprocessor	Number of lectures :12		
	Learning Objective:			
	(i) To learn the fundamentals of microprocessor			
	Learning Outcomes:			
	(i) Will be able to identify various components of a microprocessor.			
	(ii) Will be able to list the four operations of	microprocessor.		
	(iii) Will be able to recognize the functio	ns of various pins of the 8085		
1	microprocessor.			
	(i) Microprocessors, microprocessor instruc	tion set and computer languages.		
	(ii) Microprocessor architecture and its oper	rations, the 8085 microprocessor,		
	microprocessor communication and bu	s timings, a detailed look at the		
	8085 MPU and its architecture, 8085 ma	chine cycles and bus timings.		
	(RG: 1.1,1.2,2.1,3.11,3.12,3.15,3.21,3.22,3.23)			
Unit II	Introduction to 8085 assembly language	e Number of lectures :12		
	programming			
	Learning Objective:			
	(i) To learn assembly language programmir	g		
	Learning Outcomes:			
	(i) Will be able to explain various functions	of registers.		
	(ii) Will be able to classify the instructions.			
	(iii) Will be able to recognize the addressing			
	(iv) Will be able to draw the flowchart and w			
	(v) Understand the differences between the	eoretical, practical & simulated		
2	results in integrated circuits.			
	(i) 8085 programming model, instruction c			
	format, addressing modes, simple progra	ms.		
	(RG: 5.1, 5.2, 5.3, 6.1, 6.2, 6.3, 6.4, 6.5)			
Unit III	Programming techniques	Number of lectures :12		
	Learning Objective:			

	(i)	To learn various programming techniques.
	Learning	Outcomes:
	(i)	Will be able to use the technique of looping.
	(ii)	Will be able to write instructions for delay time.
	(iii)	Will be able to use stacks and subroutines
3	(i)	Looping, counting and indexing, additional arithmetic and data transfer
		instructions, arithmetic operations related to memory, logical operation
		rotate, logical operation compare, counters and delays, stack, subroutine.
	(RG:7.1,7	2.2,7.3, 7.4, 7.5, 8.1, 9.1, 9.2)

References:

- (1) Gaonkar R.S. (1989), Microprocessor architecture, programming and applications with 8085,4th edition, Penram International Publishing (India) Pvt.Ltd. .
- (2) B.Ram (2012), Fundamentals of microprocessors and microcontrollers, Dhanpat Rai Publication
- (3) Rafiquzzaman M, (2016), Microprocessors, Theory and applications, Pearson publication

SEMESTER VI Course –DSE-II COURSE TITLE: C PROGRAMMING COURSE CODE: 20US6PHCP2 [CREDITS - 02]

Preamble- The computer is often a very handy tool when solving complex problems in scientific explorations. Programming a computer is a fundamental task in finding solutions to such problems. This course is being offered in order to train the students in the fundamentals of programming.

Course Outcome:

- (1) Identify and abstract the programming task involved for a given a computational problem.
- (2) Approach the programming tasks using techniques learned and write the pseudo-code.
- (3) Write the C code for a given algorithm.
- (4) Write the C program on a computer, edit, compile, debug, correct, recompile and run it.

Unit I	Introduction to Computers, C Programming Number of lectures :12				
	Learning Objective:				
	(i) Student will learn the fundamental of hardware, software, operating				

		systems, programming, problem solving, and software engineering.		
	(ii)	Student will also learn the components of programs, such as key words,		
		variables, operators, and punctuation.		
	Learning	g Outcomes:		
	(i)	Student will able to create simple programs with the understanding of basic		
		input, processing, and output structure		
	(i)	Fundamentals of Computing, Computer Systems: Hardware and Software		
		Programs and Programming Languages, Pseudo-code and flowcharts.		
		Memory, Variables, Values, Instructions, Programs Input, Processing, and		
		Output. The steps in the Programming Process.		
	(ii)	Getting Started with C, The C Character Set, Constants, Variables and		
1		Keywords. The First C Program, Compilation and Execution, Receiving		
		Input, C Instructions, Type Declaration Instruction, Arithmetic Instruction,		
		Integer and Float Conversions.		
Unit II	Control S	Structures in C programming Number of lectures :12		
	Learning	Objective:		
	(i)	Student will learn different control structures C programming.		
	Learning	Outcomes:		
	(i)	Student will able to use the different control structures for problem solving.		
2	(i)	Control Structures :- Decision making structures, If, if-else, switch Loop		
		Control structures		
	(ii)	While, do-while, for Nested structures break and continue, Arrays :- Array		
		Initialisation		
	(iii)	Strings as array of characters, string Library functions.		
Unit III	Functions	s and pointers in C programming Number of lectures :12		
	Learning	Objective:		
	(i)	Student will understand functions in C, it's declaration and uses and also		
		the concept of pointers.		
	Learning	Outcomes:		
	(i)	Student will able to understand how to write and use functions. Also		
		student will able to use the pointer to implement function calls, and		
		parameter passing options		
	(i)	Functions: The prototype declaration, Function definition.		
	(i) (ii)	Functions: The prototype declaration, Function definition. Function call: Passing arguments to a function, by value, by reference.		
		Functions: The prototype declaration, Function definition. Function call: Passing arguments to a function, by value, by reference. Scope of variable names. Recursive function calls, Tail recursion.		
	(ii)	Functions: The prototype declaration, Function definition. Function call: Passing arguments to a function, by value, by reference. Scope of variable names. Recursive function calls, Tail recursion. Analysing recursion, Tree of recursion, linear recursion.		
		Functions: The prototype declaration, Function definition. Function call: Passing arguments to a function, by value, by reference. Scope of variable names. Recursive function calls, Tail recursion.		

References:

(1) Tony Gaddis (2015) Starting out with C++ Addison Wesley Publication Company

- (2) Yashwant Kanetkar (2016) Let us C INDIA : BPB Publications
- (3) E. Balguruswamy (2019) Programming in ANSI C India Tata Mc-Graw Hill

SEMESTER V Course –DSE-III COURSE TITLE: Applied Optics COURSE CODE: 20US6PHAO3 [CREDITS - 02]

Unit I	Light tra	nsportation system. Geometrical optics	Number of lectures :12	
	Learning Objective:			
	(i)	Determine the path of light using ray tracing method		
	(ii)	Design the simple lens system for magnified image.		
	(iii)	Design optical system to propagate light beam.		
	Learning	Outcomes:		
	(i)	Know the working principle of optical fiber.		
	(ii)	Discuss various application of optical fiber		
	(iii)	Select optical sources and detectors to desig	gn fiber optics based system.	
	(iv)	Learning Outcome: after compilation of th	is module student should able to	
		understand and design various light p	propagation system and image	
		formation for various applications.		
	(v)	Introduction to Integrated Optics.		
	Ray Optio	28		
1	(i)	Various components of geometrical optics:	mirrors, lenses, prism, polarizer,	
		wave plate, grating.		
	(ii)	Image formation using lenses, Combinati	on of lenses, focal and cardinal	
		points of lenses,		
	(iii)	Working principal of basic optical instrume	ents: microscope, telescope.	
	Optical fi			
	(iv)	Review of Light transmission through optic		
	(v)	Optical sources and detectors used for optic		
	(vi)	Losses in optical fiber, application in com	mutation,	
	(vii)	Optical fiber as sensors, integrated optics		
Unit II	Modern	=	Number of lectures :12	
	-	g Objective:		
	(i)	Able to measure/ calculate various paramet	-	
	(ii)	Make selection of proper source based on a	application.	
	(iii)	Introduction to nonlinear optics		
	(iv)	Various techniques of holography.		

	o record simple hologram			
Learning Outcomes:	-			
	is module student should able to use the laser as a			
2 tool for various applicat	ion.			
Laser and its application				
(i) Review of working prin	ciple of Laser, Laser beam characteristic.			
(ii) Types of lasers based o	n active medium, CW and pulsed laser, laser pulse			
compression technique	s, Selection parameters of lasers for various			
application, laser materi	al processing/interaction,			
(iii) Applications in industria	al, research and medical field, laser safety.			
RefHecht:13.1.2; KN:4.7-4.11,4.	14, KN: part B ch 1,2.3,2.5,2.6,7.2,7.5			
Non linear Optic				
(iv) Introduction, Photon a	ddition, harmonic generation, frequency mixing			
(optical parametric oscil	lator)			
Hecht:13.4				
Unit III Optical techniques for material c	haracterization Number of lectures :12			
Learning Objective:				
(i) Know spectroscopy tee	chniques and evaluate some basic samples using			
these techniques.	these techniques.			
(ii) Application of interferen	nce and diffraction principles.			
(iii) State and compare prope	erties of various optical sources and detectors			
(iv) Develop skill to design	he spectroscopy system for laboratory application.			
Learning Outcomes:				
(i)				
Optical techniques for material cha	racterization (8 lectures)			
(i) Absorption and transp	nission spectroscopy, UV-VIS-IR spectrometer,			
measurement of abs	orption/ transmission for samples Emission			
spectroscopy, application	n of diffraction (XRD) application of interference,			
interferometer in gravita	tional wave detection.(LIGO)			
Opto-electronics:				
(ii) Optical sources: charact	eristics of optical sources, gas vapour lamps, flash			
lamp, led, lasers, and so	urce selection.			
(iii) Optical sensors: basic				
· · · I	principles of semiconductor detectors, thermal			
	principles of semiconductor detectors, thermal , photo transistor photo-multipliers solar cells (PV			

References:

- (1) Brij Lal, M N Avadhanulu & N Subrahmanyam(2012): A Text Book of Optics, 25/e: S.Chand Publication
- (2) Ghatak Ajoy (2005): Optics 3/e : Ajoy Ghatak: Tata McGraw-Hill Education
- (3) Hecht E (2008): Optics 4/e : Pearson Education; 4 edition (2008)

- (4) Nambiar K. R. (2004) : Lasers: Principles, Types and Applications: New age Publication
- (5) Nagabhushana S (2010) Lasers and Optical Instrumentation: I. K. International Pvt Ltd
- (6) Khangaonkar P R (2008) An Introduction to Material Characterization : Penram intl. Publishing

SEMESTER VI Course –DSE-IV COURSE TITLE: SWAYAM COURSE CODE: 20US6PHSW4 [CREDITS - 02]

Available SWAYAM COURSE during semester

SEMESTER VI Course –SEC COURSE TITLE: Electrical circuits and Network skills COURSE CODE: 20US6PHECNS7 [CREDITS - 01]

Course Outcome:

(1).

Unit I	Introduc	ction to Basic Electricity Principles	Number of lectures :12	
	Learning Objective:			
	(i) Outline and brief description, including fundamentals, of the different typ			
	of circuits and respective networks;			
	(ii) Overview of electrical circuits and applications			
	Learning	g Outcomes:		
	(i)	Design and analyze the electrical circuits, netw	works and appliances.	
	Basic Pri	nciples (2L)		
	(i)	Ohm's law. Series, parallel, and series-paralle	l combination. AC electricity	
		and DC electricity. Familiarization with ammeter.	Multimeter, voltmeter and	
	Description of electrical circuits (3L)			
source electrical circuits. Current		Main electric circuit elements and their comb source electrical circuits. Current and voltag and elements. Single-phase and three-phase	e drop across the DC circuit	
	s.			
	Electrical Drawing and symbols (2L)			
	(iii)	Drawing symbols. Reading of circuit schema	atics & electrical schematics.	
		Power and control circuits. Tracking the c	connections of elements and	

	identify current flow and voltage drop.					
	Generato	Generators and Transformer (2L)				
	(iv)	(iv) DC power sources. AC/DC generators, Inductance, Capacitance and				
		Impedance. Introduction of transformer.				
Unit II	Applicat	tion and Protection of Electrical Circuits Number of lectures :12				
	Learning	Learning Objective:				
(i) Brief description of the electrical appliances with AC or DC			ith AC or DC sources;			
	(ii)	Fundamental description of active and passive	components of electrical			
		circuits.				
	Learning Outcomes:					
	(i) Monitor the devices with their specific properties.					
	(ii)	Protection of the electrical components and circuits				
	Electric I	Motors (4L)				
2	(i)	Single-phase, three-phase and DC motors. Ba	sic design. Interfacing DC or			
		AC sources to control heater & motors. Speed and power of AC motor.				
	Solid- St	ate Devices (3L)				
	(ii)	Resistors, inductors and capacitors. Diode and rectifiers. Components in				
		Series or in shunt. Response of Inductors an	d capacitors with DC or AC			
		sources.				
	Electrica	Protection (2L)				
	(iii)	Relays, Fuses and disconnect switches. Circuit	it breakers. Overload devices.			
	Ground-fault protection. Grounding and isolatin					

References:

- (1) B.L. Theraja A text book in electrical technology- S Chand & Co.
- (2) A.K. Theraja.A text book of electrical technology –

Evaluation Pattern (Theory):

For each course I, II, III and IV and DSE Course

External Evaluation – Semester End Examination [60 Marks] - Duration : 2 hours Paper Pattern

Question No.	Module	Marks with Option	Marks without Option
Q.1 (A) Attempt any One/Two	1	08	16
(B) Attempt Three/Four		12	16
Q.2 (A) Attempt any One/Two	2	08	16
(B) Attempt Three/Four		12	16
Q.3 (A) Attempt any One/Two	3	08	16
(B) Attempt Three/Four		12	16

Internal Evaluation: [40 Marks]

Evaluation Type	Marks
Class Test/Online Test	25
Assignment	15
Poster Presentation	
Field Visit Report	
Simple Project	
Project +Presentation + Report writing + Viva	40
OR	
Chapter Review +Presentation + Report writing + Viva	

SEMESTER V - Practicals Course-I COURSE CODE: 20US5PHP1 & 20US5PHP2

Learning Outcomes:

The T. Y. B. Sc. Syllabus integrates the regular practical work with a series of skill experiments. During the teaching and examination of Physics laboratory work, simple modifications of experimental parameters may be attempted. Attention should be given to basic skills of experimentation which include:

- (1)Understanding relevant concepts.
- (2)Planning of the experiments.
- (3)Layout and adjustments of the equipment.
- (4)Recording of observations and plotting of graphs.
- (5)Calculation of results and estimation of possible errors in the observation of results.
- (i) **Regular Physics Experiments:** A minimum of 8 experiments from each of the course are to be performed and reported in the journal.
- (ii) Demonstration Experiments: The demonstration experiments are to be performed by the teacher in the laboratory and students should be encouraged to participate and take observation wherever possible. Demonstration experiments are designed to bring about interest and excitement in Physics. Students are required to enter details of these 'demo' experiments in their journal.

- (iii) The certified journal must contain a minimum of 16 regular experiments (8 from each group), & 6 experiments from DSE (any two DSE branch) (Not more than 3experiments/DSE from any group) and 7 demonstration experiments in semester VI.
- (iv) A separate index and certificate in journal is must for each semester course.
- (v) There will be three turns of three hours each for the examination of practical course

20US6PHP1	20US6PHP2	No.of	No.of
		credits	hours
1) Lee's method for thermal	1) M/C using B.G.		
conductivity	2) Capacitance by using series		
2) Quincke's method for surface	bridge.		
tension of Mercury	3)Transistorized Astable MV		
3) Flat spiral spring (η)	4)Transistorized Bistable MV		
4) R.P. of prism	5)Transistorized Monostable		
5) Lloyd's mirror	MV		4 periods
6) Double refraction	6) Trigger using OPAMP.	02	of 50
7) FET characteristics	7) IC555 Timer Astable MV		minutes
8) UJT characteristics	8) IC 555 Timer as Monostable		
9) SCR characteristics	MV		
10) Photodiode and phototransistor	9) IC 55 Timer as ramp		
characteristics	generator.		
11) Y by flexural method	10) Counters mod 2, 5, 10.		
12) Determination of wavelength of	11) Square & Triangular wave		
a laser using diffraction grating.	generator using Op-amp		
	12)OPAMP as monostable		
	/astable using breadboard		
	13).Op-Amp Instrumentation		
	amplifier		

Demonstration (Minimum 7 experiments)

- (1) Open CRO, Power Supply, and Signal Generator: Discuss block diagram.
- (2) Data sheet reading for diodes, Transistor, Op amp and Optoelectronic devices.
- (3) Circuit designing single stage amplifier, Transistor Multivibrator etc. and testing on breadboard.
- (4) Equation solver.
- (5) Amplitude Modulation.
- (6) Frequency Modulation.
- (7) Millikan's oil drop experiment.
- (8) Zeeman Effect.

- (9) Michelson's interferometer.
- (10) Iodine absorption spectra.
- (11) Standing waves in liquid using Ultrasonic waves.
- (12) PC simulation of 8085.
- (13) Use of PC / μ P to control real world parameters.
- (14) Seven segment display
- (15) GM counter

References:

- (1) D. Chattopadhya, PC. Rakshit & B. Saha: Advanced course in Practical Physics :
- (2) Harnam Singh : BSc Practical Physics: (2001)S. Chand & Co. Ltd.
- (3) Samir Kumar Ghosh A Text book of Practical Physics: New Central Book Agency (4rd edition).
- (4) C. L. Arora B Sc. Practical Physics : (1st Edition)(2001) S. Chand & Co. Ltd.
- (5) C. L. Squires Practical Physics:- (3rd Edition) Cambridge University Press.
- (6) D C Tayal University Practical Physics : Himalaya Publication.

SEMESTER VI - Practicals Course-DSE I COURSE CODE: 20US6PHPD1

NOTE: The students should be familiar with Keyboard and Display utilities such as READ KEYBOARD, TO DISPLAY ON ADDRESS FIELD, and TO DISPLAY ON DATA FIELD, mentioned in their 8085 µp kit's manual.

- 1) Write a program using 8085 Microprocessor for Hexadecimal addition and subtraction of two Numbers.
- 2) Write a program using 8085 Microprocessor for addition and subtraction of two BCD numbers.
- 3) To perform multiplication of two 8 bit numbers using 8085.
- 4) To perform division of two 8 bit numbers using 8085.
- 5) To find the largest / smallest number in an array of data using 8085 instruction set.
- 6) To write a program to arrange an array of data in ascending and descending order.
- 7) To write a program to sort the odd/even numbers.
- 8) To write a program to sort positive/negative numbers.
- 9) To write a program to transfer a block of data from one memory location to another.
- 10) To write a program to add series of numbers.

Course-DSE 2 COURSE CODE: 20US5PHPD2

Note: All the experiments should be performed on breadboard

- 1) Programs based on arithmetic expression,
- 2) Program based on fixed mode arithmetic.
- 3) Programs based on conditional statements
- 4) Programs based on control structures.
- 5) Programs based on arrays (1-D, 2-D),
- 6) Programs based on functions
- 7) Programs based on pointers.

Course-DSE 3 COURSE CODE: 20US5PHPD3

- 1) Design and study two lens system.
- 2) Study V-I characteristics of several LEDs / Laser Diode.
- 3) Study of optical fiber transmission characteristics.
- 4) Compare diverengence of RED diode and HE-Ne laser.
- 5) Laser application as Bar code reader.
- 6) Study of absorption spectrum.

References:

- (1) RPJ: R. P. Jain Modern Digital Electronics, 3rd Edition, Tata McGraw Hill.
- (2) RG: Ramesh Gaonkar: Microprocessor Architecture, programming and Applications with the 8085, 5th Edition, Prentice Hall of India.
- (3) Vibhute and Borole : Microprocessor and Applications, Techmax Publications, Pune.
- (4) Gilmore: Microprocessor, Principles & Applications (2nd Ed) TMH
- (5) Yashwant Kanetkar (2016) Let us C INDIA : BPB Publication.

Evaluation pattern:

- (i) No internal evaluation in practical
- (ii) External evaluation: ---- practical examination at the end of each semester per course.

Evaluation pattern for TYBSc. With DSE and Skill enhancement courses

To be implemented from 2020-21

Course	Internal	Semester End	Duration of
	Maximum Marks	Maximum Marks	Examination
Core course I	40	60	2 hours
Core course II	40	60	2 hours
Practical course I		100	Two sessions
Core course III	40	60	2 hours
Core course IV	40	60	2 hours
Practical course II		100	Two sessions
DSE I	40	60	2 hours
DSE II	40	60	2 hours
DSE Practical course		100	2 hours
Skill enhancement course		100	2 hours