

K. J. SOMAIYA COLLEGE OF SCIENCE AND COMMERCE, VIDYAVIHAR, MUMBAI 400 077

(AUTONOMOUS- AFFILIATED TO UNIVERSITY OF MUMBAI

Scheme of Course Structure (Faculty of Science) 2019-2020

Syllabus for S.Y.B.Sc.

Program: B.Sc.

Course: Physics

(Choice based Credit System with effect from

The academic year 2019–2020)

Syllabus -S. Y.B. Sc. PHYSICS

	е	Course Title	Course code		o Unit/	Lect	Examination
--	---	--------------	-------------	--	---------	------	-------------

							Modulo	uros	Int	Evt	Total
							Module		IIIt	LAU	TUtal
								(30)			
TTT	CV	DUVCICC	101102011	2				mmj			
111	21 21	PHISICS	19053PП 1	2							
	DOC			2							
			19035FN 2	2							
			2 101153DH								
			3								
Theo	ory	<u> </u>	0								
Core	Cours	se									
III	Ι	Mechanics	19US3PH1	2	30	36	Mathematical	12	40	60	100
							methods/				
							theory of errors/				
							SWAYAM course				
							Damand Q famaad	10			
							vibrations	12			
							VIDIALIOIIS				
							Bending of beams	12			
	II	Electronics	19US3PH2	2	30	36	Transistor	12	40	60	100
							fundamentals &				
							Amplifiers				
							Feedback & Op-	12			
							amp				
							Digital Electronics	12			
	III	Thermo	19US3PH3	2	30	36	First Law of	12	40	60	100
		dynamics					Thermodynamics				
		5					Second law of	12			
							Thermodynamics				
							Third law of	12			
							Thermodynamics				
	PRAG	CTICAL	I	1							
	CORI	E COURSES	198US3PHP								
	Ι	Practical I	19US3PHP	1	2	2.4	Practical based on		20	30	50
			1				all three courses				
	II	Practical II	19US3PHP	1	2	2.4	(Group A,B,C and		20	30	50
			2				Skill)				
	III	Practical III	19US3PHP	1	2	2.4			20	30	50
			3	1							

		0 500	0	1			TT 1. (. .	_		
er	se	Course Title	Course	ts	S	рс	Unit/	Lect	Exa	aminat	tion
est	ur		code	edi	ino	eric	Module	ures	Int	Ext	Total
em	ŭ			C	Н	P((50			
S								min			
)		 	
IV	SY	PHYSICS	19US4PH	2							
	BS		1	2							
	С		19US4PH	2							
			2								
			19US4PH								
			3								
The	ory	I	1				I				<u>I</u>
Core		°CA									
	. coui							10			
IV	I	Optics	19US4PH1	2	30	36	Interference &	12	40	60	100
							Polarization				
							Diffraction	12			
							Interferometer	12			
	II	Electricity	19US4PH2	2	30	36	Vector analysis	12	40	60	100
		Magnetism					Electrostatics &	12			
		Magnetism					Magneto statics				
							Charged particle	12			
							dynamics				
	III	Quantum	19US4PH3	2	30	36	Schrodinger wave	12	40	60	100
		Mechanics					equation				
							Applications of	12			
							Schrodinger				
							steady state				
							equation I				
							Applications of	12			
							Schrodinger				
							steady state				
							equation II				
	PRA	CTICAL									
	COR	E COURSES	198US3PHP								
	Ι	Practical I	19US3PHP	1	2	2.4	Practical based on		20	30	50
			1				all three courses				
	II	Practical II	19US3PHP	1	2	2.4	(Group A,B,C and		20	30	50
			2				Skill)				
	III	Practical III	19US3PHP	1	2	2.4			20	30	50
			3	1							

Graduate attributes in Physics

Some of the characteristic attributes of a graduate in Physics are

• Disciplinary knowledge and skills:

Capable of demonstrating (i) good knowledge and understanding of major concepts, theoretical principles experimental findings in Physics and its different subfields like Astrophysics and Cosmology, Material science, Nuclear and Particle Physics, Condensed matter Physics, Atomic and Molecular Physics, Mathematical Physics, Analytical dynamics, and other related fields of study, including broader interdisciplinary subfields like Chemistry, Mathematics, Life sciences, Environmental sciences, Atmospheric Physics, Computer science, Information Technology etc. (ii) Ability to use modern instrumentation and laboratory techniques to design and perform experiments is highly desirable in almost all the fields of Physics listed above

• Skilled communicator:

Ability to transmit complex technical information relating all areas in Physics in a clear and concise manner in writing and oral ability to present complex and technical concepts in a simple language for better understanding.

• Critical thinker and problem solver:

Ability to employ critical thinking and efficient problem solving skills in all the basic areas of Physics.

• Sense of inquiry:

Capability for asking relevant/appropriate questions relating to the issues and problems in the field of Physics, and planning, executing and reporting the results of a theoretical or experimental investigation.

• Skilled project manager:

Capable of identifying/mobilizing appropriate resources required for a project, and manage a project through to completion, while observing responsible and ethical scientific conduct; and safety and laboratory hygiene regulations and practices.

• Digitally Efficient:

Capable of using computers for simulation studies in Physics and computation and appropriate software for numerical and statistical analysis of data, and employing modern e-library search tools, various websites of the renowned Physics labs in various countries to locate, retrieve, and evaluate Physics information.

• Ethical awareness / reasoning:

The graduate should be capable of demonstrating ability to think and analyze rationally with modern and scientific outlook and identify ethical issues related to one's work.

• National and international perspective:

The graduates should be able to develop a national as well as international perspective for their career in the chosen field of the academic activities. They should prepare themselves during their most formative years for their appropriate role in contributing towards the national development and projecting our national priorities at the international level pertaining to their field of interest and future expertise.

• Lifelong learners:

Capable of self-paced and self-directed learning aimed at personal development and for improving knowledge/skill development and excelling in all areas of Physics.

S.Y. B. Sc. (PHYSICS) SEMESTER III Course – I

Preamble--

The systematic and planned curricula from these courses shall motivate and encourage learners to understand basic concepts of Physics.

This is a revised part of the undergraduate programme (Six Semesters) in Physics, to be taught in Semester III & IV from the academic year 2019-20 onwards. Developing Curriculum that is progressive and purposeful to create positive improvement in the education system is the logic behind this revision.

In each Semester, courses are devoted to core Physics, catering to Mechanics, Thermodynamics, Optics, Electrodynamics, Quantum Mechanics, Mathematical Physics and Digital and Analog Electronics. These have been tailored to fit in with the existing FYBSc syllabus (Semester I and Semester II) in terms of continuity and to ensure delivery of quality content to the learner.

The elective in first semester offers interdisciplinary application- oriented topics. It will be offered as a choice to all learners across various combinations. This course will seek to foster a spirit of multidisciplinary approach in learning.

Course Objective --

Upon completion of the course, students should have acquired the following knowledge and skills:

- 1. A thorough quantitative and conceptual understanding of the core areas of physics, including mechanics, , thermodynamics, quantum mechanics, electronics at a level compatible with graduate programs in physics at peer institutions.
- 2. The ability to analyze and interpret quantitative results, both in the core areas of physics and interdisciplinary areas.
- 3. The ability to use contemporary experimental apparatus and analysis tools to acquire, analyse and interpret scientific data.
- 4. The ability to apply the principles of physics to solve new and unfamiliar problems.
- 5. The ability to communicate scientific results effectively in presentations or posters.
- 6. To develop analytical abilities towards real world problems
- 7. To familiarize with current and recent scientific and technological developments

Course outcome ---

After completion of the course, Learners will have adequate background, conceptual clarity and knowledge of mathematical principles related to

- Develop analytical abilities towards real world problems
- Familiarize with current and recent scientific and technological developments
- Enrich knowledge through problem solving, hands on activities, study visits, projects etc.

S.Y. B. Sc. (PHYSICS) SEMESTER III

Course – I COURSE TITLE: **Mechanics** COURSE CODE: 19US3PH1 [CREDITS - 02]

UNIT	Theory of errors:	No Of Lectures
1		
UNIT	Learning Objective	12
1	On successful completion of this course Learners will be	
	able to:	
	• Understand the basic mathematical concepts and applications of them in physical situations	
	 Understand the concepts of mechanics, and the properties of matter and be able to perform calculations using them 	
	 Demonstrate quantitative problem solving skills in all the topics covered. 	
	• Describe the difference between accuracy and	
	precision, and identify sources of error in	
	measurement	
	Learning Outcome	
	At the end of this course, learner will be able to:	
	 have a good grasp of the basic elements of complex analysis in alysis the important integral 	
	theorems residues of a complex function and use	
	the residue theorem to compute certain types of	
	integrals.	
	• Be able to solve ordinary second order differential equations important in the physical sciences; solve physically relevant partial differential equations using standard methods	
	• Learn various types of errors & different methods to evaluate them.	

The elective in first semester offers interdisciplinary
application- oriented topics
For paper IUnit II and Unit III are compulsory,
Theory of oppose any one option from Unit
Theory of errors :
Mathada (Data Callestian
Methods of Data Collection:
Collection of primary data, Observation method, Interview method, collection of
data through Questionnaires.
Significant Digita Dronning of non significant digita Dounding of numbers
Absolute and relative errors relative errors and significant digits errors of
computation Accuracy of a function various kinds of errors Different ways of
measuring random errors Uncertainty and Significant digits fractional
uncertainty and significant digits, significance of uncertainty.
The estimation of errors:
The normal distribution, The average or mean value of measurements, average
errors, the average or mean value of measurements, average errors, standard
errors, probable errors. Propagation of errors.
JCP: 1.2, 1.3, 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 2.7, 2.7(a), 2.9, 3.4, 3.5, 3.6, 3.6(a), 3.6(b),
3.10, 3.10(a), 3.11.
CRK: chapter 6 (Page 95-103)
OP
UK UK
MATHEMATICAL METHODS
Integration:
Integration from first principles, integration as the inverse of differentiation,
integration by parts, integration in the plane polar co-ordinates, application of
Integration (mean value of a function, finding the length of a curve)
R. 11 2.2.1, 2.2.2, 2.2.0, 2.2.11, 2.2.13 Matrices
Introduction to Matrices Types of Matrices (Review) Inverse of Matrix Solving
Simultaneous and homogenous equation using matrices.
H.D: 4.18, 4.19, 4.34, 4.37, 4.40
Ordinary Differential equation
Ordinary differential equations, First order homogeneous and nonhomogeneous
equations with variable coefficients, Second-order homogeneous equations with
constant coefficients, Second order non-homogeneous equations with constant
coefficients.
CH : 5.1, 5.2.1 (omit D), 5.2.3, 5.2.4
CH : Introduction to Mathematical Physics : Charlie Harper 2009 (EEE) PHI
Learning Pvt. Ltd
UK SWAVAM Course /MOOC
SWAYAM COURSE/MOUL

	1 Introduction to Research. Or any other equivalent course
UNIT 2	Damped and Forced Vibrations NO OF LECTURES 12
2	 Learning Objective To understand the fundamentals of Vibration Theory To be able to mathematically model real-world mechanical vibration problems To use computer software programs to investigate and understand vibration problems. This course contributes to the assessment of the following program (student) outcomes: a. an ability to apply knowledge of mathematics, science and engineering
	 Learning Outcome Apply Newton's equation of motion and energy methods to model basic vibrating mechanical systems Model reciprocating and oscillatory motions of mechanical systems . model undamped and damped mechanical systems and structures model free and harmonically forced vibrations v. model single-and multi-degree of freedom systems perform and verify computer simulations employing time integration and modal analysis of discrete vibrating systems.
2	Damped Vibrations Decay of free vibrations of a simple harmonic oscillator due to the damping force proportional to the first power of velocity, types of damping, Energy of a damped oscillator, logarithmic decrement, relaxation time and quality factor. HP: 9.3, 9.4.
	Forced vibration and resonance Forced damped harmonic oscillator, special cases: low driving frequency, high driving frequency, Resonance. Quality factor of a driven oscillator. HP: 9.6, 9.7.
	Compound pendulum : Expression for period, maximum and minimum time periods, Centres of suspension and oscillations, Kater's reversible pendulum, Advantages of a compound pendulum over a simple pendulum.

	HP: (pages 279 to 289)	
UNIT 3	Bending of beams	NO OF LECTURES
3	 Learning Objective: Understand the theory, its limitations and its applicated design and analysis of symmetric bending of Develop the discipline to visualize the normal asymmetric bending of beams. 	plications for strength beams. and shear stresses in
	 Learning Outcome : Having successfully completed this module learner will be a Understand the fundamental concepts of stress relationship between both through the strain-stress solve problems for simple tri dimensional elastic so Calculate and represent the stress diagrams in bars Solve problems relating to pure and non-uniform other simple structures Solve problems relating to torsional deformation of tri-dimensional 	able to s and strain and the s equations in order to blids and simple structures bending of beams and f bars and other simple
3	Collisions : Introduction, types of collisions, laboratory and cent relationship between displacements and velocities, relatio H. P.: 7.1, 7.3, 7.3.1, 7.3.2.	tre of mass systems, nship between angles.
	Bending of beams: bending moment, Basic assumptions for theory of bend supported at its ends and loaded in the middle, I-section of Y by bending, Determination of elastic constants by Sean BS: 10.16, 10.17, 10.18, 10.19, 10.20, 10.22, 10.23, 10.26.	ding, cantilever, beam girders, determination rle's method.
	[Note: A good number of numerical examples are expected the prescribed lectures.]	d to be covered during

References:

- CH : Introduction to Mathematical Physics : Charlie Harper 2009 (EEE) PHI Learning Pvt. Ltd
- H. P. : Mechanics H. S. Hans and S. P. Puri, Tata McGraw Hill (2nd Ed.)
- B. S. : Mechanics and Electrodynamics. Brij Lal, N. Subramanyam, Jivan Seshan, S. Chand (Revised and Enlarged Edition 2005)
- R.H: Mathematical methods for Physics & Engineering (3rd Edition)-K.F.Riley, M.V.Hobson & S.J.Bence Cambridge University Press.

- HD: Mathematical Physics- H.K Dass- S Chandand Company LTD
- P N Roy: A text book of Bio Physics- P N Roy, New Central Book Agency Ltd. Revised Edition, Reprinted in 2009.
- CRK: Research Methodology- C R Kothari, New Age International- second revised edition 2004.
- S P Puri. Fundamental of Vibrations and Waves. (Tata Mc Graw Hill)
- K R Symon Mechanics: [Addition & Wesley (3rd Ed)]
- D. S. Mathur Mechanics (S Chand & Co.)
- Bhargava and Sharma Text book of Mechanics:.
- J Topping Error of observation and their treatment (Institute of Physics Monographs for students Series.)
- John R Taylor An introduction to error Analysis:, University Science Books: Mill Valley California

S.Y. B. Sc. (PHYSICS) SEMESTER III

Course – II COURSE TITLE: Electronics. COURSE CODE: 19US3PH2 [CREDITS - 02]

Learning Outcomes:

- 1. On successful completion of this course students will be able to:
- 2. Understand the basics of transistor biasing, operational amplifiers, their applications.
- 3. Understand the basic concepts of oscillators and be able to perform calculations using them.
- 4. Understand the working of digital circuits.
- 5. Demonstrate quantitative problem solving skills in all the topics covered.

UNIT 1	Amplifiers	NO
		OF
		LEC
		TUR
		ES
		12

UNIT	Learning Objective On successful completion of this course Learners	
1	will be able to:	
	• To recall various BJT parameters, connections and configurations.	
	• To Explain and Demonstrate BJT Amplifier, Hybrid Equivalent and	
	Hybrid Models.	
	• To Demonstrate and Construct Frequency response of BJT and FET	
	amplifiers at various frequencies.	
	• To Define, Demonstrate and Analyze Power amplifier circuits in	
	different modes of operation. • To Demonstrate and Apply Feedback	
	and Oscillator circuits.	
	Prerequisites: Basic knowledge and understanding of semiconductor devices	
	and transistors	
	Learning Outcome At the end of this course, learner will be able to:	
	 Acquire knowledge of and Working principles, characteristics and basic 	
	applications of BJT and amplifiers	
	 Single stage, cascaded and feedback amplifier configurations and 	
	Frequency response characteristics of BJT	
	• Analyse the performance of amplifier in CS configuration and Power	
	Amplifiers and Oscillator circuits.	
	 Interpretation of performance characteristics of transistors amplifiers, 	
	frequency Response and Oscillators.	
	 Apply the knowledge gained in the design of transistorized circuits, 	
	amplifiers and Oscillators.	

1	 (i) Transistor fundamentals: The load line, operating point, recognizing satura Base Bias method, Emitter biased method, Voltag load line and Q-point. M: 7.2, 7.3, 7.4, 7.5, 8.1, 8.3 (ii) Transistor amplifiers: Base-biased amplifiers, Emitter-biased amplifier, 	ation, transistor switch, ge divider bias method, small-signal operation,					
	Current gain β , AC resistance of the emitter diode, Two ($\pi \& T$)) transistor model, analyzing an amplifier, voltage gain, frequency response of an ac amplifier, decibel voltage gain.						
	M: 9.1, 9.2, 9.3, 9.3, 9.4, 9.5, 9.6, 9.7, 10.1, 16.1, 6.3	3, 16.4					
UNIT 2	Feedback Amplifier & Operational amplifier	Total No of Lectures 12					
2	Learning Objective On successful completion of this	course Learners will be					
	able to:						
	• Provide a strong foundation on Linear Circuits.						
	Familiarize students with applications of variou	s IC's					
	• Have a broad coverage in the field that is rel	levant for engineers to					
	design Linear circuits using Op-amps						
	Learning Outcome						
	At the end of this course, learner will be able to:						
	• Define significance of Op Amps and their importa	ance.					
	• Build circuits using Analog IC's.						
	In-depth knowledge of feedback phenomenon a	pplying the concepts in					
	real time applications.						
	Ability to use OP Amp as adder, Subtractor, Mult	iplier and Divider.					
	• Able to use OP Amp to generate sine waveform,	Square wave form,					
2							
	Feedback amplifiers:						

	 (a) Negative feedback- principles, Gain, advantages (b) Positive feedback-oscillator, essentials of transis Barkhausen criterion for self-sustained osc oscillator, Wien bridge oscillator. Operational Amplifiers: Schematic symbol, output voltage, ac analysis of op-amp, ba applications: inverting amplifier, non-inverting amplifier summing amplifier, integrator, differentiator, comparator v and Non Zero reference (only). M&M: 13.1, 13.2, 13.3, 13.4, 13.5, 14.5, 14.6, 14.7, 14.10, 2 14.20, 22.1,22.2,25.15, 25.16, 25.17,25.18, 25.19, 25.20, 2 25.32, 25.35, 25.37 	stor oscillator and fillations, Colpitt's andwidth, slew rate, r, voltage follower, with Zero reference 14.17, 14.18, 14.19, 25.24, 25.26, 25.27,		
UNIT 3	Combinational Logic circuits	Total No of		
3	 Learning Objective: Having successfully completed this module learner will be able to To study the theory of Boolean algebra and to study representation of switching functions using Boolean expressions and their minimization techniques. To study the combinational logic design of various logic and switching devices and their realization. To study the sequential logic circuits design both in synchronous and Asynchronous modes for various complex logic and switching devices, their minimization techniques and their realizations. To study some of the programmable logic devices and their use in realization of switching functions. 			
	 Learning Outcomes: Students will be aware of Theory of Boolean Algebra & the underlying features systems. Students will be able to use the concepts of Boolean Alge & design of various combinational & sequential logic circuments of the systems of the	of various number bra for the analysis iits.		

	• Students will be able to design various logic gates starting from simple
	ordinary gates to complex programmable logic devices & arrays.
3	Review: Boolean laws and Theorems, implementation of the logic circuits)
	(i) Implementation of logic circuit from truth tables: Sum of products and
	product of sums method
	(ii) Combinational logic circuits: Karnaugh Map: truth table to Karnaugh Map,
	Pair, QUADs, OCTETs, don't care condition.
	(iii) Flip flops. Flip-flop and counters: R-S flip flops, clocked RS flip flop D Flip
	flop, edge triggered J K flip flop, Master slave flip flop, T flip flop, 4-bit
	binary ripple counter ,Decade counter
	M&L:, 3.3,3.4,3.5,3.6, 8.1, 8.2, 8.5, 8.7, 10.1

References:

- M: A P Malvino and David J Bates Electronics principles: , 7th Ed. The McGraw-Hill companies.
- **M&M**: V K Mehta, Rohit Mehta.Principles of Electronics:
- M&L: Malvino and Leach Digital Principles and Applications: fifth Ed
- D. Chattopadhyay & P. C. Rakshit Electronics Fundamental and applications (8th Ed.) (New Age International)
- Robert Boylestand & Louis Nashelsky Electronic Devices and Circuit theory, (PHI)
- Allan Mottershead Electronic devices and circuits An introduction (PHI Pvt. Ltd. EEE Reprint – 2007)

S.Y. B. Sc. (PHYSICS) SEMESTER III

Course – III

COURSE TITLE: Thermodynamics

COURSE CODE: 19US3PH3

[CREDITS - 02]

Learning Outcomes: On successful completion of this course students will be able to:

1. Understand the basic concepts of thermodynamics and its applications in physical situations.

2. Understand and learn low temperature physics

3. Demonstrate quantitative problem solving skills in all the topics covered

UNIT 1	Thermodynamics NO OF LECTURES 12					
UNIT	Learning Objective On successful completion of this course Learners					
1	will be able to:					
	• To present a comprehensive and rigorous treatment of classical					
	thermodynamics.					
	• To lay the groundwork for subsequent studies in such fields as fluid					
	mechanics, heat transfer and to prepare the students to effectively use					
	thermodynamics in physics					
	• To develop an intuitive understanding of thermodynamics by					
	emphasizing the physics and physical arguments.					
	Learning Outcome At the end of this course, learner will be able to:					
	 Explain the basic concepts of thermodynamics like system, properties, 					
	equilibrium, pressure, specific volume, temperature, zeroth law of					
	thermodynamics, temperature measurement and temperature scale					
1	Concept of heat,					
	The first law, Non adiabatic processes and Heat is a path function, Internal					
	energy,					
	Ref. EG: Chapter 3, Page No. 44 to 64.					
	Reversible and irreversible process, Heat engines, definition, of efficiency,					

	Carnot's ideal heat engine, Carnot's cycle, effective way to increase efficiency,
	Carnot's engines and refrigerator, coefficient of performance and related
	problems.
	Ref. BS: 4.20 To 4.29, 6.11
UNIT 2	Second law of Thermodynamics
2	Learning Objective
	• To lay the groundwork for subsequent studies in such fields as fluid
	mechanics, heat transfer and to prepare the students to effectively use
	thermodynamics in the practice of physics.
	• To develop an intuitive understanding of thermodynamics by
	emphasizing the physics and physical arguments.
	• To be able to apply second law to general reversible processes and cycles
	To derive the inequality of Clausius
	Learning Outcome
	Learner will be able to
	• State and prove the equivalence of two statements of second law of
	thermodynamics.
	• Define reversible process and state the propositions regarding efficiency of
	Carnot cycle.
	• Evaluate the feasibility of a thermodynamic cycle using the second law of
	thermodynamics for Understanding, applying, analyse
	Course Objectives:
	• State & explain Kelvin-Planck & Clausius statements of second law of
	thermodynamics, Prove the equivalence of two statements of 2nd law
2	Second law of thermodynamics,
	Carnot's theorem, Phase Change, Triple point of water, Latent heat,
	Clapeyron's latent heat equation using Carnot's cycle and its applications.
	Otto engine, petrol engine, diesel engine , Related problems.
	BS: 1) 4.20 TO 4.29, 6.11

	BS: 2) 4.30 TO 4.33
UNIT 3	Third law of Thermodynamics
3	Learning Outcome :
	Having successfully completed this module learner will be able to
	 To lay the groundwork for subsequent studies in such fields as fluid mechanics, heat transfer and to prepare the students to effectively use thermodynamics in the practice of physics. To develop an intuitive understanding of thermodynamics by emphasizing the physics and physical arguments. To prove that entropy is a property To prove the principle of entropy increase To evaluate entropy changes for processes undergone in closed and open systems To use entropy as a coordinate To give different statements of the third law To evaluate entropy, specific heats and β at absolute zero To prove the unattainability of absolute zero To establish the molecular basis of entropy
3	Concept of entropy, Change in entropy in adiabatic process, Change in entropy
	in reversible cycle, Principle of increase of entropy, Change in entropy in
	irreversible process.
	T-S diagram, Physical significance of Entropy, Entropy of a perfect gas, Kelvin's
	thermodynamic scale of temperature, (Omit alternative method using Carnot
	cycle), the size of a degree, Zero of absolute scale, Identity of a perfect gas scale
	and absolute scale.
	Third law of thermodynamics, Zero point energy, Negative temperatures (not
	possible), Heat death of the universe.
	Low temperature Physics: Different methods of liquification of gases(Not in
	detail, just introduction), Method of freezing, Cooling by Adiabatic Expansion
	BS: 5.1 TO 5.9, 5.11 TO 5.18
	[Note: A good number of numerical examples are expected to be covered during
	the prescribed lectures.]

References:

- BS : Brij Lal, Subrahmanyam, Hemne (S. Chand (Revised Multicoloured Ed. 2007)Heat, Thermodynamics and statistical Physics-
- KK : S. K. Kakani and Amit Kakani, Material Science New Age International (P) Ltd. Reprint 2004.
- BV: B. Viswanathan, Nano materials, Narosa Publication House, Fourth Reprint- 2013.
- S: Solar Photovoltaics Fundamentals, technologies and applications (2nd Edition) PHI Learning Private Limited

UNIT - I and II:

- Evelyn Guha Basic Thermodynamics (Narosa Publications)
- Philip M. Morse Thermal Physics (W. A. Benjamin Inc, New Yark)
- Robert and Miller Heat & Thermodynamics (E LBS)
- Saha and Srivastava.A treatise of Heat -

UNIT – III

1. Ajay Kumar Saxena Solid State Physics: Macmillian India Ltd. (2006 Ed)

- 2. R. S. Khurmi & R. S. Sedha Material Science: (S. Chand & Co. Ltd.) 5th Rev. & Enlarged Ed-2007.
- 3. O P Khanna- Dhanpat Rai Material Science and Metallurgy –Publication (XI Reprint)
- 4. Hans. C. Chanian Modern Physics:- Prentice Hall of India.

5. D S Murty, V. Laxminarayana, Bangar Raju. Atomic Physics: Tata Mc. Graw Hill Publication co. Ltd.

6. B S Murthy, P Sarkar, Baldev Raj, R B Rathi, James Murday Textbook of Nano science and Nano technology:. University Press. First Ed.

Evaluation Pattern: Theory

For each course I, II, III

External Evaluation – Semester End Examination (60 M) - Duration : 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without Option
Q.1 (A) Attempt any One/Two	1	08	16
(B) Attempt Three/Four		12	16
Q.2 (A) Attempt any One/Two	2	08	16
(B) Attempt Three/Four		12	16
Q.3 (A) Attempt any One/Two	3	08	16
(B) Attempt Three/Four		12	16

Internal Evaluation - (40 M)

Evaluation type	Marks
Class Test /online class test	30
Assignment	
Poster presentation	
field visit report	10
simple project	
OR	
Project +presentation+ report writing+ Viva	40
OR	
Chapter review +presentation+ report writing +Viva	40

S. Y. B. Sc. (PHYSICS) SEMESTER I - Practicals Course-I & II COURSE CODE: ----19US3PHP

Instructions:

- i) All the measurements and readings should be written with proper units in SI system only
- After completing all the required number of experiments in the semester and recording them in journal, student will have to get their journal certified and produce the certified journal at the time of practical examination.
- While evaluating practical, weightage should be given to circuit/ray diagram, observations, tabular representation, experimental skill and procedure, graph, calculation and result.
- iv) Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.

Leaning Outcome: On successful completion of this course students will be able to:

- i) To demonstrate their practical skills more effectively.
- ii) To understand and practice the skills while doing physics practical.
- iii) To understand the use of apparatus and their use without fear.
- **iv)** To correlate their physics theory concepts through practical.
- v) Understand the concepts of errors and their estimation

 Bar Pendulum. determination of g Resonance Pendulum. Searle's Experiment: determination of Y. Logarithmic Decrement.(By lamp and scale) Optical Lever CE Amplifier: Gain Vs Load. Colpitt's Oscillator (transistorized). Opamp:: Inverting amplifier./ Non Ce Amplifier: Gain Vs Load. Colpitt's Oscillator Surface Tension by Jager's method Determination of thermal conductivity of bad conductor by Lee's 	Experiments Group I	Group II	Group III	Numb e No. of Credit s	Numb er no. of hours
OptionDetermination of R.I.)Inverting amplifier with different gainsMethod.• Op amp: Difference amplifier• Verification of Stefan's LawLaw• Refractive Index of liquid using LASER• Refractive Index using total internal reflection.	 Bar Pendulum. determination of g Resonance Pendulum. Searle's Experiment: determination of Y. Logarithmic Decrement.(By lamp and scale) Y by bending. Optical Lever (Determination of R.I.) 	 CE Amplifier: Frequency response. CE Amplifier: Gain Vs Load. Colpitt's Oscillator Wein bridge oscillator (transistorized). Opamp:: Inverting amplifier./ Non Inverting amplifier with different gains Op amp: Difference amplifier 	 Temperature Coefficient of thermistor and determining its band gap. Surface Tension by Jager's method Determination of thermal conductivity of bad conductor by Lee's Method. Verification of Stefan's Law Refractive Index of liquid using LASER Refractive Index using total internal reflection. 	2	3 HOUR S /EXP ERIM ENT

Skill Experiments:

- 1) Wiring of a simple circuit using bread board Connections.
- 2) Focal length by auto collimation method.
- 3) Phase shift measurement using dual trace CRO.
- 4) Designing & Soldering of simple Circuits.(e.g. Filter circuits)
- 5) Radius of ball bearing using single pan balance.
- 6) Spectrometer--Schuster's method

There will be no internal assessment for practical.

For practical examination the learner will be examined in **three experiments** (one from each Group. Minimum **3** from each group and in all minimum **12** experiments and 4 skill experiments are required to be completed and reported in journal compulsorily.

The learner be evaluated at the time of viva voce on the basis of regular experiments and skill experiments.

A learner will be allowed to appear for the semester end practical examination only if he /she submits a Certified journal at the time of practical examination or a certificate from the Head of the Department /Institute to the effect that the candidate has completed the practical course of that semester of S.Y.B.Sc. Physics as per the minimum requirement.

The duration of the practical examination will be three hours per experiment. The questions on slips for the same should be framed in such a way that candidate will be able to complete the task and should be evaluated for its skill and understanding of physics

REFERENCES

1. D. Chattopadhya, PC. Rakshit & B. Saha. (6th Edition)Advanced course in Practical Physics Book & Allied Pvt. Ltd.

2. Harnam Singh S. Chand & Co. BSc Practical Physics -Ltd. - 2001

3. Samir Kumar Ghosh, A Text book of advanced Practical Physics –New Central Book Agency – (3rd edition)

- 4. CL Arora (1st Edition) 2001 B Sc. Practical Physics –S. Chand & Co. Ltd.
- 5. CL Squires (3rd Edition Practical Physics –) Cambridge University Press.
- 6. D C Tayal. University Practical Physics –Himalaya Publication.
- 7. Worsnop & Flint.Advanced Practical Physics -

Main Reference: Manual provided by Department of Physics

S.Y. B. Sc. (PHYSICS) SEMESTER IV

Course – I

COURSE TITLE: **Optics**

COURSE CODE: 19US4PH1

[CREDITS - 02]

Learning Outcomes:

On successful completion of this course students will be able to:

- 1. Understand the diffraction and polarization processes and applications of them in physical situations.
- 2. Understand the applications of interference in design and working of interferometers.
- 3. Understand the resolving power of different optical instruments.
- 4. Demonstrate quantitative problem solving skills in all the topics covered.

UNIT	Interference	No, of lectures : 12
1		
	Learning Objective—	
	This Course Enables the Learner to	
	Study and develop the Bohr theory of the hydrogen	atom .
	• To aware the students about various phenomenon of	of optics.
	• The study of the paper describes the phenomer	non like Interference,
	Diffraction and Polarization.	
	• The study describes the principals behind var	ious phenomenon as
	described earlier.	
	Learning Outcomes After the completion of the course, Stud	dents will be able to
	• Understand the physics behind various optical phenetical phenetics of the state o	nomenons.
	• Understand various natural phenomenons which	is happening in their
	surroundings.	
	• Explain the relationship in between various optical	phenomenon
		-

1	Interference:				
	Light waves, superposition of waves, interference, theory of interference,				
	techniques of obtaining interference,				
	(i) Interference in thin films				
	(ii) Newton's rings.				
	 Applications of thin film interference; Newton's ring (measurement wavelength and refractive index) SBA: 14.2, 14.3, 14.4, 14.41, 14.8, 15.2, 152.1, 15.2.2, 15.2.3, 15.2.4, 15 15.6.1, 15.6.2, 15.6.3, 15.6.4, 15.6.7 Polarization: Introduction type of polarization polarization by reflection Brewster's laboration. 				
	polarization by double refraction, the phenomenon of double refraction. Theory				
	of $\lambda/2$ and $\lambda/4$ plates.	, ,			
	SBA: 20.1, 20.2, 20.3, 20.4, 20.5, 20.6.1, 20.6.1.1, 2	0.6.5, 20.11, 20.11.3			
UNIT	Diffraction: No, of lectures : 12				
2					
2	Learning Objective—				
	This Course Enables the Learner to				
	Study and develop the Bohr theory of the hydroger	n atom.			
	Recognize the difference between construct	tive and destructive			
	interference, and between interference and diffrac	tion			
	Learning outcomes				
	After successful completion of this course a Learner will be	be able to:			
	 Calculate fringe width. 				
	 Recognize the difference between construct 	tive and destructive			
	interference, and between interference and diffrac	tion			
2	 Fresnel's diffraction: Introduction, Huygen's-Fresnel's theory, Fresnel's assumptions, rectilinear propagation of light, distinction between interference and diffraction, Fresnel and Fraunhoffer types of diffraction, diffraction due to straight edge, position of maximum and minimum intensity, intensity at a point inside a geometrical shadow, Fraunhoffer diffraction: Introduction, Fraunhoffer diffraction at a single slit, intensity distribution in diffraction grating, theory of plane transmission grating, width of principal maxima, prism and grating spectra. SBA: 17.1, 17.2, 17.3, 17.4 17.6, 17.7, 17.10, 17.10.1, 17.10.2, 18.1, 18.2, 18.2.1, 18.2.2, 18.4, 18.4, 18.6, 18.7, 18.7.1, 18.7.2, 18.7.8 (I to VI) 				
UNIT	Interferometer	No. Of lectures			

3	12
3	Learning Objective & outcomes. This Course Enables the Learner to demonstrate the following outcomes:
	positions in the device
	• Draw the paths that light follows through a Michelson interferometer.
	 Define and identify interference pattern and explain how an interference pattern forms in an interferometer.
	• Describe what will happen to the interference pattern when a mirror is moved.
	 (i) Michelson Interferometer: Principle, construction, working, circular fringes, localised fringes, Visibility of fringes. Applications of Michelson interferometer: b. Measurement of wavelength c. Determination of the difference in wavelengths of two waves d. Thickness of thin transparent sheet. e. Measurement of Gravitational waves.
	(ii) Fabry-Perot interferometer and etalon: Formation of fringes, determination of wavelength, Measurement of difference in wavelength. SBA: 15.7, 15.7.1 to 15.7., 15.8, 15.8.1 o 15.8.3, 15.12, 15.12.1 to 15.12.3
 (iii) Resolving Power: introduction, Raleigh's criterion, resolving optical instruments, criterion for resolution accordin Rayleigh's, resolving power of telescope, resolving power of resolving power of a plane transmission grating. SBA: 19.1, 19.2, 19.5, 19.6, 19.7, 19.11, 19.12. 	

References:

- 1 SBA: Subramanyam, Brij Lal, Avadhanulu A text book of Optics -- S. Chand & Co. Multicoloured Ed. 2007.
- 2. Optics Ajay Ghatak (3rd Ed) Mc. Graw Hill Co.

S.Y. B. Sc. (PHYSICS) SEMESTER IV

Course – II

COURSE TITLE: Electricity and Magnetism

COURSE CODE: 19US4PH2

[CREDITS - 02]

Learning Outcomes:

On successful completion of this course students will be able to:

- Understand the basic mathematical physics concepts and applications of them in physical situations
- Understand the basic laws of electrostatics and magneto statics and applications of them and be able to perform calculations using them. Course Outcome:
- Understand how to do vector calculations including: vector addition, cross products, dot (scalar) products.
- Use correct SI units for all quantities studied
- Define electric field (E) & Define charge density (λ, σ, ρ)
- Understand the difference between electric potential energy (U) & electric potential
- Understand the motion of charged particle in electric & magnetic field

UNIT	Vector Analysis	No	of	l
1		12		
	Learning Objective—			
	This Course Enables the Learner to			
	 Study and develop the Bohr theory of the hydrogen atom . 			
	 Enable the participants to use the three fundamental theorems of the 			
	vector analysis, viz. Gauss', Green's and Stokes' theorems			
	Learning outcomes			
	After successful completion of this course a Learner will be able to:			
	 Apply basic techniques, results and concepts to solve prescribed exercises, Give arguments for the steps in the solution of the exercises. 			

1	Triple products, the ∇ operator, the gradient, divergence and the curl, product rules. The fundamental theorem of gradient divergence and curl, spherical polar coordinates, one dimensional and three dimensional Dirac- delta function. Integration of vectors: line integral, surface integral, volume integral of vector field. Gauss-divergence theorem and Stokes theorem of vectors (statement				
	only).				
	DG: 1.1.3, 1.2.2 10 1.2.6, 1.3.3, 1.3.4, 1.3.5, 1.4.1, 1.4.2, 1.5.2, 1. HD: 5.40,5.41,5.42	5.3.			
UNIT 2	Electrostatics & Magnetostatics	No. of lectures 12			
2	Learning Objective—				
	This Course Enables the Learner to				
	 introduce the basic mathematical concepts related vector fields. 	to electromagnetic			
	 To impart knowledge on the concepts of electrostatics, electric p energy density and their applications. To impart knowledge on the concepts of magnetostatics, magn density, scalar and vector potential and its applications. 				
	• To impart knowledge on the concepts of Concepts	of electromagnetic			
	Course Outcome After successful completion of this course	se a Learner will be			
	able to:				
	• Understand the basic mathematical concepts related to electromagnetic				
	vector fields.				
	• Apply the principles of electrostatics to the solutions of problems relating				
	to electric field and electric potential, boundary conditions	and electric energy			
	density.				
	• Apply the principles of magneto statics to the solurelating to magnetic field and magnetic potential, boundate magnetic energy density	itions of problems ary conditions and			

2	 The Electrical Field: Introduction, Coulomb's Law, The Electrical Field, Continuous charge distribution, electric potential, introduction to potential, comments on potential, the potential of a localized charge distribution. Work And Energy In Electrostatics: The work done in moving a charge, the energy of a point charge distribution, the energy of continuous charge distribution. Magnetostatics: The Biot-Savart law, applications of Biot-Savart law, Magnetic field due to a current carrying straight wire, circular loop, Helmholtz coils and solenoid. Ampere's law DG: 1) 2.4.1 TO 2.4.4 CR: 2) 8.7, 8.8 				
UNIT 3	Charged particle dynamics	NO OF LECTURES 12			
3	 Learning Objective— This Course Enables the Learner to Compare the effects of the electric and the magnetic fields on the charged particle Learning outcomes After successful completion of this course a Learner will be able to: Motion of charged particle in electric field Motion of charged particle in various magnetic field Working of cyclatron 				
3	 Kinetic energy of a charged particle in an electric field, motion of a charged particle in a constant electric field, Charged particle in an alternating electric field, Thomsons parabolas and positive ray analysis. Force on a charged in a magnetic field. Charged particle in a uniform and constant magnetic field, The Cyclotron. Velocity selector Motion of a charged particle in combined electric and magnetic field: Case I: Parallel electric and magnetic field Case II: Crossed electric and magnetic field, Bainbridge mass spectrometer. HP: 13.1, 13.2, 13.3, 13.4, 13.5, 13.5.1, 13.6, 13.6.1 [Note: A good number of numerical examples are expected to be covered during the prescribed lectures.] 				

References:

1. HP :HS. Hans and S. P. Puri Mechanics Tata Mc. GrawHill (2nd Ed.)

- DG : David J. Griffiths Introduction to Electrodynamics Prentice Hall India (EEE) 3rd Ed.
- CR: D. Chattopadhyay and P. C. Rakshit Electricity and Magnetism Books and allied (P) Ltd. Reprint 2000 (4th Edition.)
- 4. R.H: K.F.Riley, M.V.Hobson & S.J.Bence Mathematical methods for Physics & Engineering (3rd Edition)- Cambridge University Press.
- 5. HD: H.K Dass- S Chandand Mathematical Physics- Company LTD

UNIT-I: Z. Capri and P. V. Panat Introduction to Electrodynamics, (Narosa Pub. House)

UNIT–II: Brij Lal, Subramanyam , Jivan Sesan, Mechanics and Electrodynamics, (S. Chand) (Revised & Enlarged ED. 2005)

S.Y. B. Sc. (PHYSICS) SEMESTER IV Course – III

COURSE TITLE: QUANTUM PHYSICS

COURSE CODE: 19US4PH3

[CREDITS - 02]

Learning Outcomes :

On successful completion of this course students will be able to :

1) Understand the postulates of quantum mechanics and to understand its importance in explaining significant phenomena in Physics.

2) Demonstrate quantitative problem solving skills in all the topics covered.

UNIT	The Schrodinger wave equation:	NO OF LECTURES				
1		12				
1	Background Reading (Review):					
	Matter waves-De Broglie hypothesis, Wave particle duality, Concept of wave					
	packet, phase velocity, group velocity, Heisenberg's uncertainty principle,					
	The Schrodinger wave equation:					
	Concept of wave function, Born interpretation of wave function. ,Concepts of					
	operator in quantum mechanics examples – position, momentum and energy					
	operators. ,Eigenvalue equations, expectation values of operators. , Schrodinger					
	equation. ,Postulates of Quantum Mechanics. , Time o	lependent and time				
	independent (Steady State) Schrodinger equation,	Stationary State.				

		<u> </u>			
	Superposition principle. Equation of continuity and its physical significance.				
UNIT 2	Applications of Schrodinger steady state equation	NO OF LECTURES			
		12			
2	Learning Objective—				
	This Course Enables the Learner to				
	• Through understanding the behavior of quantum particl	e encountering a i)			
	barrier, ii) potential, the student gets exposed to solving non-relativistic				
	hydrogen atom, for its spectrum and eigenfunctions				
	Learning outcomes After successful completion of this co	ourse a Learner will			
	be able to:	_			
	• In the laboratory course, with the exposure in computatio	nal programming in			
	the computer lab, the student will be in a position to solve So	chrodinger equation			
	for ground state energy and wave functions of variou	is simple quantum			
2	mechanical one dimensional and three dimensional potential	<u>S.</u>			
Z	Free particle. ,Particle in infinitely deep potential well (one	- dimension). Step			
	potential. Particle in three dimension rigid box, degeneracy o	of energy state.			
UNIT 3	Applications of Schrodinger steady state equation –II	NO OF LECTURES			
		12			
3	Learning Objective—				
	This Course Enables the Learner to				
	 This course shall develop an understanding of how to model a problem such as particle in a box, hydrogen atom, hydrogen at 				
	electric fields.				
	These skills will help in understanding the different (Quantum Systems in			
	atomic and nuclear physics.				
2	Detential harrier (Finite height and width) penetration a	nd tunnaling offact			
5	(derivation of approximate transmission probability). The	nu tunnening effect			
	decay from radioactivo nuclous				
	Harmonic oscillator (one-dimension) correspondence princ	inle			
	[Note: A good number of numerical examples are expected to be covered during the prescribed lectures].				

References:

- A. Beiser (6th Ed.) Concepts of Modern Physics Tata McGraw Hill.
- S P Singh, M K Bagade, Kamal Singh, S. Chand : 2004 Ed.Quantum Mechanics

- R. Eisberg and R. Resnik Nuclei and particles. Published by Wiley.
- D. Griffiths Introduction to Quantum Mechanics. Published by Prentice Hall.
- Ghatak and Lokanathan Quantum Mechanics. Published by Mc. Millan.
- Quantum Mechanics. -. By L. I. Schiff
- Powell and Crasemann, Quantum Mechanics. Wesley Pub. Co.

Evaluation Pattern: Theory

For each course I, II ,III

External Evaluation – Semester End Examination (60 M)- Duration : 2 hours

Paper Pattern

Question No	Module	Marks with	Marks without
		Option	Option
Q.1 (A) Attempt any One/Two	1	08	16
(B) Attempt Three/Four		12	16
Q.2 (A) Attempt any One/Two	2	08	16
(B) Attempt Three/Four		12	16
Q.3 (A) Attempt any One/Two	3	08	16
(B) Attempt Three/Four		12	16

Internal Evaluation - (40 M)

Evaluation type	Marks
Class Test /online class test	30
Assignment	
Poster presentation	10
field visit report	10
simple project	
OR	
Project +presentation+ report writing+ Viva	40
OR	
Chapter review +presentation+ report writing +Viva	40

SEMESTER II - Practicals

Course-I & II& III

COURSE CODE: ----19US4PHP1/2/3

Instructions:

- i) All the measurements and readings should be written with proper units in SI system only
- **ii)** After completing all the required number of experiments in the semester and recording them in journal, student will have to get their journal certified and produce the certified journal at the time of practical examination
- iii) While evaluating practical, weightage should be given to circuit/ray diagram, observations, tabular representation, experimental skill and procedure, graph, calculation and result.
- **iv)** Skill of doing the experiment and understanding physics concepts should be more important than the accuracy of final result.

Leaning Outcome: On successful completion of this course students will be able to:

- i) To demonstrate their practical skills.
- ii) To understand and practice the skills while doing physics practical.
- iii) To understand the use of apparatus and their use without fear.
- iv) To correlate their physics theory concepts through practical.
- **v)** Understand the concepts of errors and their estimation.

Experiments			No. of	Number
GROUP I	GROUP II	GROUP III	Credit	of hours

						S	
•	Determination of	I.	LCR transients.	•	Study of RS Flip	2	3
	Cauchy's constant.	II.	Passive Low pass		Flop.		hours/ex
•	Cylindrical		filter./High pass	•	Op amp		periment
	obstacle:		filter		comparator		
	determination of	III.	C_1/C_2 by de	•	Op amp –		
	wavelength.		Sauty's Method		Differentiator		
•	Resolving power of	IV.	Figure of merit	•	G by Shunting.		
	telescope.		of a mirror	•	Op amp		
•	Brewster's Law.		galvanometer		Integrator		
•	Newton's	V.	Superposion	•	First order		
	Rings(Determine		Theorem.		active filters		
	wavelength of Na	VI.	LCR Parallel				
	source)		resonance.				
•	Single slit	VII.	Determination of				
	Diffraction using		absolute				
	spectrometer.		Capacity by BG				
•	Lycopodiumpowde						
	r						

Demonstration experiments

- 1. 1. Laser experiments : straight edge, single slit, ruler grating
- 2. Optical fiber : transmission of signal
- 3. Concept of beats
- 4. Coupled oscillations and resonance
- 5. Wave form generator using Op-amp
- 6. PC simulations: graph, curve fitting etc.
- 7. Straight edge Fresnel diffraction
- 8. Double refraction

S. Y. B.Sc. Syllabus

REFERENCES

- 1. D. Chattopadhya, PC. Rakshit & B. Saha. (6th Edition) Advanced course in Practical Physics Book& Allied Pvt. Ltd.
- 2. Harnam Singh S. BSc Practical Physics Chand & Co. Ltd. 2001
- 3. Samir Kumar Ghosh A Text book of advanced Practical Physics –, New Central Book Agency –(3rd edition)
- 4. CL Arora (1st Edition) B Sc. Practical Physics -- 2001 S. Chand & Co. Ltd.
- 5. CL Squires (3rd Edition) Practical Physics Cambridge University Press.
- 6. D C Tayal University Practical Physics –. Himalaya Publication.
- 7. Worsnop & Flint.Advanced Practical Physics –Main Reference: Manual provided by Department of Physics

Practical

There will be no internal assessment for practical.

For practical examination the learner will be examined in **three experiments** (one from each

Group. Minimum **3** from each group and in all minimum **12** experiments and 4 Demo experiments are required to be completed and reported in journal compulsorily.

The learner be evaluated at the time of viva voce on the basis of regular experiments and demonstration experiments.

A learner will be allowed to appear for the semester end practical examination only if he /she submits a Certified journal at the time of practical examination or a certificate from the Head of the Department /Institute to the effect that the candidate has completed the practical course of that semester of S.Y.B.Sc. Physics as per the minimum requirement.

The duration of the practical examination will be three hours per experiment. The questions on slips for the same should be framed in such a way that candidate will be able to complete the task and should be evaluated for its skill and understanding of physics