

Department: Microbiology

K. J. SOMAIYA COLLEGE OF SCIENCE AND COMMERCE, VIDYAVIHAR, MUMBAI 400 077

AUTONOMOUS- AFFILIATED TO UNIVERSITY OF MUMBAI Scheme of Course Structure (Faculty of Science) 2020-2021

Syllabus for T.Y.B.Sc.

Program: B.Sc.

Course: Microbiology

(Choice based Credit System

with effect from

the Academic year 2020–2021)

Department: Microbiology

Preamble

To the common man, Microbiology means the study of invisible mini wonders that only cause disease. In reality, the vast majority of microorganisms co-exist alongside us without causing any harm. On the contrary, many of them are required for our survival. Microbiology is a study of this microscopic world, It is a research oriented subject and plays a pivotal role in our daily lives.

After introducing the basics of Microbiology in Semester I and Semester II, syllabus progresses to include the topics of Immunology, Genetics, Biochemistry, Virology, Taxonomy, Dairy and Food Microbiology, basic and advanced Instrumentation in Semester III and Semester IV.

Semester V and Semester VI while focusing on the depth and applications of the above topics will also include new topics of Population genetics, Emerging infectious diseases, Bioinformatics, Biostatistics, Advanced Virology and basic Nanotechnology.

As mentioned in the syllabus, all the three courses of theory & practical are compulsory to B.Sc. Microbiology students (Semester III and IV). Choice is offered between Module III and Module IV in Course III in both Semester III and Semester IV.

The syllabi for the three-year undergraduate programme are designed to enable the students to understand and select an area of their interest to pursue further studies for post-graduation.

Department: Microbiology

Graduate Attributes

The graduate in Microbiology would have-

- 1. Sound knowledge of the fundamentals of Microbiology
- 2. Basic understanding of the different fields of applied Microbiology.
- 3. Knowledge of recent developments in the various fields of Microbiology.
- 4. Skill set in performing Bacteriological techniques such as aseptic techniques, enumeration of bacteria, etc.
- 5. Ability to analyze, think, plan, execute and review experiment and experimental results.
- 6. Awareness about research planning and Ethical considerations in all the fields.
- 7. Entrepreneurial skills as an offshoot of interaction with several Industry experts.
- 8. Expertise in Communication skills
- 9. Gained life skills such as Team work, Leadership, Patience as a result of group project participation.

Department: Microbiology

Syllabus -T.Y.B.Sc. Microbiology

Semest	Cours	Course	Course	Credi	Hours	Period	Unit/	Lectu	Exam	inatic	n
er	e	Title	code	ts		S	Modul	res			
V	Numb					(50	e	(50			
	er					min)		MIN			
								UTES)			
								per			
								Unit/			
								mod			
								ule			
									Inte	Ext	Tot
									rnal	er	al
									Mar	nal	Mar
									ks	M	ks
										ark	
										S	
THEORY											
Core cou				T	1		T	T		1 .	1
			of 20US	2	30	36	3	12	40	60	100
		Genetics and									
		Basic	MGM								
		Molecular	CI								
		Biology.				- (-	
		Medical	2OUS	2	30	36	3	12	40	60	100
		microbiology									
		and	MMI								
		mmunology	C2								
		-	20116	2	20	26	2	12	40	(0	100
		Microbial	2OUS	2	30	36	3	12	40	60	100
		Biochemistry									
		·	MBC3	2	20	26	3	12	40	60	100
		Bioprocess	2OUS 5MBB	<u> </u>	30	36)	12	40	60	100
		Γechnology-	TC4								
		Jpstream Processes	104								
		Processes									

Discipline	e Spec	cific Electives									
DSE	I	Environme	20US5M	2	30	36	3	12	40	60	100
		ntal	BEAM5								
		Microbiol									
		ogy									
	II	Plant and	20US5M	2	30	36	3	12	40	60	100
		Animal	BPAB6								
		Biotechnol									
		ogy									
	Ш	Research		2	30	36			40	60	100
	(OP	Project									
	TIO										
	NA										
	L)										
	ncem	ent Electives									
SEC **	I	Food	20US5M	1.5	23	28	2	14		60	60
		and	BFDM7								
		Dairy									
		Microbi									
		ology									
PRACTIC											
CORE CO	DURSE:			T						r	T
	I	Branche	20US5M	1	2	2.4			20	30	50
		s of	BP1								
		Genetic									
		s and									
		Basic									
		Molecul									
		ar									
		Biology									
	II	Medical	20US5M	1	2	2.4			20	30	50
		microbi	BP1								
		ology									
		and									
		Immuno									
		logy - I									

T. \	/. B.	Sc. S	Svlla	bus

III	Microbi	20US5M	1	2	2.4		20	30	50
	al	BP2							
	Bioche								
	mistry-I								
IV	Bioproc	20US5M	1	2	2.4		20	30	50
	ess	BP2							
	Technol								
	ogy-								
	Upstrea								
	m								
	Processe								
	S								

Discipline	e Specific	Electives								
DSE	1	Environ	20U	1	2	2.4		20	30	50
		mental	S5M							
		Microb	BP3							
		iology								
	II	Plant	20U	1	2	2.4		20	30	50
		and	S5M							
		Animal	BP3							
		Biotech								
		nology								
	III(Opti	Resear		1	2	2.4		20	30	50
	onal)	ch								
		Project								
Skill Enha	ncement	Electives								
SEC		Food	20U	0.5	1	1.2		10	30	40
		and	S5M							
		Dairy	BFD							
		Microb	M7							
		iology								
TOTAL				20						

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER V

Course - I

COURSE TITLE: Branches of Genetics and Basic Molecular Biology

COURSE CODE: 20US5MBMGMCI

[CREDITS - O2]

Course Learning Outcomes: After the successful completion of the Course, the learner will be able to:

- 1) Apply the concepts of Population Genetics to analyse population structure.
- 2) Identify the human genetic traits using pedigree analysis
- 3) Describe the steps and enzymology of prokaryotic replication.
- 4) Investigate the mechanisms of prokaryotic transcription and translation.

Module	TITLE AND CONTENT	NO OF					
		LECTURES					
1	Classical and Population Genetics	Classical and Population Genetics					
	Learning Objectives:						
	1) To state the branches of Genetics.						
	2) To explore the characteristics of model organis	ms in Genetics.					
	To state the Hardy-Weinberg rule.						
	4) To apply the Hardy-Weinberg rule to the stu	ıdy of population					
	structure.						
	5) To describe the human Eukaryotic chromosome	e structure					
	Learning Outcomes: After successful completion of	the module, the					
	learner will be able to:						
	 Comprehend the branches of Genetics so a significance. 	s to justify their					
	2) List the characteristic features of model organis	ms.					
	3) Calculate different genetic frequencies in a pop	ulation study.					
	4) Evaluate the impact of different parameters on	a population.					
	5) To describe different structural attribute chromosome.	• •					
	6) Construct pedigree analysis chart for analysis.						

	Т	R	U	S	Т
T. Y	. В.	Sc.	Sy	llak	us

	7) Tabulate different genetic traits.	
1.1	Branches of Genetics:	
	Introduction to the following terms:	1L
1.1.a.	Transmission genetics	
1.1.b	Molecular genetics	
1.1.c.	Population genetics	
1.1.d.	Quantitative genetics	
1.2	Model Organisms:	
1.2.a.	Listing the characteristics of model organisms in Genetics.	1L
1.2.b.	Examples of model organisms used in studies.	
	Examples of studies undertaken using prokaryotic and eukaryotic model organisms.	
10		
1.3	Introduction to Human Genetics:	21
1.3.a.	Eukaryotic Chromosome structure : Levels of chromosome packaging, histones and non-histones, euchromatin and heterochromatin (types)	3L
1.3.b.	Mendelian genetics in humans- pedigree analysis	
1.3.c.	Human genetic traits recessive and dominant (examples) Sex- linked traits (examples)	2L
1.4.	Population Genetics	
1.4.a	Genetic structure of population, genotype and allelic	3L
	frequencies.	
	Introduction to Hardy- Weinberg Law and problems based on it.	
1.4.b	Genetic variation in natural population.	
	Change in genetic structure of population: mutation,	
	genetic drift, migration, natural selection	2L
2	DNA Replication:	
	Learning Objectives:	
	 To familiarize the learner with terminology, concep process of DNA replication in prokaryotes. 	ts and detailed
	p. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

3	Transcription and Translation: Learning Objectives:							
2.6	Rolling circle (mode of replication	1L						
	and role of telomerase							
	Consequences of telomere shortening, mechanism	ZL						
2.5	Differences between prokaryotic and eukaryotic DNA,	2L						
2.5	DNA polymerases, Ligases, Ter and Tus proteins.							
	replication: Primase, Helicase, Topoisomerase, SSB,	2L						
2.4	Enzymes and proteins associated with DNA							
	mechanism involved in Initiation, Elongation and Termination.	3L						
2.3.	Prokaryotic DNA replication :- Details of molecular	21						
	Wake.							
4.4.	and Tuneko Okazaki, J Cairns and Gyurasits and	2L						
2.2.	discontinuous Historical experiments by Meselson and Stahl, Reiji							
	Semi-conservative Bidirectional and semi-	2L						
2.1.	DNA Replication features: Conservative, Dispersive,							
	DNA Replication:							
	6) Explain rolling circle mode of replication.							
	5) Appreciate the role of telomeres and telomerase.							
	4) Evaluate the differences between the process of E prokaryotic and eukaryotic cells and some phages.	=						
	3) List the various proteins and enzymes involved i explain their significance	n replication and						
	2) Describe process of DNA replication in prokaryotes	S.						
	1) Explain and analyse the significant historical experiments DNA replication.							
	learner will be able to:							
1	and eukaryotes. Learning Outcomes: After the successful completion of	of the module, the						
	3) To appreciate differences between DNA replication	on in prokaryotes						
	2) To understand significance of historical experiment	ts in replication.						

	3	, 50	ma	m	v
	Т	R	U	S	Т
г. ү	. В.	Sc.	Sy	llak	us

Departmer	nt: Microbiology	T. Y. B.Sc. Sylla
	To explain the structure of gene to be transcrib	oed.
	2) To describe the molecular stages of transcription	on and translation.
	3) To list the roles of different proteins involved in	transcription and
	translation.	
	4) To investigate the mode of action of in	hibitors of RNA
	polymerase.	
	5) To scrutinize the formation of peptide bond in	translation.
	6) To examine the action of amino-acyl tRNA synt	thetases.
	Learning Outcomes : After the successful completion of	of the module, the
	learner will be able to:	
	1) Summarize the positions and roles of different	sequences of the
	gene to be transcribed.	
	2) Appreciate the roles of different inhibitors of RN	NA polymerase.
	3) Schematically represent the stages of transcript	ion.
	4) Describe the rho-dependent and rho-indep	endent types of
	termination of transcription.	
	5) Compare and contrast prokaryotic and eukaryo	otic transcription.
	6) Investigate the sub-units of ribosomes in	prokaryotes and
	eukaryotes.	
	7) Describe the different steps of post-translation	al modification of
	proteins.	
	Transcription and Translation:	
3.1.	Transcription:	
3.1.a.	Structure of prokaryotic and eukaryotic promoters.	1L
	DNA dependent synthesis of RNA:	
	RNA Polymerase- structure and role.	
3.1.b.	Description of steps of Transcription: Initiation,	3L
	Elongation	
	and Termination in prokaryotes in detail.	
3.1.c.	Only introduction to transcription in eukaryotes.	1L
	Role of rho protein in transcription termination in	
	prokaryotes.	
	Inhibition of DNA dependent RNA polymerase.	
3.2.	Translation:	1L
3.2.a.	Types and description of structure of following RNA:	
	m- RNA, t-RNA, r-RNA.	
3.2.b.	Structure of prokaryotic and eukaryotic ribosomes-	

	subunits.	4L
	Description of steps of Translation: Initiation,	
	Elongation and Termination in prokaryotes in detail.	
	Formation of peptide bond.	
	Only introduction to translation in eukaryotes.	
3.3.	Post-Translational Modifications (PTM) of proteins:	2L
	Types of PTMs with one example each.	
	Phosphorylation.	
	Adenylation	
	Glycosylation	
	Formation of disulphide bonds.	

References:

- 1) Peter J. Russell (2006), iCenetics-A molecular approach, 2nd edition.
- 2) Benjamin A. Pierce (2008), Genetics a conceptual approach, 3rd edition, W. H. Freeman and company.
- 3) R. H. Tamarin, (2004), Principles of genetics, Tata McGraw Hill.
- 4) M. Madigan, J. Martinko, J. Parkar, (2009), Brock Biology of microorganisms | 12th edition Pearson Education International.
- 5) Fairbanks and Anderson, (1999), Genetics, Wadsworth Publishing Company.
- 6) Prescott, Harley and Klein, Microbiologyll, 7th edition McGraw Hill international edition.
- 7) Robert Weaver, Molecular biologyll, 3rd edition. McGraw Hill international edition.
- 8) Primrose and Twyman, Principles of gene manipulation and genomics, 7th edition Blackwell Publishing.
- 9) Nancy Trun and Jaine Trempy (2004), Fundamental bacterial genetics Blackwell Publishing.
- 10) D Nelson and M Cox,(2005) Lehninger's Principles of Biochemistryll, 4th edition Macmillan worth Publishers.
- 11) Benjamin Lewin, Genes IX, Jones and Bartlett publishers.
- 12) JD Watson, Molecular biology of the gene, 5th edition.
- 13) Snustad, Simmons, Principles of genetics, 3rd edition. John Wiley & sons, Inc.

Evaluation Pattern: Theory

For course I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without Option
1	I	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

Page **12** of **95**

Department: Microbiology

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER V - Practical Course-I

COURSE CODE: 20US5MBPI

[CREDITS - O1]

Experiment	Title and Number of Credits	Number
Sr. no.		of hours
1.	Isolation of genomic DNA of <i>E. coli</i> (group	04
	experiment)	
2.	Karyotyping	04
3.	Electrophoresis of genomic and plasmid DNA. (group	09
	experiment)	
4.	Proteins electrophoresis Native and SDS-PAGE (group	08
	experiment)	
5.	Cultivation of model organisms - Drosophila	03
	melanogaster	
6.	Problems on Population Genetics	02

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

a) Rough Journal – O5

b) Fair Journal – O5

c) Viva-10

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER V

Course - II

COURSE TITLE: Medical Microbiology and Immunology

COURSE CODE: 20US5MBMMIC2

[CREDITS - O2]

Course Learning Outcomes:

After successful completion of the Course, the learner will be able to:

- 1) Identify the aetiological agent responsible for Respiratory and Urinary tract infections.
- 2) Evaluate the choice of suitable antibiotics for treatment of infectious disease using bacteriological techniques.
- 3) Understand the role of Cytokines, APC, MHC, Complement in immune defence mechanism.

Module	TITLE AND CONTENT	NO OF			
		LECTURES :			
1	HOST DEFENSE MECHANISM AND THERAPEUTIC TREATMENTS.				
	Learning Objectives:				
	1) To enable the learner to understand the concep	t of "non-specific			
	host defence system"				
	2) To enable the learner to understand the role of a	anatomic barriers,			
	nonspecific inhibitors, and phagocytic cells in host defence system				
	Learning outcome:				
	By the end of this course learners will be able to understand:				
	1) The different types cells, tissues and organs involved in immune				
	response to various types of pathogens.				
	2) The factors contributing to non-specific host defence mechanism				
1.1.	Non-Specific Host Defense Mechanisms	4L			
1.1.a.	First Line of Host Defense Physical and Mechanical				

	-	יייכ		-	
	Т	R	U	S	Т
T. Y	. В.	Sc.	Sy	llak	ous

	Barriers: Skin, Mucous membranes Respiratory	
	System Gastrointestinal Tract Genitourinary Tract	
1.1.b.	Antimicrobial Peptides: Cationic Peptides,	4L
	Bacteriocins, Complement, Interferons and Acute	
	Phase Proteins. Phagocytosis.	
1.1.c	Pathogen Recognition, Toll like Receptors,	4L
	Intracellular Digestion Acute Inflammatory Response.	
2	RESPIRATORY AND URINARY TRACT INFECTIONS	
	Learning objective:	
	To enable the learner to understand-	
	1) The causative agents, its transmission and pathogen	nesis,
	2) The Clinical Manifestations of the infections and	d the Laboratory
	Diagnostic procedures	
	3) The prophylactic measures and available treatment	t.
	Learning outcome:	
	By the end of this course learners will be able to:	
	1) Differentiate and categorize the types of Respi	iratory tract and
	Urinary infections	
	2) Understand the virulence properties of pa	thogens causing
	Respiratory tract and Urinary infections	
	All infections are to be covered with respect to all	
	details with emphasis on Etiology, Transmission,	
	Pathogenesis, Clinical Manifestations, Lab Diagnosis,	
	Prophylaxis, and Treatment	
2.1.	URT (Upper Respiratory Tract infections)	1L
2.1.a	Streptococcal Pharyngitis	1L
2.1.b.	Diphtheria	3L
2.1.c	Rubella, Measles, Mumps, Chickenpox	
2.2.	LRT (Lower Respiratory Tract infections)	2L
2.2.a.	Tuberculosis	2L
2.2.b.	Bacterial pneumonia	1L
2.2.c.	Influenza	
2.3.	UTI (Urinary Tract infections)	1L
2.3.a	Types of UTI, Clinical Manifestations, predisposing	
	Factors Involved, pathogens	
2.3.b	Laboratory diagnosis	1L

Department: Microbiology

3	Components of immune system and their role in Immu	ine response	
	Learning Objective:		
	1) To state the significance of components like Cyto	okines, APC, MHC	
	of the immune system.		
	2) To describe their functions and mechanism of action	on.	
	Learning Outcome:		
	After successful completion of the module, the learner	will be able to	
	1) Explain the role of cytokines, Antigen presenting	g cell, MHC and	
	complement system in immune mechanism		
	2) Diagrammatically represent its functioning.		
	Detail syllabus – sub units.		
	Components of immune system and their role in		
	Immune response		
3.1.	Cytokines	3L	
3.1.a.	Properties and functions		
3.1.b.	Cytokines secreted by Th1 and Th2		
3.2.	Antigen Presenting cells	3L	
3.2.a.	Antigen presentation		
3.2.b.	Antigen processing pathways (Cytosolic and		
	Endocytic Pathway)		
3.3.	MHC Complex and MHC molecules	3L	
3.3.a.	Organization of MHC genes		
3.3.b.	Structure of class I and class II molecules		
3.3.c	T-cell antigen receptors and MHC molecule		
3.4	Complement System	3L	
3.4.a	Complement component and notation		
3.4.b.	Complement activation (Classical, Alternate and		
	Lectin Pathway)		
3.4.c	Biological consequence of complement system		

References:

- 1) Ananthanarayan and Paniker, (2009), Textbook of Microbiology, 8th Edition. Universal Press
- 2) Cedric Mims et al, -Medical Microbiology, 3rd Edition Mosby
- 4) Konemann, -Diagnostic Microbiology, 5th and 6th Edition. Lippincott

- 5) Teri Shors Jones Understanding Viruses Bartlett Publisher
- 6) Thomas J. Kindt, Richard A. G, Barbara A. Osburne (2007) Kuby Immunology: W. H. Freeman and Company, New York.
- 7) FahimHalim Khan, —The elements of Immunology, Pearson Education.33
- 8) Pathak, S., Palan U, Immunology Essential and Fundamental. Pareen publications, Bombay.
- 9) Ian R. Tizard —Immunology, An Introduction, 4th Edition, Saunders college publishing.

Evaluation Pattern: Theory

For course II

External Evaluation – Semester End Examination (60 M) – Duration: 2 hours Paper Pattern

Question No	Module	Marks w	vith \	Marks wi	thout
		Option	C	Option	
1	I	30		20	
2	II	30		20	
3	III	30		20	

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

Page 17 of 95

Department: Microbiology

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER V - Practical

Course-II

COURSE CODE: 20US5MBPI

[CREDITS - O1]

Experiment	Title and Number of Credits	Number
Sr. no.		of hours
1.	Schematic /diagrammatic representation of each	2
	system/condition as per the theory syllabus	_
	(Respiratory, Urinary)	
2.	Diagnostic Cycle of any one infection of each of the	1
	above systems (viz., in upper respiratory tract:	
	Pharyngitis)	
3.	Samples of various forms/procedures used for	1
	diagnostic tests - Request forms, Test reports, (Results,	
	Panic report, alert report) to be drawn or attached in	
	the journal.	
4.	Tabulation of:	3
	A. Types of samples, containers, specimens, with	
	reference to the symptoms/ infections.	
	B. Transport media with reference to	
	samples/suspected pathogen.	
	C. Collection and Processing of samples in various	
	infections.	
	D. Primary isolation of suspected pathogens in different	
	infections with reference to pathological sample.	
	E. Rapid tests for identification of pathogens e.g.	
	staining (Acid fast, Metachromatic granules, Capsule)	
	F. Minimum biochemical media for identification of the	
	pathogens listed in the syllabus i.e. S. aureus, S.	
	pyogenes E. coli, Klebsiella spp (any one). Proteus spp	
	(any one)., <i>Pseudomonas spp.</i> (any one),	
	Corynebacterium diphtheriae	
	G. List of samples to be used with the above:	

T. Y. B.Sc. Syllabus

	i. URT: Nasal swab, pus	
	ii. LRT : sputum	
	iii. UTI: Urine	
5.	Case study and problem solving for identification of	12
	the pathogen with reference to each of the infections	
	(Include approach writing, suspected organisms,	
	requirements for the identification tests and their	
	justification rapid tests)	
6.	Kirby-Bauer method for AST.(Project)	4
7.	Synergistic activity of antibiotics.	3
8.	E test(Demonstration).	1
9.	Acid fast staining for M. leprae	1
10.	Staining techniques for pathological samples	2

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

- a) Rough Journal O5
- b) Fair Journal O5
- c) Viva-10

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER V

Course - III

COURSE TITLE: Microbial Biochemistry-I

COURSE CODE: 20US5MBMBC3

[CREDITS - O2]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Evaluate the different types of solute transport mechanisms of a living cell.
- 2) Explain energy generation by oxidative phosphorylation.
- 3) Apply principles of bioenergetics to metabolic pathways.
- 4) Elucidate the convergence of different catabolic pathways in carbohydrate metabolism.

Module	TITLE AND CONTENT N	10 OF
	L	ECTURES
1	Solute Transport	
	Learning Objectives:	
	1) To describe the different models of biological memb	orane.
	2) To define different terms related to solute transport	
	3) To distinguish between simple diffusion, facilitated	and active and
	passive transport.	
	4) To state different methods of studying solute transpo	ort.
	5) To describe the mechanism of group translocation.	
	6) To recognize other modes of solute transport.	
	Learning Outcomes: After the successful completion of t	the module, the
	learner will be able to:	
	1) Illustrate the use of proteoliposomes in solute transp	ort.
	2) State different modes of solute transport.	
	3) Compare and contrast between active and passive tr	ransport.
	4) Describe the mechanism of group translocation.	
	5) Cite one example each of simple diffusion, facilita	nted and active
	transport.	

	6) Distinguish between primary and secondary active	transport.
1.1	Structure and function of Biological membrane: Fluid Mosaic Model, lipid rafts, Integral and peripheral proteins. Model membranes.	2L
1.2	Methods of studying solute transport: Preparation and use of proteoliposomes	IL
	Role of membrane in solute transport	1L
1.3	Different mechanisms for uptake of solutes with one example each:	6L
1.3. a	Passive diffusion	
1.3. b	Facilitated diffusion	
1.3. c	Active transport: Primary active transport: Binding proteins, Shock sensitive system (eg. Histidine uptake model, Maltose uptake)	
1.3.d.	Secondary active transport: (Uniport, Antiport, Symport) Mechanism of Group translocation: Phosphotransferase system	1L
1.3.e	Other examples of transport: Introduction to Siderophores. Iron Transport.	IL
2	Bioenergetics: Learning Objectives:	
	 To understand functioning of electron transport sy To familiarize with mechanism of ATP generation. Learning Outcomes: After the successful completion of learner will be able to: Describe the composition and functions of elesystem. 	the module, the
	Schematically describe electron transport in a fer prokaryotes.	w representative
	 Differentiate between prokaryotic and eukaryotic e system. 	lectron transport
	4) Describe the chemiosmotic hypothesis	

	5) Explain the structure and mechanism of ATP syntha6) Analyse the difference between the shuttle systemsCalculate energetics of TCA and EMP pathways.	
2.1.	Components, complexes and functions of Electron transport chain: Mitochondrial ETC, Bacterial ETC- <i>E. coli</i> -aerobic and anaerobic.	3L
2.2	Oxidative phosphorylation by Chemiosmotic coupling hypothesis Inhibitors and uncouplers Structure of Mitochondrial ATP synthase,	3L
2.3	Mechanism by Rotational catalysis Generation of electrochemical energy by-	2L
2.4	Bacteriorhodopsin ATP hydrolysis. Shuttle systems:	2L
2.5	Malate aspartate shuttle Glycerol -3- phosphate shuttle. Calculations of energetics of glycolysis and TCA,	IL
2.6	Balance sheet to be given with efficiency calculation.	ΊL
3	Catabolism of Carbohydrates: Learning Objectives: 1) To study details of catabolic pathways of selected 2) To analyse the multifunctional role of central meta 3) To identify the ways by which complex substracentral metabolic pathways 4) To define the concept of fermentation.	abolic pathways.
	Learning Outcomes: After the successful completion of learner will be able to:1) Differentiate between various structures of glucotheir breakdown	
	2) Demonstrate how radiorespirometry can be used biochemical pathways eg. EMP and ED.3) Schematically represent and describe pathways list	, .

Department: Microbiology

	with structures of intermediates and enzymes.		
	4) Compare the various catabolic pathways for glucose catabolism		
	Represent with structures and associated enzymes the metabolic		
	pathways of different fermentations and analyse the di	ifferences	
	between them.		
3.1.	Catabolism of Carbohydrates:	3L	
	Breakdown of polysaccharides –glycogen, starch,		
	cellulose		
	Breakdown of oligosaccharides - lactose, maltose,		
	sucrose (by phosphorylysis)		
	Utilization of monosaccharides – fructose, galactose		
3.2	Major pathways-		
3.2.a.	Glycolysis (EMP), TCA,	2L	
3.2.b.	HMP ED pathway,	1L	
3.2.c	Use of radio-respirometry with reference to EMP &	1L	
	ED.		
3.2.d	Anaplerotic reactions of TCA, glyoxylate bypass	2L	
2.2			
3.3.	Other modes of fermentations in microorganisms:		
	Lactic acid (homo, hetero fermentative pathway,	3L	
	bifidum pathway) mixed acid, butanediol		
	fermentations		
	Acetone-butanol		

References:

- 1) Stanier. R.Y., Ingraham, J.L., Wheelis, M.L., Painter, R.R, (1987) General Microbiology, 5th edition, The Macmillan press Ltd.
- 2) Conn Stumpf, P. K., Bruening, G. R. H. (1987) Outlines of Biochemistry, 5thedition, John Wiley & sons.
- 3) Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag.
- 4) White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rdedition, Oxford University Press
- 5) Nelson, D, Cox, M, (2005), Lehninger Principles of biochemistry,4th edition, W. H. Freeman and Company.
- 6) Biochemistry 3rd edition, Mathews, Van Holde, Pearson Education.

- 7) Voet, D &Voet, J. G., (2004), Biochemistry, 3rd edition, John Wiley& Sons Inc
- 8) Zubey, G. L (1996), Biochemistry, 4th edition, Wm. C. B Brown publishers.

Evaluation Pattern: Theory

For course III

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without Option
1	I	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

Department: Microbiology

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER V - Practical

Course-III

COURSE CODE: 2OUS5MBMBP2

[CREDITS - O1]

Experiment	Title and Number of Credits	Number
Sr. no.		of hours
1.	Study of biochemical pathway and study of end	09
	products of enzymes in characterization of	
	microorganisms	
	oxidase, catalase,	
	phosphatase -Qualitative detection and quantitative	
	MR-VP test	
2.	Detection of amylase activity	01
3.	Oxidative and fermentative utilization of glucose by	02
	microbes	
4.	Detection of homo and mixed acid fermentation	10
5.	Isolation of mitochondria and assay for ETC activity	05
6.	Enrichment and isolation of cellulose digestors	03

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

- a) Rough Journal O5
- b) Fair Journal O5
- c) Viva-10

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER V

Course - IV

COURSE TITLE: Bioprocess Technology-Upstream Processes

COURSE CODE: 2OUS5MBBTC4

[CREDITS - O2]

Course Learning Outcomes : After successful completion of the Course, the learner will be able to:

- 1) Evaluate the fermenter design most suitable for optimum production of a microbial product.
- 2) Comprehend the need for strain improvement.
- 3) Illustrate the sterilization methods used in industrial fermentation processes.

Module	TITLE AND CONTENT	NO OF		
		LECTURES		
1	Module: I : Strain Improvement and Sterilization:			
	Learning Objectives: The objectives of this unit are to:			
	1) Describe the need for strain improvement			
	2) Explore the different approaches for strain improve	ement		
	3) Evaluate the methods of sterilization			
	4) Illustrate filtration as an effective method of steri	ilization of media,		
	air and exhaust air			
	Learning Outcomes: After the successful completion of	of the module, the		
	learner will be able to:			
	1) Recall and comprehend different methods of Strain improvement			
	2) Assess the advantages and disadvantages of batch and continuous			
	sterilization methods			
	3) Differentiate between Depth and Absolute filters.			
	Establish the process steps for filter sterilization of media			
1.1	Strain Improvement:			
1.1.a	The random, empirical approach	1L		

	Somanyar				
	Т	R	U	S	Т
T. Y	. В.	Sc.	Sy	llak	us

1.1.b.	The power of recombination in 'Strain construction'	1L
1.1.c.	Directed screening for mutants with altered	2L
	metabolism and methods of detection of mutants	
1.1.d	Recombinant DNA approaches to Strain	1L
	Improvement for low- and medium-value products	
1.1.e.	Strain improvement for high value products	1L
	and the process of the same process of the sam	
1.2.	Sterilization:	
1.2.a.	Consequences of invasion in a fermentation by a	1L
	foreign organism.	
1.2.b.	Sterilization criterion: Definition and significance.	
1.2.c.	Methods of Batch sterilization.	1L
1.2.d.	Methods of Continuous sterilization.	2L
1.2.e.	Mechanisms of filtration	1L
1.2.f.	Depth and Absolute filters	
1.2.g	Filter sterilization of fermentation media, air and	1L
	fermenter exhaust air	
2	Types of Bioreactors:	
	Learning Objectives: The objectives of this unit are to:	
	 Describe the constructional variations of differe 	nt fermenters
	2) Outline the fermenter designs diagrammatically	/
	3) Relate the need for different parts in a fermen	ter to the type of
	product	
	Learning Outcomes: After the successful completion of	of the module, the
	learner will be able to:	
	Characterise the different fermenter designs On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the design of the fermenter to the country On Polate the fermenter to the country	
	2) Relate the design of the fermenter to the condi-	uons needed for
	optimum product formation 2) Evaluate the formation design with respect to a	sconomy of
	3) Evaluate the fermenter design with respect to e	economy of
	process and product formation	
	1) Justify the need for modified formentar designs	for Animal coll
	4) Justify the need for modified fermenter designs	for Animal cell
	4) Justify the need for modified fermenter designs culture	for Animal cell
		for Animal cell

Department: Microbiology

	Types of Bioreactors:	
	Typical constructional features and their importance	
	in the specific processes.	
2.1.	Types of fermenters based on Power Input for	
	mixing (mechanical, hydrodynamic and pneumatic)	1L
2.1.a.	Mechanical-Waldhof fermenter,	1L
2.1.b	Hydrodynamic-deep-jet fermenter, trickling	1L
	generator	
2.1.c	Pneumatic -air-lift fermenter, bubble-cap fermenter,	4L
	acetator, cavitator.	
2.3.	Animal cell culture reactors	
	(Stirred fermenters, Air-Lift fermenters, Radial flow	2L
	fermenters, Microcarriers, Encapsulation, Hollow	
	fibre chambers, Packed glass bead reactors, Perfusion	
	Cultures).	
2.4.	Photo-bioreactor, tower and packed tower	
	fermenters, Biofilters and Fixed film processes.	2L
2.5.	Solid State fermenters, Membrane fermenters and	
2.).	Single use disposable fermenters.	1L
3	Fermentation Parameter- Monitoring and control:	
	Learning Objectives: The objectives of this unit are to:	
	1) Assess the requirement for monitoring of fermenta	
	2) Evaluate the limitations of different method	s of monitoring
	fermentation parameters	
	3) Appreciate the control mechanisms for parameters	
	Learning Outcomes: After the successful completion of	of the module, the
	learner will be able to:	
	1) Categorise different types of sensors	
	2) Recall and Evaluate the different methods	of monitoring
	fermentation parameters	
	3) Derive the ways to control the fermentation param	neters
	4) Analyse the output of monitoring devices	
	5) Differentiate between manual and automatic cont	rol of parameters

3.1.	Fermentation Parameter- Monitoring and control: Different types of sensors based on location and in relation to its application for process control.	1L
3.2. 3.2.a. 3.2.b. 3.2.c. 3.2.d.	Temperature Monitoring and Control: Mercury-in-glass thermometers Electrical resistance thermometers. Thermistors. Temperature control	1L
3.3. a. 3.3.b. 3.3.c	Flow measurement and control: Gases Liquids Control of flow of gases and liquids	ΊL
3.4. 3.4.a. 3.4.b. 3.4.c 3.3.d	Pressure measurement and control: Bourdon tube pressure guage Nested diaphragm-type pressure sensor Pressure bellows, Strain Guage, Piezoelectric transducer Pressure control	1L
3.5. 3.6. 3.6.a. 3.6.b. 3.6.c	Foam sensing and control Measurement and control of dissolved oxygen: Galvanic and Polarographic electrodes Fluorometric Oxygen sensor Control of dissolved oxygen.	IL 2L
3.7. 3.7.a. 3.7.b. 3.7.c	Inlet and exit gas analysis: Deflection type paramagnetic oxygen analyser Thermal-type paramagnetic oxygen analyser Infrared analyser	2L
3.8.	pH measurement and control:	1L
3.9.	Control systems:	2L

Department: Microbiology

3.9.a	Manual Control
3.9.b	Automatic control
	i. Two- position controllers
	ii. Proportional controllers.
	iii. Integral controllers
	iv. Derivative controllers.

References:

- 1) Patel A.H. (1996). Industrial Microbiology. 1st edition, Macmillan India Limited
- 2) Okafor N. (2007). Modern Industrial Microbiology and Biotechnology. Ist edition. Bios Scientific

Publishers Limited. USA

- 3) Waites M.J., Morgan N.L., Rockey J.S. and Higton G. (2001). Industrial Microbiology: An Introduction. Ist edition. Wiley Blackwell
- 4) Glaze A.N. and Nikaido H. (1995). Microbial Biotechnology: Fundamentals of Applied Microbiology. Ist edition. W.H. Freeman and Company
- 5) Casida LE. (1991). Industrial Microbiology. 1st edition. Wiley Eastern Limited.
- 6) Crueger W and Crueger A. (2000). Biotechnology: A textbook of Industrial Microbiology. 2nd edition. Panima Publishing Co. New Delhi.
- 7) Stanbury PF, Whitaker A and Hall SJ. (2006). Principles of Fermentation Technology. 2nd edition, Elsevier Science Ltd.
- 8) Stanbury PF, Whitaker A and Hall SJ. (2017). Principles of Fermentation Technology. 3rd edition, Elsevier Science Ltd.
- 9) Walsh Gary, (2011). Pharmaceutical Biotechnology. 1st edition, Wiley-India edition.
- 10) E.M.T.El-Mansi and A.R.Allman (2012). Fermentation Microbiology and Biotechnology. 3rd edition. CRC Press.

Evaluation Pattern: Theory

For course IV

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours Paper Pattern

Question No	Module	Marks	with	Marks	without
		Option		Option	
1	I	30		2C)

T. Y. B.Sc. Syllabus

2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

Piktochart

Test on OFFEE

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER V - Practical

Course-IV

COURSE CODE: 2OUS5MBP2

[CREDITS - O1]

Experiment	Title and Number of Credits	Number
Sr. no.		of hours
1.	Gradient plate technique for isolation of mutants	6
2.	Study of fermenter parts and demonstration of its	14
	working	
3.	Enrichment methods for mutants	10

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

- a) Rough Journal O5
- b) Fair Journal O5
- c) Viva-10

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER V

Discipline Specific Elective DSE-I

COURSE TITLE: Environmental Microbiology

COURSE CODE: 20US5MBEAM5

[CREDITS - O2]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Analyse the significance of synchronous and regulated networks of different biogeochemical cycles functional in the ecosystem.
- 2) Summarize the data on different types of microbial products.
- 3) Implement the different methods of waste management.
- 4) Evaluate the potential of microbes in bioremediation.

Module	TITLE AND CONTENT	NO OF	
		LECTURES	
1	Module: I : Biogeochemical Cycles:		
	Learning Objectives:		
	 To describe different biogeochemical cycle ecosystem. 	es operating in	
	2) To correlate the sulphur cycle to different reduced habitats.		
İ	3) To distinguish between different nitrogen sources.		
	Learning Outcomes: After the successful completion of the module, the		
	learner will be able to:		
	1) Schematically illustrate the flow of nutrients in ecosystem.		
	2) Appreciate the dynamic exchange of major elements between biotic and abiotic components.		
	3) Recognize the role of phosphate solubilizers.		
	4) Distinguish between nitrification and denitrification.		
	Describe the degradation of carbon-based polymers.		
1.1	Concept of Biogeochemical cycle and its	1L	
	significance.		
1.2	Carbon cycle: Microbial degradation of cellulose,	3L	

T R U S T Y. B.Sc. Syllabus

AND NIGHT	K J Somaiya College of Science & Commerce	TRUS
Departm	nent: Microbiology	T. Y. B.Sc. Sylla
	hemicelluloses, lignin and chitin.	
1.3	Nitrogen cycle: Nitrogen fixation, ammonification,	3L
	nitrification, denitrification and nitrate reduction	
1.4.	Phosphorus cycle: Phosphate immobilization and	2L
	solubilisation	
1.5.	Sulphur cycle: Microbes involved in sulphur cycle	3L
2	Microbial derived value-added products.	
	Learning Objectives:	
	1) To describe the production of features of Biofuels	and appreciate its
	potential	
	Learning Outcomes: After the successful completion of	of the module, the
	learner will be able to:	
	1) Discuss significance of Biofuels.	
	2) Describe the production of biofuels.	
	3) Apply the use of biotechnology for improvement of biofuel	
	production methods	
2.1	Biofuels:	2L
2.1a	Conventional fuels and their impact on the	
	environment Oil, Coal, Natural gas	
2.1b	Advantages and disadvantages of Biofuels.	
	Conversion of Wood, Sugar and starch crops into	
	biofuel, Hydrocarbon producing crops	
2.2	Biogas	3L
	Benefits, Stages of Anaerobic digestion, types of	
	digesters. factors affecting.	
2.3	Bioethanol, Biobutanol	2L
	Advantages of Bioethanol over Petrol	
	Production and Recovery of Bioethanol	
	Future directions for Research and Development	
2.4	Biodiesel:	1L
	Lipids as a source of Biodiesel	
	Biodiesel from hydrocarbons	
2.5	Biohydrogen:	2L
	Methods of production: (List of names of the	

Roues of production of Bio hydrogen,

methods)

Department: Microbiology

2.6	Anaerobic fermentation , Photosynthetic algae In-vitro photosynthetic hydrogenase system Microbial Fuel Cells Features and applications. Comparison among different types of Biosensors	2L
3	Microbial Bioremediation:	
	Learning Objectives:	L
	1) To define the concept of bioremediation and allied	terms.
	2) To describe different types of bioremediation.3) To be introduced to types and applications of Biose	ncore
	Learning Outcomes: After the successful completion of	
	learner will be able to:	r the module, the
	1) Describe different methods of bioremediation.	
	2) Appreciate the difference between in-sit bioremediation methods.	u and ex-situ
	3) Recognize the role of biosurfactants in bioremedia	ation.
	4) Represent the structural components of Biosensor	s and list different
	types.	
	5) State and describe the applications of Biosensors.	
2.1	6) Cite the characteristic features of biosensors	11
3.1.	Concept of Bioremediation and its significance:	1L
	Types- in-situ and ex-situ bioremediation.	
3.2.	Methods:	5L
J	Bioremediation of hydrocarbons, dyes, paper and	7-
	pulp industry, heavy metals, xenobiotics, common	
	pesticides, oil spills.	
3.3	Biofilters. Bioaugmentation and Bioventing	1L
	Role of Biosurfactants in bioremediation.	1L
3.4.	Biosensors:	4L
	Introduction and features	
	Schematic representation of components of a	
	Biosensor Types of Riosensors, Brief description of each type	
	Types of Biosensors: Brief description of each type.	

Department: Microbiology

Advantages of Biosensors	
Applications of Biosensors	

References:

- 1) Atlas RM and Bartha R. (2000). Microbial Ecology: Fundamentals & Applications. 4th edition. Benjamin/Cummings Science Publishing, USA.
- 2) Madigan MT, Martinko JM and Parker J. (2014). Brock Biology of Microorganisms. 14th edition. Pearson/Benjamin Cummings.
- 3) Maier RM, Pepper IL and Gerba CP. (2009). Environmental Microbiology. 2nd edition, Academic Press.
- 4) Okafor, N (2011). Environmental Microbiology of Aquatic & Waste systems. Ist edition, Springer, New York.
- 5) Singh A, Kuhad, RC & Ward OP (2009). Advances in Applied Bioremediation. Volume 17, Springer-Verlag, Berlin Hedeilberg.
- 6) Barton LL & Northup DE (2011). Microbial Ecology. Ist edition, Wiley Blackwell, USA Campbell RE. (1983). Microbial Ecology. Blackwell Scientific Publication, Oxford, England.
- 7) Coyne MS. (2001). Soil Microbiology: An Exploratory Approach. Delmar Thomson Learning.
- 8) Lynch JM & Hobbie JE. (1988). Microorganisms in Action: Concepts & Application in Microbial Ecology. Blackwell Scientific Publication, U.K.
- 9) Martin A. (1977). An Introduction to Soil Microbiology. 2nd edition. John Wiley & Sons Inc. New York & London.
- 10) Stolp H. (1988). Microbial Ecology: Organisms Habitats Activities. Cambridge University Press, Cambridge, England.
- II) Subba Rao NS. (1999). Soil Microbiology. 4th edition. Oxford & IBH Publishing Co. New Delhi.
- 12) Willey JM, Sherwood LM, and Woolverton CJ. (2013). Prescott's Microbiology. 9th edition. McGraw Hill Higher Education.
- 13) B. D. Singh, (2010). Biotechnology- Expanding Horizon, 3rd Revised Edition, Kalyani Publishers.
- 14) R.C. Dubey, A Text Book of Biotechnology.4th edition, S.Chand & Co Ltd, New Delhi
- 15) S. N. Jogdand, (1999). Advances in Biotechnology, 2nd Revised Edition, Himalaya Publishing House.

Evaluation Pattern: Theory

For course: DSE-I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with	Marks without
		Option	Option
1	I	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

Department: Microbiology

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER V - Practical

DSE Course-I

COURSE CODE: 20US5MBP3

[CREDITS - O1]

Experiment	Title	Number
Sr. no.		of hours
1.	Isolation and characterization of phosphate solubilising	04
	microorganisms.	
2.	Isolation and characterization of ligninolytic fungi.	04
3.	Isolation and characterization of chitinase producing	04
	microorganisms.	
4.	Enrichment, isolation and characterization of dye	06
	degrading microorganisms.	
5.	Study of Microbial fuel cell- Demonstration/ visit to an	06
	institute producing Biofuels.	
5.	Enrichment, isolation and characterization of phenol	06
	degrading microorganisms.	

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

- a) Rough Journal O5
- b) Fair Journal O5
- c) Viva-10

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER V

Discipline Specific Elective DSE-II

COURSE TITLE: Plant and Animal Biotechnology

COURSE CODE: 20US5MBFDM7

[CREDITS - O2]

Plant and Animal Biotechnology

Course Learning outcomes: After successful completion of the Course, the learner will be able to:

- 1) Demonstrate the set-up requirements of plant tissue culture laboratory and culture techniques.
- 2) Establish animal cell lines by tissue culture techniques.
- 3) Demonstrate different methods to get transgenic crops and their applications in getting resistant varieties.
- 4) Evaluate the concept of hybridoma technology and in vitro fertilization.

Module	TITLE AND CONTENT	NO OF		
		LECTURES		
1	Plant Tissue Culture:			
	Learning Objective:			
	1) The objective of the course is to familiarize the st	tudents with basic		
	concepts of plant biotechnology.			
	Learning outcome: By the end of the course, students will have			
	sufficient scientific understanding & will be able to:			
	1) Demonstrate various sterilization techniques	applied in plant		
	biotechnology laboratory and know the o	components and		
	preparation of media for tissue culture			
	2) Establish and maintain plant cells in tissue cultur	e and understand		
	culture of various plant organs.			
	3) Understand the significance and methods of pr	rotoplast isolation		
	and fusion.			

T R U S T

Department: Microbiology

1.1	Concepts of Cell theory & Cellular totipotency, Infrastructure & Organization of plant tissue culture	1L	
	laboratory – General & aseptic laboratory, different		
	work areas, equipments & instruments required.		
1.2	Aseptic techniques - Washing & preparation of	1L	
	glassware, packing & sterilization, media sterilization,		
	surface sterilization, aseptic workstation, precautions		
	to maintain aseptic conditions		
1.3	Culture Media – Nutritional requirements of the	2L	
1.)	explants, PGRs and their in vitro roles, media	ZL.	
	preparation		
		1L	
1.4	Response of explants in vitro-		
1.4 a	Dedifferentiation and redifferentiation		
1.4 b	Organogenesis (direct and indirect)		
1.4 c	Embryogenesis (direct and indirect)		
1.5	Callus sultura taskaisus latradustisa principle	21	
1.5	Callus culture technique– Introduction, principle, factors affecting, Morphology & internal structure	2L	
1.6	Suspension culture technique – Introduction,	1L	
1.0	principle, types, synchronization	1L	
1.7	Anther & pollen culture – Introduction, principle,	1L	
	factors affecting.		
1.8	Micropropogation	1L	
1.9	Protoplast isolation and fusion.(Somatic	1L	
	Hybridisation)		
1.10	Hydroponics and Aeroponics	1L	
2	Animal Tissue culture		
	Learning Objective :		
	1)Complete understanding of the science of Animal Tissue Culture, with		
	emphasis on their applications.		
	Learning Outcomes: By the end of the course, students will have		
	sufficient scientific understanding and will be able to:		
	I)Understand the basics of Animal tissue culture techniques.		

				-	
	Т	R	U	S	Т
T. Y	. B.	Sc.	Sv	llab	ous

	2)Understand the usefulness of in-vitro cell culture model for various			
	biological questions .			
	3)Know the preparation of media, assessment of cell growth.			
	4)Demonstrate the ability to establish and maintain animal cell lines in			
	culture and cryopreservation techniques			
2.1.a	Introduction: Comparison with microbial culture	2L		
2.1.b	Concept of monolayer, suspension, histotypic/			
	organotypic, organ culture. Precautions to avoid			
	contamination by bacteria, Mycoplasma and fungi.			
2.2	Equipment and infrastructure	2L		
2.2.a	Laboratory design			
2.2.b	Instruments used in ATC			
22.c	Labware: Types of Flasks			
2.3	Primary cell culture	3L		
2.3.a.	Source selection, different methods of establishing	7-		
	primary cell culture			
2.3.b.	Special reference to fibroblast culture and			
	lymphocyte culture			
2.4	Characterization of cell lines	3L		
2.4.a.	Need for characterization			
2.4.b	Karyotyping, biochemical & genetic characterization			
	of cell lines.			
2.5	Cell storage and distribution	2L		
2.5.a	Cryopreservation			
2.5.b	Cell repositories			
,				
3	Applications of Plant and Animal cell cultures.			
	Learning Objective:			
	1. The objective of the course is to familiarize the st	tudents with new		
	concepts and advanced research areas and applications of plant and			
	animal biotechnology.			
	Learning outcome:			
	By the end of the course, students will have su	ufficient scientific		

Department: Microbiology

	understanding & will be able to: 1.Understand the Growth and large Scale cultivati Animal cells. 2.Demonstrate different methods to get transgenic applications in getting resistant varieties. 3.Learn the concept of hybridoma technology and in and their applications.	crops and their
3.1	Transgenics in crop improvement	4L
3.1.a	Methods of gene transfer: Biologica I(Agrobacterium	
3.1.b	mediated) Chemical and physical methods.	
<i>)</i> .i.U	Resistance to biotic stresses: Insect resistance	
	Resistance to abiotic stresses, Herbicide resistance	
3.2	Terminator technology for use in hybrid seed	1L
J	production, Commercial transgenic crops. Gene	
	drives for vector control	
	In Vitro Fertilization & Transgenic Animals	5L
3.3	In vitro fertilization (IVF) in humans; embryo transfer	
	(ET) in humans; superovulation, IVF and embryo	
	culture in farm animals (e.g. cow); embryo transfer in	
	cattle, Gene transfer or transfection (using eggs and	
	cultured stem cells); targeted gene transfer;	
	transgenic animals. (mice). Cloning of animals-Dolly	
	sheep	
	Production of therapeutic proteins & vaccines using	2L
3.4	cell culture.	

Reference:

- 1) Plant tissue Culture: Theory and Practice by S.S. Bhojwani and M.K. Razdan, Elsevier, Amsterdam, 1996.
- 2) An Introduction to Plant Biotechnology by H. C. Chawla, Oxford and IBH,

- 2002. Gene Transfer to Plants by I.Potrykus and G. Spangenberg, Springer Lab Manual, Springer Verlag, 1997
- 3) R.C. Dubey, A Text Book of Biotechnology. S.Chand & Co Ltd, New Delhi
- 4) B. D. Singh, (2010). Biotechnology- Expanding Horizon, 3rd Revised Edition, Kalyani Publishers.
- 5) Culture of Animal Cells A manual of basic technique and specialized applications by R. I. Freshney, 6th edition, Wiley-Blackwell, 2010.
- 6) Basic Cell Culture by J. M. Davis, 2nd Edition, Oxford University Press, 2002.
- 7) Sudha Gangal, Animal Tissue culture. Second edition. University Press (India) Pvt. Ltd. Hyderabad.

Evaluation Pattern: Theory

For course: DSE-II

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks wit	n Marks without
		Option	Option
1	I	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER V - Practical

DSE Course-II

COURSE CODE: 2OUS5MBP3

[CREDITS - O1]

Experiment	Title and Number of Credits	Number
Sr. no.		of hours
1.	MS media preparation.	4
2.	Establishment and maintenance of callus culture.	4
3.	Preparation of Artificial seeds.	4
4.	Viability test and cell counting	3
5.	Case study on transgenic animals and transgenic plants.	7
6.	Culture of chick embryo fibroblast (monolayer)-Visit	8
	Visit to Hydroponics facility.	

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 10 marks

a) Fair Journal - O5

b) Viva- O5

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER V

SEC - I

COURSE TITLE: FOOD AND DAIRY MICROBIOLOGY

COURSE CODE: 20US5MBFDM7

[CREDITS - O2]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Formulate the synthesis process of various fermented dairy products.
- 2) Explain the concepts of Probiotics, Nutraceuticals and SCP.
- 3) Differentiate between different types of foodborne disease-causing microorganisms.

Module	TITLE AND CONTENT	NO OF		
		LECTURES		
1	Commercial Foods :			
	Learning objective :			
	1) Gain knowledge about the role of microorganism	s in fermentation		
	industry			
	2) Impart the current knowledge of probiotics and	functional dairy		
	products for health benefits.			
	Learning outcome : After the completion of module,	the learner will be		
	able to:			
	1)State the significance of starter cultures in food industry			
	2)Understand the preparation of fermented products			
	3)Employ the microorganisms as Probiotics and Nutraceuticals			
1.1.a	Dairy starter cultures,	2L		
1.1.b	Fermented dairy products: yoghurt, tofu, dahi,	6L		
1.1.c	cheese.	5L		
1.1.d	Other fermented foods: Idli, dosa, kombucha, green			
	tea			
1.1.e	Probiotics: Health benefits, types of microorganisms	1L		
	used, probiotic foods available in market and			
	nutraceuticals.			

Department: Microbiology

	Single cell protein.		
2.	Food borne diseases		
	Learning objective:		
	1) Provide the information on food spoilage organism	ns	
	2) Understanding the causes of food borne diseases		
	Learning outcome: After learning the module learner	should be able to:	
	1) Differentiate between different types of	food spoilage	
	microorganisms causing different types of food borne disease		
	2) Review and analyse various preservation strategies for food to		
	prevent food spoilage disease		
2.1.a.	Food intoxications: Staphylococcus aureus,	2L	
2.1.b.	Clostridium botulinum	2L	
2.1.c.	Mycotoxins,	2L	
2.1.d.	Shigellosis,	2L	
2.1.e.	Salmonellosis	2L	
2.1.f.	Entamoeba histolytica , Hepatitis E, Giardia lamblia	2L	
2.1.g.	Yersinia enterocolitica,	1L	
2.1.h.	Listeria monocytogenes	1L	

References:

- 1) Adams MR and Moss MO. (1995). Food Microbiology. 4th edition, New Age International (P) Limited Publishers, New Delhi, India.
- 2) Banwart JM. (1987). Basic Food Microbiology. Ist edition. CBS Publishers and Distributors, Delhi, India.
- 3) Davidson PM and Brannen AL. (1993). Antimicrobials in Foods. Marcel Dekker, New York.
- 4) Dillion VM and Board RG. (1996). Natural Antimicrobial Systems and Food Preservation. CAB International, Wallingford, Oxon.
- 5) Frazier WC and Westhoff DC. (1992). Food Microbiology. 3rd edition. Tata McGraw-Hill Publishing Company Ltd, New Delhi, India.
- 6) Gould GW. (1995). New Methods of Food Preservation. Blackie Academic and Professional, London
- 7) Jay JM, Loessner MJ and Golden DA. (2005). Modern Food Microbiology. 7th edition, CBS Publishers and Distributors, Delhi, India.
- 8) Lund BM, Baird Parker AC, and Gould GW. (2000). The Microbiological Safety and Quality of Foods. Vol. 1-2, ASPEN Publication, Gaithersberg, MD.

9) Tortora GJ, Funke BR, and Case CL. (2008). Microbiology: An Introduction. 9th edition. Pearson Education.

Evaluation Pattern: Theory

For course: SEC -I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks	with	Marks	without
		Option		Option	
1	I	40		30)
2	II	40		30)

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER V - Practical

SEC Course-I

COURSE CODE:20US5MBFDM7

[CREDITS - O.5]

Experiment	Title and Number of Credits	Number
Sr. no.		of hours
1.	Preparation of Idli batter, Determination of Microbial	4
	load	
2.	Testing of acidity from idli batter	2
3.	Isolation of Lactic acid bacteria	2
4.	Isolation of spoilage causing microorganisms from milk,	7
	cheese and yoghurt.	

Evaluation pattern: Practical (40M)

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 10 marks

- a) Fair Journal O5
- b) Viva- O5

Department: Microbiology

Syllabus -T.Y.B.Sc. Microbiology

Semeste Cours Course Title rse ts ts Sound Modul res Sound Mod
VI Numb er cod e (50 min) e (50 MIN UTES) Inte rnal er a Mar nal ks Mark ark s Numb (MIN UTES) Numb (MIN UTES) Numb (MIN UTES)
er
UTES UTES Inte Ext Trnal er a Mar nal ks M ks M ks ms of US6 S S S S S S S S S
Intermal Ext Trail er a Mar nal ks M k ark s
THEORY
Mar nal Nar ks Mar ks Mar ks Mar ks Mark Mark ks Mark ks M
THEORY Core courses
THEORY Core courses I Mechanis 20 2 30 36 3 12 40 60 10 ms of US6
THEORY Core courses Mechanis 20 2 30 36 3 12 40 60 10 10 10 10 10 10 1
THEORY Core courses I Mechanis 20 2 30 36 3 12 40 60 10 10 10 10 10 10 1
Core courses I Mechanis of US6 20 2 30 36 3 12 40 60 10 10 10 10 10 10 1
Mechanis 20 2 30 36 3 12 40 60 10 10 10 10 10 10 1
ms of US6
Exchange, MG
Mutation MC
and Repair 1
II Medical 20 2 30 36 3 12 40 60 10
Microbiolo US6
gy and MB
Immunolo M
gy-II MI
III Microbial 20 2 30 36 3 12 40 60 10
Biochemist US6
ry-II MB
MB MB
C3
IV Bioprocess 20 2 30 36 3 12 40 60 10
Technolog US6
y- MB
Downstrea BPT
m C4

Somanja TRUST

Department: Microbiology

T. Y. B.Sc. Syllabus

	I		_	T	<u> </u>			ı	T	ı	
		Processing									
		and									
		Fermentati									
		ons									
Discipline	Spec	ific Electives									
DSE	I	Recombin	20U	2	30	36	3	12	40	60	100
		ant DNA	S6M								
		Technolog	BRD								
		y and	V5								
		Advanced									
		Virology									
	II	Advances	20U	2	30	36	3	12	40	60	100
		in	S6M								
		Immunolo	BAI								
		gy and	M6								
		Medical									
		Microbiol									
		ogy									
	III	Research		2	30	36			40	60	100
	(OP	Project									
	TIO										
	NA										
	L)										
Skill Enha	nceme	ent Electives									
SEC **	I	Advanc	20U	1.5	23	28	2	14		60	60
		es in	S6M								
		Microbi	BA								
		al	MT								
		Techniq	7								
		ues									
PRACTICA	ALS										
CORE CO	URSES	S									
	I	Mechan	20U	1	2	2.4			20	30	50
		isms of	S6M								
		Genetic	BP1								
		Exchang									
		eMutati									
1		<u> </u>									

T. Y. B.Sc. Syllabus

	1	ı	ı	ı			1		1
Repair									
Medical	20U	1	2	2.4			20	30	50
Microbi	S6M								
ology	BP1								
and									
Immuno									
logy-II									
Microbi	20U	1	2	2.4			20	30	50
al	S6M								
Bioche	BP2								
mistry-II									
' Bioproc	20U	1	2	2.4			20	30	50
ess	S6M								
Technol	BP2								
ogy-									
Downstr									
eam									
Processi									
ng and									
Ferment									
atations									
	Medical Microbi ology and Immuno logy-II Microbi al Bioche mistry-II Bioproc ess Technol ogy- Downstr eam Processi ng and Ferment	Repair Medical 2OU Microbi S6M ology BPI and Immuno logy-II Microbi 2OU al S6M Bioche BP2 mistry-II Bioproc 2OU ess S6M Technol BP2 ogy- Downstr eam Processi ng and Ferment	Repair Medical 2OU 1 Microbi S6M ology BPI and Immuno logy-II Microbi 2OU 1 al S6M Bioche BP2 mistry-II Bioproc 2OU 1 ess S6M Technol BP2 ogy- Downstr eam Processi ng and Ferment	Repair Medical 2OU 1 2 Microbi S6M ology BPI and Immuno logy-II Microbi 2OU 1 2 al S6M Bioche BP2 mistry-II Bioproc 2OU 1 2 ess S6M Technol BP2 ogy- Downstr eam Processi ng and Ferment	Repair Medical 2OU 1 2 2.4 Microbi S6M ology BPI and Immuno logy-II Microbi 2OU 1 2 2.4 al S6M Bioche BP2 mistry-II Bioproc 2OU 1 2 2.4 ess S6M Technol BP2 ogy-Downstr eam Processi ng and Ferment	Repair Medical 2OU 1 2 2.4 Microbi S6M ology BPI and Immuno logy-II Microbi 2OU 1 2 2.4 al S6M Bioche BP2 mistry-II Bioproc 2OU 1 2 2.4 ess S6M Technol BP2 ogy- Downstr eam Processi ng and Ferment	Repair	Repair Medical 2OU I 2 2.4 Microbi S6M ology and Immuno logy-II Microbi 2OU I 2 2.4 Microbi 8P2 mistry-II Bioproc 2OU I 2 2.4 Process S6M Technol BP2 ogy-Downstr eam Processi ng and Ferment	Repair Medical 2OU I 2 2.4 Microbi S6M ology and Immuno logy-II Microbi 2OU I 2 2.4 Microbi 8P2 mistry-II Bioproc 2OU I 2 2.4 Bioproc 2OU I 2 2 2.4 Bioproc 2OU I 30 ess S6M Technol BP2 ogy- Downstr eam Processi ng and Ferment

Discipline	Discipline Specific Electives										
DSE	I	Recom	20U	1	2	2.4			20	30	50
		binant	S6M								
		DNA	BP3								
		Techno									
		logy									
		and									
		Advanc									
		ed									
		Virolog									
		У									
	II	Advanc	20U	1	2	2.4			20	30	50

T. Y. B.Sc. Syllabus

		es in	S6M							
		Immun	BP3							
		ology								
		and								
		Medic								
		al								
		Microb								
		iology								
	III	Resear		1	2	2.4		20	30	50
		ch								
		Project								
Skill Enha	ncement	Electives								
SEC		Advanc	20U	0.5	1	1.2		10	30	40
		es in	S6M							
		Microb	BA							
		ial	MT							
		Techni	7							
		ques					_			
TOTAL				20						

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER VI

Course - I

COURSE TITLE: Mechanisms of Genetic Exchange, Mutation and

Repair.

COURSE CODE: 20US6MBMGMCI

[CREDITS - O2]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Summarize the molecular mechanisms of Transformation, Conjugation and Transduction.
- 2) Compare and contrast natural and artificial transformation.
- 3) Describe the molecular machinery and mechanisms associated with plasmids, transposable elements and recombination.
- 4) Describe the molecular mechanisms of different mutations.

Module	TITLE AND CONTENT	NO OF					
		LECTURES					
1	Genetic Exchange:						
	Learning Objectives:						
	1) To describe the molecular mechanisms of Transformation, Conjugation and Transduction.						
	2) To list the different proteins involved in the opposesses.	genetic exchange					
	3) To investigate the role of F plasmid in conjugation.						
	Learning Outcomes: After the successful completion of the module,						
	the learner will be able to:						
	1) Summarize the hierarchy of the steps involved in processes.	genetic exchange					
	2) Compare and contrast natural and artificial transfor	mation.					
	3) Illustrate the steps to induce artificial transformation	n.					
	4) Apply the conjugation process to map the bacterial	genes.					

T R U S T

	Differentiate between the generalized and specialised transduction.				
1.1	Genetic Exchange:	4L			
	Gene transfer mechanisms in bacteria				
1.1.a	Transformation:				
	i. Introduction and History				
	ii. Types of transformation in prokaryotes-Natural				
	transformation in <i>Streptococcus pneumoniae</i> ,				
	Haemophilus influenzae, and				
	Bacillus subtilis				
	iii. Mapping of bacterial genes using transformation.				
	iv. Problems based on transformation.				
1.1.b	Conjugation:	4L			
	i. Discovery of conjugation in bacteria				
	(Lederberg and Tatum experiment).				
	ii. Properties of F plasmid/Sex factor.				
	iii. The conjugation machinery.				
	iv. Hfr strains, their formation and mechanism of				
	conjugation.				
	v. F' factor, origin and behaviour of F' strains, Sexduction.				
	vi. Mapping of bacterial genes using conjugation				
	(Interrupted mating experiment).				
	vii. Problems based on conjugation.				
1.1.c	Transduction:	4L			
	i. Introduction and discovery.				
	ii. Generalized transduction.				
	iii. Use of Generalized transduction for mapping				
	genes.				
	iv. Specialized transduction.				
	v. Problems based on transduction.				
2	Plasmids, Transposons and Recombinantion				
	Learning Objectives:				
	1) To illustrate the steps in plasmid DNA extraction	n and separation.			
	2) To characterize the different types of plasmids.				
	3) To describe the different types of transposons.				
	4) To investigate the processes of transposition and	d recombination.			

Department: Microbiology

Departme	ent: Microbiology	T. Y. B.Sc. Sylla
	Learning Outcomes: After the successful completion of	of the module, the
	learner will be able to:	
	1) Summarize the steps and investigate the us	e of reagents in
	plasmid DNA extraction and separation.	
	2) Present an outline of the process of conjugative	e plasmids.
	3) Identify the role of different types of plasmids.	
	 Compare and contrast between composite ar transposons. 	nd non-composite
	5) Schematically represent and describe tr	ransposition and
	recombination.	
2.1. a	Plasmids:	
	Physical nature of plasmids:	2L
	Modular organization and types of plasmid.	
	Detection and isolation of plasmids.	
	Separation methods on the bases of size and	2L
	conformation of plasmid DNA.	
	Introduction to Plasmid incompatibility and Plasmid	
	curing.	
	Cell to cell transfer of plasmids	
	Types and features of following plasmids	2L
	i. Resistance Plasmids	
	ii. Plasmids encoding Toxins and other Virulence	
	characteristics	
	iii. Col factor	
	iv. Degradative plasmids	
	v. Metabolic plasmids	
2.1.b	Transposable Elements in Prokaryotes:	2L
	Insertion sequences.	
	Transposons.	
	i. Types: Composite and non-composite with one	
	example each.	
	Structure and properties.	
	iii. General mechanism of integration of plasmids	2L
	into chromosome.	
	iv. Mechanism for Co-integrate formation for	

replicative transposition.

	Decembination in bacteria					
2.2	Recombination in bacteria:	11				
2.2.	General/Homologous recombination:	1L				
	Molecular mechanism of following models:					
	i. Holliday model of recombination.					
	ii. DSB (Double Strand Break) model of					
	recombination.					
	iii .Conservative Site –specific recombination-CSSR					
	iv. Introduction to Insertion, Inversion and Deletion					
	types of CSSR					
	v. Introduction to Integrons	1L				
3	Mutation and Repair					
	Learning Objectives:					
	1) To define mutation and its different types.					
	2) To determine the causative molecular mechanism	ms for different				
	mutations.					
	3) To detect the mutants.					
	4) To state different types of repair mechanisms for DNA.					
	Learning Outcomes: After the successful completion of the module, the					
	learner will be able to:	,				
	State the role of mutation in evolution.					
	2) List different types and agents of mutation.					
	3) Apply the Replica plate method to determine	the number of				
	mutants.	the number of				
	4) Perform viable count to determine number of viable	a cells				
	5) Tabulate different repair mechanisms for DNA.	. cens.				
	7) Tabulate different repair mechanisms for DNA.					
3.1.	Mutation and Repair					
3.1.a	Mutation	2L				
	Terminology: alleles, homozygous, heterozygous					
	genotype, phenotype, Somatic mutation, Germ-line					
	mutation,					
	Gene mutation, Chromosome Mutation, phenotypic					
3.1.b	lag, hotspots and mutator genes.					
7.1.0	lag, noupous una matator genes.					
3.1.c.	Fluctuation test (Adaptation versus Mutation theory)	1L				

Department: Microbiology

3.1.d.	Types of mutations: Point mutation, reverse mutation, suppressor mutation, frame shift mutation, conditional lethal mutation, base pair substitution, transition, trans version, missense mutation, nonsense mutation, silent mutation, neutral mutation, pleiotropic mutation.	3L
3.l.e	Causes of mutations: Natural/spontaneous mutation-DNA replication error, depurination, deamination.	2L
3.1.f.	Induced mutation: principle and mechanism with illustrative diagrams for: i. Chemical mutagens- base analogues, nitrous acid, hydroxyl amine, NTG. ii. Intercalating agents and alkylating agents. iii. Radiations- Ionizing and Non-ionizing radiations. iv. Environmental mutagens- Ames Test.	2L 1L
3.2.	Detection of mutants – Visible mutants, Nutritional mutants, Conditional mutants, Resistant mutants. DNA Repair –list different types (Tabulation)	1L

References:

- 1) Peter J. Russell (2006), —iGenetics-A molecular approach, 2nd edition.
- 2) Benjamin A. Pierce (2008), —Genetics a conceptual approachll, 3rd ed., W. H. Freeman and company.
- 3) R. H. Tamarin, (2004), —Principles of genetics, Tata McGraw Hill.
- 4) M.Madigan, J.Martinko, J.Parkar, (2009), —Brock Biology of microorganisms II, 12th edition, Pearson Education International.
- 5) Fairbanks and Anderson, (1999), —Genetics, Wadsworth Publishing Company.
- 6) Prescott, Harley and Klein, —Microbiologyll, 7th edition McGraw Hill international edition.
- 7) Edward Wagner and Martinez Hewlett, (2005) —Basic Virologyll, 2nd edition, Blackwell Publishing.

- 8) Teri Shors, (2009), —Understanding viruses, Jones and Bartlett publishers.
- 9) Robert Weaver, —Molecular biologyll, 3rd edition. McGraw Hill international edition. IO.Primrose and Twyman, —Principles of gene manipulation and genomicsll, 7thed, Blackwell Publishing.
- 10) Nancy Trun and Jaine Trempy (2004), —Fundamental bacterial genetics Blackwell Publishing.
- 11) D Nelson and M Cox, (2005) —Lehninger Principles of Biochemistryll, 4th edition Macmillan worth Publishers.
- 12) Benjamin Lewin,—Genes IXII, , Jones and Bartlett publishers.
- 13) JD Watson, —Molecular biology of the genell, 5th edition.
- 14) Snustad, Simmons, —Principles of genetics, 3rd edition. John Wiley & sons, Inc.

Evaluation Pattern: Theory

For course I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks wit	h Marks without
		Option	Option
1	I	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER VI - Practical

Course-I

COURSE CODE: 20US6MBPI

[CREDITS - O1]

Experiment	Titles and Number of Credits	Number
Sr.No.		of hours
1.	Preparation of competent cells and transformation	04
2.	Genetics problems on Transformation, Conjugation	05
	and Transduction.	
3.	UV survival curve – determination of exposure time	08
	leading to 90% reduction	
4.	Isolation of mutants using UV mutagenesis	08
5.	Replica plate technique for selection &	05
	characterization of mutants auxotroph & antibiotic	
	resistant	

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

a) Rough Journal – O5

b) Fair Journal - O5

c) Viva-10

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER VI

Course - II

COURSE TITLE: Medical Microbiology and Immunology

COURSE CODE: 20US6MBMMIC2

[CREDITS - O2]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Categorize the virulence properties, pathogenesis, immunology and control measures associated with various pathogens of GI tract and Skin.
- 2) Categorize the virulence properties, pathogenesis, immunology and control measures associated with various pathogens of CNS and STD.
- 3) Discuss arthropod-borne diseases and emerging viral infections.
- 4) Summarize the ontogeny, differentiation and killing mechanism associated with T cell and B cell.

Module	TITLE AND CONTENT	NO OF	
		LECTURES	
1	MEDICAL MICROBIOLOGY		
	Learning objective:		
	To enable the learner to understand:		
	1) The etiological agents, their transmission and path	ogenesis,	
	2) The Clinical Manifestations of the infections and the Laboratory		
	Diagnostic procedures		
	3) The prophylactic measures and available treatmen	t.	
	Learning outcome:		
	By the end of this course learners will be able to:		
	1) Differentiate and categorize the types of Gast	trointestinal tract	
	infections and Skin infections		
	2) Understand the virulence properties of pa	thogens causing	
	Gastrointestinal tract infections and Skin infections		

	All infections are to be covered with respect to all	
	details with emphasis on Etiology, Transmission,	
	Pathogenesis, Clinical Manifestations, Lab Diagnosis,	
	Prophylaxis, and Treatment.	
1.1.	GI (Gastrointestinal Tract Infections)	2L
1.1.a.	Salmonella	1L
1.1.b.	Shigella	1L
1.1.c	Hepatitis A	1L
1.1.d	Entamoeba histolytica	2L
1.1.e	Food Poisoning: Botulism, Staphylococcal	
1.2.	Skin Infections	
1.2.a	Pyogenic Streptococcal infections	2L
1.2.b	Pseudomonas	1L
1.2.c	Opportunistic diseases: Aspergillosis, Candidiasis	2L
2	MEDICAL MICROBIOLOGY	
	Learning objective:	
	To enable the learner to understand:	
	1) The etiological agents, their transmission and path	nogenesis,
	2) The Clinical Manifestations of the infections an	d the Laboratory
	Diagnostic procedures	
	3) The prophylactic measures and available treatmer	nt.
	Learning outcome:	
	By the end of this course learners will be able to:	
	1) Understand the challenges of Sexually tran	smitted Diseases,
	Central nervous System infections and Emerging of	liseases
	2) Understand the virulence properties as well as con	ntrolling measures
	of pathogens causing the Sexually transmitted	Diseases, Central
	nervous System infections and Emerging diseases	
	All infections are to be covered with respect to all	
	details with emphasis on Etiology, Transmission,	
	Pathogenesis, Clinical Manifestations, Lab Diagnosis,	
	Prophylaxis, and Treatment	
2.1.	Sexually Transmitted Diseases	4L
2.1.a	HIV infection	
2.1.b.	Syphilis	

2.1.c.	Gonorrhoea	
2.2.	CNS (Central Nervous System Infections)	3L
2.2.a.	Rabies)-
2.2.b.	Bacterial Meningitis- Neisseria meningitidis	
2.3	Arthropod vector borne infections:	2L
2.3.a	Malaria , Dengue	
2.4	Emerging and re-emerging infections:	3L
	SARS, Zika, Nipah Virus.	
3	Components of immune system and their role in Immu	une response
	Learning Objective:	
	1) To describe how T cells and B cells are general	ted from primary
	lymphoid organs.	
	2) To describe the effector mechanism of T cells and	I B cells
	Learning Outcome:	
	After successful completion of the module, the learner	
	1) Explain generation of T cells and B cells from	primary lymphoid
	organs.	
	2) Describe and diagrammatically represent effecto	r mechanism of I
2.1	cells and B cells.	
3.1.	T cell	3L
3.1.a	Receptor, structure, organization	
3.1.b.	T cell development and maturation , positive,	
	negative selection T cell activation and	
2.2	differentiation	21
3.2	Cell mediated effector response	3L
3.2.a	Generation and target destruction by cytotoxic T	
2.2.1	cells	
3.2.b.	Kill mechanism of NK cells	21
3.2.c.	Antibody dependent cell cytotoxicity	3L
3.3	B cell	
3.3.a	Receptor, structure and organization	
3.3.b	B cell development and maturation	
3.3.c	B cell activation and differentiation	21
2.4	Hama and assessment	3L
3.4.	Humoral response	
3.4.a.	Induction of humoral response, Primary and	

Department: Microbiology

	secondary immune response.
3.4b	Germinal centres and antigen induced B cell
	differentiation

References:

- 1) Ananthanarayan and Paniker, (2009), —Textbook of Microbiology, 8th Edition. Universal Press
- 2) Cedric Mims et al, Medical Microbiology, 3rd Edition Mosby
- 3) Prescott, Harley, Klein, —Microbiology. 6th Edition McGraw Hill
- 4) Konemann, —Diagnostic Microbiology, 5th and 6th Edition. Lippincott
- 5) Teri Shors Jones —Understanding Viruses Bartlett Publisher
- 6) Thomas J. Kindt, Richard A. G, Barbara A. Osburne (2007) Kuby Immunology: W. H. Freeman and Company, New York.
- 7) FahimHalim Khan, —The elements of Immunology, Pearson Education.33
- 8) Pathak, S., Palan U, —Immunology Essential and Fundamental. Pareen publications, Bombay.
- 9) Ian R. Tizard —Immunology, An Introduction, 4th Edition, Saunders college publishing.

Evaluation Pattern: Theory

For course II

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with	Marks without
		Option	Option
1	I	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable of	options:
-------------	----------

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER VI - Practical

Course-II

COURSE CODE: 20US6MBPI

[CREDITS - O1]

Experiment	Title and Number of Credits	Number of
Sr. no.		hours
1.	Schematic /diagrammatic representation of each system/condition as per the theory syllabus (Gastrointestinal, Central Nervous system, Bacteremia)	2
2.	Diagnostic Cycle of any one infection of each of the above systems (viz GIT, CNS and Bacteremia.)	I
3.	Samples of various forms/procedures used for diagnostic tests - Request forms, Test reports.	1
4.	(Results, Panic report, alert report) to be drawn or attached in the journal.	1
5.	Tabulation of: Types of samples, containers, specimens, with reference to the symptoms/ infections	1
6.	Transport media with reference to samples/suspected pathogen. Collection and Processing of samples in various infections.	1
7.	Primary isolation of suspected pathogens in different	3

T. Y. B.Sc. Syllabus

	infections with reference to pathological sample.	
8.	Rapid tests for identification of pathogens e.g. staining).	2
9.	Minimum biochemical media for identification of the pathogens listed in the syllabus i.e.Salmonella,Shigella	4
10.	List of samples to be used with the above: i.GIT. ii.CNS iii.Bacteremia	1
11.	Case study and problem solving for identification of the pathogen with reference to each ofthe infections (Include approach writing, suspected organisms, requirements for the identification tests and their justification rapid tests)	13

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks (proposed)

- a) Rough Journal O5
- b) Fair Journal O5

c) Viva-10

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER VI

Course - III

COURSE TITLE: Microbial Biochemistry-II

COURSE CODE: 20US6MBMBC3

[CREDITS - O2]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Explain the metabolic pathways of nucleic-acids, proteins and catabolic pathways of lipids.
- 2) Evaluate the different regulatory mechanisms for metabolic pathways of a living cell.
- 3) Describe the anabolic processes for carbohydrates with detailed study of bacterial photosynthesis.

Module	TITLE AND CONTENT	NO OF
		LECTURES
1	Metabolism of Nucleic-acids, Proteins and catabolism of Lipids:	
	Learning Objectives:	
	1) To describe the metabolic pathways of Nucleic-	acids, proteins and
	catabolic pathways of lipids	
	Learning Outcomes : After the successful completi	on of the module,
	the learner will be able to:	
	1)List different proteolytic enzymes and state their me	ode of action.
	2) State the metabolic precursors of amino acids.	
	3) Discuss the metabolic fate of various amino acids	
	4) Differentiate between glucogenic and ketogenic a	amino acids.
	5) Compare pathways for fermentation of single acids.	and pair of amino
	6) List amino acids of all families.	
	7) Schematically explain the synthesis of serine famile	у.
	8) Describe the catabolism of nucleotides.	,
	9) Recognize the significance of de-novo and sal- nucleotide biosynthesis.	vage pathways for

T R U S T

	10) Describe the synthesis of ribonucleotides and deoxyrit	onucleotides
1.1	Catabolism of proteins:	
1.1.a.	Enzymatic degradation of proteins.	1L
	Metabolic fate of amino acids (schematic only)	
1.1.b.	glucogenic and ketogenic amino acids.	
	Metabolism of single amino acids -Deamination,	1L
1.1.c.	decarboxylation, and transamination	
	Fermentation of single amino acids:	1L
1.1d	Glutamate by <i>Clostridium tetanomorphum</i>	
	Fermentation of pair of amino acids (Stickland	
	reaction).	
1.2	Anabolism of proteins:	2L
	Schematic representation of amino acid families	
	Synthesis of amino acids of Serine family- Examples –	
	serine, cysteine, glycine.	
1.3.	Catabolism of nucleotides:	3L
	Degradation of purine nucleotides up to uric acid	
	formation.	
	Recycling of purines and pyrimidines nucleotides by	
	salvage pathway	
1.4.	Anabolism of nucleotides:	2L
	Synthesis of ribonucleotides and	
	deoxyribonucleotides	
1.5		2L
	Catabolism of Lipids: Beta oxidation and energetics	
	of palmitic acid	
	Omega oxidation.	
2	Metabolic Regulation:	
	Learning Objectives:	
	To understand, analyse and appreciate the regulati ordination between metabolic pathways.	on of and co-

	To familiarize with basic concepts of different ty mechanisms acting at various cellular levels.	pes of regulatory	
	Learning Outcomes: After the successful completion of the module, the learner will be able to:		
	Define various terms associated with cellular regul	ation.	
	2) Describe significance of allosteric proteins and e specific example of ATCase.	enzymes with the	
	3) Explain the concept of operons with the example	of the lac operon	
	4) List and compare the various end-product inhibition	ons	
	5) Explain types of covalent modifications with des	tails of glutamine	
	6) Discuss regulation by proteolytic cleavage with ex	amples.	
2.1	Cellular control mechanism acting at various levels of metabolism (tabulation only)	1L	
	Concepts of Repression and Induction, inhibition and activation, house-keeping genes.		
2.2.	Allosteric proteins –role as enzymes (ATCase) and regulatory proteins (Lac repressor, CAP).	2L	
2.3.	Regulation of gene expression- Introduction to operon model and positive and negative regulation of operons: By DNA binding proteins eg. Lac operon, lactose utilization, Catabolite repression	2L	
	By multiple sigma factors ,		
	Terms: specificity factors, enhancers and activators.		
2.4.	Regulation of enzyme activity (Enzyme inhibition /activation)	2L	
	Mechanism of End-Product Inhibition	1L	
2.5.	End-Product Inhibition in branched pathways-Iso-		
	functional enzymes, Concerted, Sequential,	1L	

	Cumulative, Combined activation and inhibition.				
2.6	Covalent modification of regulatory enzymes –	1L			
	Types.	11			
2.7	Glutamine synthetase system of <i>E. coli</i> in detail	1L			
2.7	Regulation by proteolytic cleavage				
2.8	Regulation of EMP & TCA.	1L			
3	Anabolism of carbohydrates				
	Learning Objectives:				
	To learn concepts of photosynthesis in different groups bacteria.				
	2) To study light-dependent and light-independent reactions in bacteria.				
	3) To describe bacterial cell wall and glycog	gen synthesis in			
	prokaryotes and eukaryotes.	gen synthesis in			
	4) To describe gluconeogenesis and its role in metabolism				
	i) To describe glacoricogenesis and its role in include issue				
	Learning Outcomes: After the successful completion of the module, the				
	learner will be able to:				
	1) List and describe features of various photosynthetic bacteria.				
	2) Describe photosynthetic apparatus and light reactions				
	3) Compare cyclic and noncyclic photophosphorylation.				
	4) Differentiate between photosynthetic systems in green bacteria, purple bacteria and cyanobacteria.				
	5) Discuss Calvin Benson and reductive TCA cycles in detail with schematic representation and differentiate between the two.				
	6) Describe the biosynthesis of bacterial cell-wall and glycogen in prokaryotes and eukaryotes.				
	7) Interpret different bypass reactions in gluconeogenesis.				
	8) Evaluate the biochemical significance of gluconeogenesis.				
3.1.	Anabolism of glucose: Prokaryotic photosynthesis:	4L			
3.l.a.	The phototrophic prokaryotes (Oxygenic				

Department: Microbiology

	phototrophs, Anoxygenic phototrophs examples	
	only)	
3.1.b.	Photosynthetic pigments and photosynthetic	
	apparatus	
3.1.c.	Light reactions of purple photosynthetic bacteria,	
	green sulphur bacteria (only schematic) and	
	cyanobacteria (with details)	
3.1.d.	Dark reaction: Calvin Benson cycle and reductive-	2L
	TCA	
3.2.	Anabolism of Carbohydrate polymers:	
3.2.a	Gluconeogenesis	2L
3.2.b	Biosynthesis of glycogen in prokaryotes and	2L
	eukaryotes.	
3.2.c	Biosynthesis of Peptidoglycan	2L

References:

- 1) Stanier R.Y., Ingraham, J.L., Wheelis, M.L., Painter, R.R (1987) General Microbiology, 5th edition, The Macmillan press Ltd.
- 2) Conn, Stumpf, P. K., Bruening, G. R. H. (1987) Outlines of Biochemistry, 5thedition, John Wiley and Sons.
- 3) Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag
- 4) White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rdedition, Oxford University Press
- 5) Nelson, D, Cox, M, (2005), Lehninger Principles of biochemistry,4th edition, W. H. Freeman and Company
- 6) Voet, D & Voet, J. G., (2004), Biochemistry, 3rd edition, John Wiley& Sons Inc
- 7) Zubey, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers.

Evaluation Pattern: Theory

For course III

External Evaluation – Semester End Examination (60 M) – Duration: 2 hours Paper Pattern

Ī	Question No	Module	Marks with Option	Marks without Option	
Ī	1	I	30	20	
Ī	2	II	30	20	

т	V	R	Sc	S۱	/lla	bus
	. 1	. D	·JC	. 31	/IIc	มมนะ

3 111 30 20

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

Department: Microbiology

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER VI - Practical

Course-III

COURSE CODE: 20US6MBP2

[CREDITS - O1]

Experiment	Titles and Number of Credits	Number
Sr. No.		of hours
1.	Detection of lysine decarboxylase enzyme	2
2.	Estimation of chlorophyll in cells	5
3.	Estimation of carotenes in cells	5
4	Estimation of β -galactosidase activity in induced and	5
	non-induced cells of E. coli	
5.	To study catabolite repression in <i>E.coli</i> by diauxic growth	5
	curve.	
6.	Protein estimation by Lowry's method	4
7.	Estimation of uric acid	2
8.	Staining of glycogen granules	2

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

- a) Rough Journal O5
- b) Fair Journal O5
- c) Viva-10

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER VI

Course - IV

COURSE TITLE: Bioprocess Technology- Downstream Processing and

Fermentations

COURSE CODE: 20US6MBBPTC4

[CREDITS - O2]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- 1) Predict the use of downstream processes for efficient recovery of fermentation products.
- 2) Validate the purity of the product and the process steps.
- 3) Plan a logical flow for treatment of Industrial wastes.
- 4) Identify and describe the production of important microbial fermentation products.

Module	TITLE AND CONTENT	NO OF
		LECTURES
1.	Recovery and Purification of Fermentation products:	
	Learning Objectives: The objectives of this unit are:	
	 Understanding the principle of methods employees recovery 	oyed for product
	2) Exploring the different processes in relation to t isolated	he product to be
	3) Formulating an appropriate plan for produce purification	ct recovery and
	Learning Outcomes: After the successful completion o	of the module, the
	learner will be able to:	
	1) Analyze the criteria and choose the recovery proce	esses
	2) Formulate the steps in the recovery of the given in	microbial product
	based on its physical, chemical and biological chara	acteristics
	 Logically integrate and plan the downstream proc with respect to a product 	cesses in sequence

	2	לטכ	MG	7	
	Т	R	U	S	Т
T. Y	. B.	Sc.	Sv	llat	ous

	Recovery and Purification of Fermentation products:	
1.1.	Criteria for choice of recovery process	1L
1.2.	Biomass separation from fermentation media	3L
1.2.a.	Foam Separation	
1.2.b.	Precipitation	
1.2.c.	Filtration, filter aids, plate-frame and rotary vacuum	
	filters	
1.2.d.	Centrifugation - Cell aggregation and flocculation,	
	Range of centrifuges	
1.3.	Cell Disruption for intracellular products	2L
1.3.a	Physico-mechanical methods	
1.3.b	Chemical methods	
1.4.	Liquid -liquid extraction, Solvent recovery, Two	1L
	phase aqueous extraction, Reversed Micelle	
	extraction Supercritical fluid extraction	
1.5	Adsorption and removal of volatile products	1L
1.6	Chromatography-	1L
1.6.a	Ion Exchange chromatography	
1.6.b	HPLC	
1.7	Membrane processes-	1L
1.7.a	Filtration-Ultra filtration, Microfiltration and Nano	
	filtration	
1.7.b	Reverse osmosis	
1.7.c	Liquid membranes	
1.8	Drying	1L
1.9	Crystallization and Whole broth processing	1L
2	Product analysis (E.g. Pharmaceutical product) an	d Treatment of
	Industrial Wastes	
	Learning Objectives: The objectives of this unit are:	
	1) Assess the product quality	
	2) Integrate the waste treatment methods for e	efficient and safe
	disposal of industrial waste	
	3) Review the treatment of pharmaceutical industry v	
	Learning Outcomes: After the successful completion o	of the module, the
	learner will be able to:	
	Verify the product quality and validate its purity	

				1		
	Т	R	U	S	Т	
T V	R	Sc	Sv	llak	NIC	

	2) Choose the appropriate treatment process	based on the
	constituents of the industrial waste.	
	3) Evaluate the quality of the waste by specific chemi	cal and biological
	methods	
2.1.	Product analysis	5L
2.1.a.	Protein –Based contaminants	
2.1.b.	Detection of Protein based product impurities	
2.1.c	Immunological approaches to detection of	
	contaminants	
2.1.d	Endotoxin and other pyrogenic contaminants	
	i. Pyrogen detection	
	ii. Microbial and viral contaminants	
2.1.e	Miscellaneous contaminants	
2.1.f	Validation studies	2L
2.2.	Treatment of Industrial Wastes	
2.2.a.	Methods for determination of organic matter	
	content in waste waters	
	i. Dissolved oxygen	
	ii. PV test	
	iii. BOD	
	iv. COD	
	iv. Total Organic carbon	
	v.Total solids, Total suspended solids, Total dissolved	
	solids	
	vi. Volatile suspended solids	
2.2.b.	Wastes from major industries- an overview	2L
2.3.a.	Systems for the treatment of wastes	
	i. Aerobic breakdown of raw waste waters	
	Activated sludge system and its modifications	
	ii. The Trickling filter	
	iii. Rotating discs	
2.3.b.	Anaerobic breakdown of sludge	2L
2.3.c	Waste water disposal in Pharmaceutical industry	1L
2.4	Government Regulatory Bodies(EPA)	
3	Industrial Fermentations:	
	Learning Objectives: The objectives of this unit are:	
	1) Charting out microbial fermentation processes	

Department: Microbiology

	2) Integrate the Upstream processing, fermental	tion proper and	
	downstream processing as a whole unit.		
	3) Guage the consequences of deviation from optimu	ım parameters set	
	Learning Outcomes: After the successful completio	n of the module,	
	the learner will be able to:		
	1) Illustrate the microbial productions		
	2) Analyze the effect of various physical and chemic	cal parameters on	
	fermentation		
	3) Schematically represent in the form of flowcharts the microbial		
	product formation		
	Industrial Fermentations:		
3.1	Alcohol from molasses	2L	
3.2	Penicillins and semisynthetic penicillins.	2L	
3.3.	Vitamin B ₁₂ from <i>Propionibacetrium</i>	2L	
3.4	Baker's and Brewer's Yeast	2L	
3.5	Citric acid and Vinegar	2L	
3.6	Bee r –Ale and Lager	2L	

References:

- 1) Patel A.H. (1996). Industrial Microbiology. 1st edition, Macmillan India Limited
- 2) Okafor N. (2007). Modern Industrial Microbiology and Biotechnology. Ist edition. Bios Scientific Publishers Limited. USA
- 3) Waites M.J., Morgan N.L., Rockey J.S. and Higton G. (2001). Industrial Microbiology: An Introduction. Ist edition. Wiley Blackwell
- 4) Glaze A.N. and Nikaido H. (1995). Microbial Biotechnology: Fundamentals of Applied Microbiology. Ist edition. W.H. Freeman and Company
- 5) Casida LE. (1991). Industrial Microbiology. 1st edition. Wiley Eastern Limited.
- 6) Crueger W and Crueger A. (2000). Biotechnology: A textbook of Industrial Microbiology. 2nd edition. Panima Publishing Co. New Delhi.
- 7) Stanbury PF, Whitaker A and Hall SJ. (2006). Principles of Fermentation Technology. 2nd edition, Elsevier Science Ltd.
- 8) Stanbury PF, Whitaker A and Hall SJ. (2017). Principles of Fermentation Technology. 3rd edition, Elsevier Science Ltd.
- 9) Walsh Gary, (2011). Pharmaceutical Biotechnology. 1st edition, Wiley-India edition.
- 10) E.M.T.El-Mansi and A.R.Allman (2012). Fermentation Microbiology and Biotechnology. 3rd edition. CRC Press.

Evaluation Pattern: Theory

For course IV

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks	with	Marks	without
		Option		Option	
1	I	30		20)
2	II	30		20	C
3	III	30		20	C

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

Chart preparation using ICT tools

OFFEE test

Department: Microbiology

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER VI - Practical

Course-IV

COURSE CODE: 20US6MBP2

[CREDITS - O1]

Experiment	Titles and Number of Credits	Number
Sr.No.		of hours
1.	Estimation of BOD	3
2.	Estimation of COD	3
3.	Fermentation efficiency of alcohol fermentation	6
	Sugar tolerance	
	Alcohol tolerance	
	Sugar estimation by Cole's ferricyanide method	
	Alcohol estimation	
4.	Bioassay of Penicillin	6
5.	Bioassay of Vitamin B ₁₂	6
6.	Sterility testing of an injectible	5
7.	Visit to a fermentation industry-Report writing	1

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

a) Rough Journal - O5

b) Fair Journal - O5

c) Viva-10

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER VI

Discipline Specific Elective DSE-I

COURSE TITLE: Recombinant DNA Technology and Advanced Virology

COURSE CODE: 2OUS6MBRDV5

[CREDITS - O2]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- I) Describe the role of different tools and the methods associated with recombinant DNA technology.
- 2) Analyse the applications of recombinant DNA technology.
- 3) Enumerate virus particles.

Module	TITLE AND CONTENT	NO OF
		LECTURES
1	Introduction to Recombinant DNA Technology:	
	Learning Objectives:	
	1) To describe the steps in gene cloning.	
	2) To describe different methods adopted to obtain a	and process DNA.
	3) To state characteristics of different vectors.	
	4) To introduce the recombinant DNA into host.	
	Learning Outcomes: After the successful completion of	of the module, the
	learner will be able to:	
	1) Define the basic terms associated with re	ecombinant DNA
	technology.	
	2) Cite the steps in gene cloning.	
	3) State the steps to use vectors to clone gene segme	ents.
	4) Compare and contrast between genomic and cDN	•
	5) Evaluate the properties of an ideal host and a vector	or.
	6) Describe the transformation of the host.	,
1.1.	Basic terminology:	
	Concept of recombinant DNA, gene cloning,	
	chimeric DNA.	
1.1.a.	Tools required:	1L
	Different enzymes and proteins required in gene	
	cloning, Restriction endonucleases and its types.	

Somanyar TRUST

Department: Microbiology

T. Y. B.Sc. Syllabus

1.1.b.	Modification of cut ends- use of Linkers and	2L
1.1.c	Adaptors Basic steps of gene cloning. Genomic and cDNA library:	ΊL
	Concept and preparation	
1.1.d.	Methods of generating DNA fragments:	2L
	Restriction digestion	
	Mechanical shear	
	PCR	
	Chemical synthesis	
	Properties of an ideal host and a vector.	
1.1.e.	Vectors used in Recombinant DNA Technology:	2L
	Cloning and Expression vectors	
1.1.f.	Cloning and selection in following vectors:	2L
	Plasmids: pBR322 and pUC-19 vector.	
	Phage: lambda phage	
	Cosmids	
	Shuttle vectors	
	BAC and YAC	
1.1.g.	Integration of DNA insert into vector	1L
	Different situations:	
	Both sides cohesive and compatible	
	Both ends cohesive and separately matched	
	Both ends cohesive and unmatched	
	Both ends blunt	
	One end cohesive and compatible, the other end	
	blunt	
1.1.h	Introduction of recombinant DNA into a suitable host:	1L
	Methods of transformation of host:	
	Increased competence by Calcium chloride	
	treatment	
	Infection by recombinant DNAs packaged as virions	
	packaged as fillens	
2	Screening, selection of recombinant clones and	Applications of
	Recombinant DNA Technology:	

Department: Microbiology

	Learning Objectives:	
	1) To describe the different methods of screening	and selection of
	recombinant clones.	
	2) To list and describe the applications of re	ecombinant DNA
	technology.	
	Learning Outcomes: After the successful completion of	of the module, the
	learner will be able to:	
	1) Evaluate different strategies to screen and se	lect recombinant
	clones.	
	2) State and describe different applications of re	ecombinant DNA
	technology.	
2.1.	Selection of recombinant clones containing	1L
	recombinant DNA:	
	Reporter genes	
	Elimination of non-recombinant DNA	
	Identification of clones having recombinant DNAs.	
2.2	Selection of clone containing a specific DNA insert:	2L
2.2.a.	Library screening strategies:	
	Sequence dependent screening:	
	Colony hybridization	
2.2.b.	Gene tagging	
	Screening by PCR	
2.3.	Screening of expression protein product:	2L
2.3.a.	Unique gene products	
2.3.b.	Antibodies specific to a protein product	
	FACS	
2.3.c.	South-Western and North-Western screening.	
2.3.d.	Applications of Recombinant DNA Technology:	2L
2.3.e.	Site-directed mutagenesis:	5L
	Method and application.	
	Yeast two-hybrid system	
	Protein-protein interaction.	
	DNA fingerprinting	
	Method and application	
	DNA polymorphism:	
	Types and detection:	
	SNP, STR and VNTR	

Department: Microbiology

	Gene therapy: Method and application	
3	Advanced Virology:	
	Learning Objectives:	
	1) To describe the different methods for cultivation	
	2) To describe the methods for visualization and	d enumeration of
	virus particles.	
	3) To state the characteristics of prions and viroids	•
	Learning Outcomes : After the successful completion o	f the module, the
	learner will be able to:	
	1) Describe and implement different methods f	or cultivation of
	viruses.	
	2) State steps and methods to visualize and	enumerate virus
	particles.	
	3) State the characteristics of prions and viroids.	
3.1.	Cultivation of viruses:	2L
	Cell culture techniques, embryonated egg,	
	laboratory animals, CPE and Inclusion bodies.	
3.2.	Visualization and enumeration of virus particles.	1L
3.3	Measurement of infectious units:	4L
	i. Plaque assay	
	ii. Fluorescent focus assay	
	iii. Infectious centre assay	
	iv. Transformation assay	
	v. Endpoint dilution assay.	
3.4	Measurement of virus particles and their	3L
	components:	
	i. Electron microscopy	
	ii. Atomic force microscopy	
	iii. Hemagglutination	
	iv. Measurement of viral enzyme activity.	2L
	v. Prions and viroid's	
Ī		

References:

1. Peter J. Russell (2006), —Genetics-A molecular approachll, 2nd ed.

- 2. Benjamin A. Pierce (2008), —Genetics a conceptual approachl, 3rd ed., W. H.
- Freeman and company.

 3. R. H. Tamarin, (2004), —Principles of genetics||, Tata McGraw Hill.
- 4. M. Madigan, J. Martinko, J. Parkar, (2009), —Brock Biology of microorganisms II,12th ed., Pearson Education International.
- 5. Fairbanks and Anderson, (1999), —Geneticsll, Wadsworth Publishing Company.
- 6. Prescott, Harley and Klein, —Microbiologyll,.7th edition McGraw Hill International edition.
- 7. Edward Wagner and Martinez Hewlett, (2005) —Basic Virologyll, 2nd edition, Blackwell Publishing
- 8. Teri Shors (2009), —Understanding viruses II, Jones and Bartlett publishers.
- 9. Robert Weaver, (), —Molecular biologyll, 3rd. Mc Graw Hill international edition. IO.Primrose and Twyman, (), —Principles of gene manipulation and genomicsll, 7thed, Blackwell Publishing II. Arthur Lesk, (2009), —Introduction to Bioinformaticsll, 3rd Edition, Oxford University Press.
- 10. Flint, Enquist, Racanillo and Skalka, —Principles of virologyll, 2nd ASM press.
- 11. T. K. Attwood & D. J. Parry-Smith, (2003), —Introduction to Bioinformatics, Pearson education
- 12. Benjamin Lewin, —Genes IX Jones and Bartlett publishers.
- 13. JD Watson, —Molecular biology of the genell, 5th edition.
- 14. Snustad, Simmons, —Principles of genetics II, 3rd edition John Wiley & sons, Inc.

Evaluation Pattern: Theory

For course :DSE-I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without Option
1	I	30	20
2	II	30	20
3	III	30	20

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module) Probable options:

Plickers
Testmoz
Google form
Moodle
Objective-MCQ
Short answer test

Department: Microbiology

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER VI - Practical

COURSE: DSE I

COURSE CODE: 20US6MBP3

[CREDITS - O1]

Experiment	Title and Number of Credits	Number
Sr. no.		of hours
1.	Isolation of genomic DNA of <i>E. coli</i> (Demonstration)	O7
2.	Enrichment of coliphages, phage assay (pilot & proper).	06
3.	Restriction enzyme digestion analysis. (Demonstration)	05
4.	PCR (Demonstration)	07
5.	Western Blot. (Demonstration)	05

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

a) Rough Journal – O5

b) Fair Journal - O5

c) Viva-10

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER VI

Discipline Specific Elective DSE-II

COURSE TITLE: Advances in Immunology and Health Care

Biotechnology

COURSE CODE: 20US6MBAIM6

[CREDITS - O2]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- I) Summarize monoclonal antibody production and applications, principles of Immunohematology.
- 2) Evaluate the need for vaccination.
- 3) Explain different types of hypersensitivity reactions, autoimmune disorders and transplantation.
- 4) Appreciate the various methods for detecting genetic disease, drug designing and use of DNA fingerprinting in forensic science.

Module	TITLE AND CONTENT	NO OF								
	LECTURES									
1	Monoclonal Antibodies, Immunohematology, Vaccine	S								
	Learning Objectives:									
	1) To define production and application of monoclon	nal antibodies.								
	2) To describe human blood group system, haemoly	tic disease of new								
	born and method to detect it.									
	3) To explain different types of vaccines and to define active-passive									
	immunization.									
	Learning Outcomes:									
	After the successful completion of module the learner should be able									
	to:									
	1) Understand the significance of the use of monoclonal antibodies									
	different areas like research.									
	2) Recognise different blood group system and the significance of Rh									
	incompatibility.									

Department: Microbiology

	3) Appreciate role of vaccine in human health and compare diffe	rent						
	methods of immunization.							
1.1	Monoclonal antibodies- 3L							
1.1.a.	Monoclonal antibodies- Production and applications							
1.2	Immunohematology 4L							
1.2.a.	Human blood group system, ABO secretors and non-							
1.2.b.	secretors, Rhesus system and list of other blood							
	group system, Haemolytic disease among new born,							
	Coombs test							
1.3	Vaccine 5L							
1.3.a.	Active, passive immunization							
1.3.b.	Types of vaccines: Killed and attenuated vaccines,							
	whole organism vaccine, purified macromolecules as							
	vaccine, DNA vaccine							
1.3.c.	Use of adjuvant in vaccine							
1.3.d.	New vaccine strategies							
1.3.e	Ideal vaccines							
1.3.f.	Route of vaccine administration, Schedule failure in							
	clinical vaccine							
2	Hypersensitivity, Autoimmunity, Transplantation							
	Learning Objectives:							
	1) To describe the mechanism and manifestations	of						
	hypersensitivity.							
	2) To define and give examples of different types of autoimm	nune						
	responses.							
	3) To describe different types of transplantation, its imm	nune						
	mechanism and methods for preventing its rejections.							
	Learning Outcomes :							
	After the successful completion of module the learner will be able to	Э:						
	1) Explain the hypersensitivity reaction, its immune mechanism	and						
	pathological condition associated with it.							
	2) Describe about autoimmune disorders. List different types	and						
	different mechanisms explaining its manifestation.							
	3) List different types of transplantation and describe at	oout						
	rejection of graft by host and different method by which	host						
	will improve acceptance of graft.							

2.1	Hypersensitivity	5L							
2.1.a.	Coombs and Gells classification								
2.1 .b.	Type I to Type IV hypersensitivity mechanism and								
	manifestation								
2.2	Introduction to Autoimmunity 3L								
2.2.a.	Definition of immune tolerance; immune suppression) -							
2.2.0.	and auto immunity								
2.2.b.	Examples of autoimmune disorder								
2.2.c.	Possible mechanisms								
2.3	Transplantation	4L							
2.3.a.	Terms used to denote different types of	.2							
2.3.b.	transplantation								
2.3.c	Mechanisms of graft rejection								
2.7.0	Methods of increasing the acceptance of allograft								
	The deceptance of an ogran								
3	Health Care Biotechnology								
	Learning objectives: To enable the learner to:								
	Familiarize with newer disease diagnostic technic	aue							
	2) Know the methods of detecting genetic disease	•							
	3) Learn about the newer methods of disease trea								
	4) Describe applications of DNA fingerprinting in F								
	Learning outcomes: After the successful completion								
	learner will be able to:								
	1) Understand the newer methods of diseas	e diagnosis and							
	detection of genetic disease.	3							
	2) Elaborate on Drug designing, delivery and targe	etina.							
	3) Explain the concept of Gene Therapy.	<i>J</i> .							
	4) Appreciate the use of DNA fingerprinting tecl	nnique in forensic							
	medicine.	·							
3.1.	Disease diagnosis	2L							
3.1 a	DNA/RNA Probe								
3.1 b	Monoclonal Antibodies								
3.1 c	Autoantibodies								
3.1 d	Commercial potential of Diagnostics								
3.2	Detection of genetic diseases	2L							
3.2 a	Obtaining foetal cells								

3.2 b	Disease detection	
3.2 c	Identification of genes causing genetic diseases	
3.3	Disease treatment	
3.3 a	Products from Non-recombinant organisms	3L
3.3 b	Products from Recombinant organisms	
3.3 c	Interferons	
3.3 d	Growth factors	
3.3 e	Monoclonal antibodies	
3.3 f	Artificial tissues/organs	
3.3 g	Therapeutic oligonucleotides	
3.4	Drug designing, Drug delivery and targeting	1L
3.5	Gene therapy	2L
3.5 a	Types of gene therapy	
3.5 b	Augmentation gene therapy	
3.5 c	Targeted gene transfer	
3.5 d	Ethical issues	
3.6	DNA fingerprinting in forensic medicine	1L
3.7	Bioterrorism	1L

References:

- 1) Thomas J. Kindt, Richard A. G, Barbara A. Osburne (2007) Kuby Immunology: W. H. Freeman and Company, New York.
- 2) Pathak S.S. and Palan U. (1997). Immunology essential and Fundamentals, Pareen publications, Bombay.
- 3) Ian R. Tizard, "Immunology- An introduction" $4^{\rm th}$ edition, Saunders College publishing.
- 4) Fahim Halim Khan (2009) "The Elements of immunology "Pearson Education, India.
- 5) B.D Singh (2010) "Biotechnology Expanding Horizon" 3rd Edition, Kalyani Publication.

Department: Microbiology

Evaluation Pattern: Theory

For course:DSE -II

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks wi	th Mark	s without
		Option	Optio	n
1	I	30	20	
2	II	30	20	
3	III	30	20	

Internal Evaluation - (40 M)

(Give different ways of internal evaluation finalised for each module)

Probable options:

Plickers

Testmoz

Google form

Moodle

Objective-MCQ

Short answer test

Department: Microbiology

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER VI - Practical

COURSE: DSE II

COURSE CODE: 20US6MBP3

[CREDITS - O1]

Experiment	Title and Number of Credits	Number
Sr. no.		of hours
1.	Blood grouping, direct reverse typing	5
2.	Major- Minor compatibility test	4
3.	Determination of isoagglutinin titre.	4
4.	Coomb test- direct method and indirect method	5
5.	Preparation of heat killed vaccine and sterility testing of it.	5
6.	a) Visit to Microbiological Diagnostic laboratory	
	b) Visit to Forensic laboratory	7

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 20 marks

a) Rough Journal – O5

b) Fair Journal – O5

c) Viva-10

 	 	_												

Page **91** of **95**

Department: Microbiology

T.Y. B. Sc. (MICROBIOLOGY) SEMESTER VI

SEC - I

COURSE TITLE: ADVANCES IN MICROBIAL TECHNIQUES

COURSE CODE: 20US6MBAMT7

[CREDITS - O2]

Course Learning Outcomes: After successful completion of the Course, the learner will be able to:

- Apply Blotting and electrophoretic techniques for diagnostic application in genetic engineering and separation and analysis of biomolecules, respectively.
- 2) Explain the concepts of MALDI and SELDI in genetic engineering experiments
- 3) Evaluate the different methods of enzyme immobilization, their advantages and disadvantages.
- 4) Appreciate the different applications of Immobilized enzymes.

Module	TITLE AND CONTENT	NO OF							
		LECTURES							
1	Tools in Genetic Engineering								
	Learning Objectives:								
	1) To provide a broad exposure to all basic techniqu	es (Biochemical &							
	Biophysical) used in current Modern Biology resea	rch.							
	2) To describe the applications								
	Learning Outcomes: After the completion of this m	odule learner will							
	be able to:								
	1) Explain the principles and applications of Electrop	ohoresis, PCR, RIA,							
	FISH etc in research and related experiments.								
	2) Use and apply the knowledge of genetic engine	ering in problem							
	solving and in practice.								
1.1	Electrophoresis- agarose gel electrophoresis,	4L							

Departmen	it. Microbiology	i. i. b.sc. sylla							
1.1.a	pulse field gel electrophoresis,								
1.1.b	2D gel electrophoresis.								
1.2.a	Matrix assisted laser desorption ionization (MALDI),	3L							
1.2.b	Surface enhanced laser desorption								
	ionization(SELDI),								
1.2.c	Electro spray ionization (ESI),								
1.3	PCR, Applications of PCR.	1L							
1.4.	Blotting Techniques: Southern,	3L							
1.4.a	Northern and								
1.4.b	Western blotting.								
1.5	DNA finger printing	1L							
1.6	Radioimmunoassay	1L							
1.7	Fluorescence in situ Hybridization (FISH)	1L							
2	Immobilization of enzymes:								
	Learning Objectives:								
	1) To provide deeper insight into the fundament	al techniques for							
	immobilization of enzymes								
	Learning Outcomes: After completion of this modul	e the learner will							
	able to:								
	1) Use the different methods of immobilization	for enzymes at							
	industrial level								
	2) Appreciate the applications of Immobilization								
2.1.a	Introduction	1L							
2.1.b	Methods of Immobilization :	6L							
	Adsorption								
	Covalent binding								
	Entrapment								
2.1.c	Advantage of Immobilization	2L							
2.1.d	Disadvantage of Immobilization	2L							
2.1.e	Applications	3L							

References:

1) R.C. Dubey, A Text Book of Biotechnology. S.Chand & Co Ltd, New Delhi

- 2) B. D. Singh, (2010). Biotechnology- Expanding Horizon, 3rd Revised Edition, Kalyani Publishers.
- 3) S. N. Jogdand, (1999). Advances in Biotechnology, 2nd Revised Edition, Himalaya Publishing House.

Evaluation Pattern: Theory

For course :SEC I

External Evaluation – Semester End Examination (60 M) - Duration: 2 hours

Paper Pattern

Question No	Module	Marks with Option	Marks without Option			
1	I	40	30			
2	II	40	30			

T. Y. B. Sc. (MICROBIOLOGY)

SEMESTER VI - Practical

COURSE: SEC-I

COURSE CODE: 20US6MBAMT7

[CREDITS - O1]

Evporiment			Number	
Experiment Sr. no.	Title and Number of Credits	of	hours	
31.110.				
1.	Immobilization of enzymepreparation of alginate-	2		
	enzyme/culture beads			
2.	Qualitative and quantitative activity estimation of	4		
	enzyme / culture beads	4		
3.	Demonstration of Blotting techniques	5		
4.	Visit to Instrumentation Facilities			

Evaluation pattern: Practical

External evaluation: 30 Marks practical examination at the end of each semester per course.

Internal evaluation: 10 marks

a)	Fair	Journal	- 05

b) Viva- O5
